首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— A method has been developed for the simultaneous measurement of the rates of glucose consumption in the various structural and functional components of the brain in vivo. The method can be applied to most laboratory animals in the conscious state. It is based on the use of 2-deoxy-D-[14C]glucose ([14C]DG) as a tracer for the exchange of glucose between plasma and brain and its phosphorylation by hexokinase in the tissues. [14C]DG is used because the label in its product, [14C]deoxyglucose-6-phosphate, is essentially trapped in the tissue over the time course of the measurement. A model has been designed based on the assumptions of a steady state for glucose consumption, a first order equilibration of the free [14C]DG pool in the tissue with the plasma level, and relative rates of phosphorylation of [14C]DG and glucose determined by their relative concentrations in the precursor pools and their respective kinetic constants for the hexokinase reaction. An operational equation based on this model has been derived in terms of determinable variables. A pulse of [14C]DG is administered intravenously and the arterial plasma [14C]DG and glucose concentrations monitored for a preset time between 30 and 45min. At the prescribed time, the head is removed and frozen in liquid N2-chilled Freon XII, and the brain sectioned for autoradiography. Local tissue concentrations of [14C]DG are determined by quantitative autoradiography. Local cerebral glucose consumption is calculated by the equation on the basis of these measured values. The method has been applied to normal albino rats in the conscious state and under thiopental anesthesia. The results demonstrate that the local rates of glucose consumption in the brain fall into two distinct distributions, one for gray matter and the other for white matter. In the conscious rat the values in the gray matter vary widely from structure to structure (54-197 μmol/100 g/min) with the highest values in structures related to auditory function, e.g. medial geniculate body, superior olive, inferior colliculus, and auditory cortex. The values in white matter are more uniform (i.e. 33–40 μmo1/100 g/min) at levels approximately one-fourth to one-half those of gray matter. Heterogeneous rates of glucose consumption are frequently seen within specific structures, often revealing a pattern of cytoarchitecture. Thiopental anesthesia markedly depresses the rates of glucose utilization throughout the brain, particularly in gray matter, and metabolic rate throughout gray matter becomes more uniform at a lower level.  相似文献   

2.
Slices of rabbit cerebral cortex, from the foetal stage to the adult have been used to compare lipid synthesis from fatty acids synthesized de novo from [U-14C]glucose and [1-14C]acetate, with lipid synthesis from exogenous albumin-bound [1-14C]palmitate. Incorporation into cellular lipid has been determined in terms of DNA, protein, wet wt. of tissue and wet weight of whole brain. On a wet wt. basis, maximum incorporation of glucose carbon into lipid occurred in the foetal brain while lipid synthesis from acetate and palmitate was maximum at 4–14 days after birth. Glucose and acetate were incorporated into a diversity of lipids (with increasing amounts of phosphatidylcholine synthesized during maturation), while palmitate was incorporated into the free fatty acid and triglyceride fractions. A greater proportion of acetate was incorporated into fatty acids of chain-length longer than C16 compared with the incorporation of palmitate. However, on a molar basis de novo synthesized and exogenous palmitate were elongated, desaturated and incorporated into phospholipids at a similar rate, while exogenous palmitate was incorporated to a greater extent than de nova synthesized fatty acid into the triglyceride fraction. This difference in metabolism may be due to the different size of the non-esterified fatty acid pool in the two situations. At the period of their most active formation, the very long-chain fatty acids may be synthesized from a pool of the C18 series of fatty acids (saturated and monoenoic) not in equilibrium with the bulk of C18 acids in cerebral lipids. This could be a pool of acyl groups derived from ethanolamine phospholipids.  相似文献   

3.
About ScienceDirect 《BBA》1978,504(3):466-467
Culture of Trypanosoma cruzi (Tulahuen strain) in the presence of ethidium bromide (1–20 μg/ml) resulted in dyskinetoplasty and inhibition of growth, to an extent depending on the dye concentration and the medium composition. The ethidium bromide-induced dyskinetoplasty caused a decrease of (a) the cytochrome content of epimastigotes (a,a3 and b species); (b) the rate of respiration (endogenous or supported by D-glucose); and (c) the rate of production of 14CO2 from [2-14C]acetate and [1-14C]glucose. [2-14C]Acetate oxidation to 14CO2 was affected by dyskinetoplasty more than [1-14C]glucose oxidation, particularly at the exponential growth phase. With dyskinetoplastic epimastigotes, diminution of 14CO2 production from [2-14C]acetate largely exceeded that of oxygen uptake, while with [1-14C]glucose, 14CO2production and respiration were affected to about the same extent. Dyskinetoplasty also decreased the incorporation of [2-14C]acetate carbon into intermediates of the tricarboxylic acid cycle and related amino acids, and modified the distribution pattern of 14C in accordance with the decrease of respiration. Reduction of cytochrome content of epimastigotes by restriction of heme compounds during growth decreased 14CO2 production from [2-14C]acetate, like the ethidium-induced dyskinetoplasty. The same occurred after inhibition of electron transfer by antimycin and cyanide, though to a much more significant extent, thus confirming the functional association of electron transport at the mitochondrial cytochrome system of T. cruzi and the enzymatic reactions of the tricarboxylic acid cycle.  相似文献   

4.
—Isolated rat posterior pituitary glands were incubated with [14C]glucose or [14C]acetate and the incorporation of radioactivity into several amino acids was followed. The results indicated that radioactivity was incorporated from [14C]glucose into a large pool of glutamate which appeared to be responsible for a large proportion of GABA synthesis in the gland. The specific activity of glutamine was always less than that of glutamate when [14C]glucose was the precursor employed, whereas [14C]acetate labelled a glutamate pool which had approximately the same specific activity as that of glutamine. The results are discussed with reference to the compartmentation of amino acid metabolism in the nervous system.  相似文献   

5.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

6.
(14C) acetylcholine synthesis by cortex slices of rat brain   总被引:13,自引:0,他引:13  
Abstract—
  • 1 A procedure has been developed to measure ACh synthesis from [14C]-precursors. As little as 10?9 moles of ACh were detected as the result of de nova synthesis. Following incubation of cortex slices of rat brain with eserine and a tagged metabolite, ACh carrier was added to the incubation medium and to an extract from the slices. ACh was purified by chromatography on Amberlite CG-50, precipitation and recrystallization of ACh chloroaurate.
  • 2 [U?14C]glucose and [2?14C]pyruvate formed similar amounts of [14C]ACh. Hydrolysis of ACh with subsequent chromatography of the resultant acetic acid demonstrated that all of the label was located in the acetyl moiety. [14C]acetate did not serve as a precursor of the acetyl group of ACh. Equivalent incorporation of carbons 1 and 6 of glucose into ACh indicated that glucose metabolism to ACh occurred via the Embden-Meyerhof pathway.
  • 3 The amount of ACh detected by bioassay after incubation of cortex slices with [U?14C]glucose was approximately the same as that calculated as labelled ACh; this demonstrates that all of the acetyl groups of ACh formed during incubation were derived from glucose.
  • 4 [14C]choline, either methyl or chain labelled, formed [14C]ACh while labelled ethanolamine, serine and methionine did not. Synthesis from labelled choline did not occur in the absence of glucose.
  • 5 When both [U?14C]glucose and [14C]choline were incubated with brain slices, the acetyl and choline moieties of ACh were equally labelled; this demonstrates that the entire molecule was formed from added precursors. Slices supported a high rate of ACh synthesis without addition of choline. The addition of 10?4m -hemicholinium-3 inhibited ACh formation by more than 90 per cent from either [U-14C]glucose or [Me-14C]choline.
  • 6 Study of the time course of ACh synthesis from glucose demonstrated a rapid formation of [14C]ACh within the slices which reached a maximum during the first hour of incubation. [14C]ACh in the incubation medium accumulated at a linear rate for 3 hr. Replacement of a portion of the sodium chloride of the incubation medium by potassium chloride to a final concentration of 31 mm -KCI markedly increased the formation of [14C]ACh found in the incubation medium. Decreased amounts of [14C]ACh were extracted from the slices by homogenization or by subsequent heating at pH 4 in the high potassium ion medium.
  相似文献   

7.
Glucose uptake was monitored on a seasonal basis, using [6-3H]glucose and undisturbed cores collected from an intertidal mud flat. The fate of glucose carbon, including the formation of CO2 and biomass, was assayed by using undisturbed cores and [U-14C]glucose; the production of short-chain fatty acids was monitored with [U-14C]glucose and sediment slurries. Rate constants for glucose uptake varied temporally, with temperature accounting for much of the variability; turnover times ranged from about 2 to 10 min. Rate constants decreased with increasing sediment depth and in the following order for several common monosaccharides: glucose>galactose>mannose~fucose. Time course analyses of 14CO2 production provided evidence of significant isotopic dilution; although pore water glucose turnover times were on the order of minutes, 14CO2 did not plateau until after approximately 6 h of incubation. At this time a maximum of about 40% of the added radioglucose had been respired. The extent of respiration varied as a function of sediment depth and season, with the highest values below the surface (4 to 7 cm) and in summer and fall. Incorporation of radiolabelled glucose into biomass also varied seasonally, but the greatest extent of incorporation (about 40%) was observed in the fall and for the 0- to 1-cm depth interval. The production of short-chain fatty acid end products was largely limited to acetate, which accounted for only a small percentage of the added radiolabel. Other organic acids, pyruvate in particular, were observed in pore water and were due to artifacts in the heat-kill procedure used to terminate incubations. An accurate assessment of the distribution and importance of short-chain fatty acids as end products required the use of an enzymatic technique coupled with high-pressure liquid chromatography to verify qualitative identities.  相似文献   

8.
Labeling studies using detached lupin (Lupinus angustifolius) nodules showed that over times of less than 3 minutes, label from [3,4-14C]glucose was incorporated into amino acids, predominantly aspartic acid, to a much greater extent than into organic acids. Only a slight preferential incorporation was observed with [1-14C]- and [6-14C]glucose, while with [U-14C]-glucose more label was incorporated into organic acids than into amino acids at all labeling times. These results are consistent with a scheme whereby the “carbon skeletons” for amino acid synthesis are provided by the phosphoenolpyruvate carboxylase reaction.  相似文献   

9.

Microbially influenced corrosion (MIC) is being increasingly recognised as a serious problem. To investigate the role of MIC, radiotracer activity and lipid biomass measurements were performed on samples from offshore and on‐shore natural gas transmission systems. These measurements evaluated the biomass and metabolism of microbial communities residing inside transmission pipelines. Aqueous and nonaqueous hydrocarbon samples from liquid separators, sludge catchers and nodules attached to pipe walls were aseptically recovered and inoculated into anaerobic tubes for radiotracer time course experiments or preserved with chloroform‐methanol for total lipid analyses. MPN enrichments and phospholipid biomass determinations estimated microbial populations of 104—107 cells per gram in several samples. General microbial metabolism was demonstrated by [l‐14C]acetate incorporation into lipids and by [14C]CO2 production from [U‐14C]glucose. [14C]Acetate was slowly mineralised to 14CO2 without significant methane production. [14C]Acetate was produced by fermentation of [14C]glucose, [14C]palmitate and by hydrogen mediated acetogenesis in the presence of [I4C]CO2. In one location acetogenesis from hydrogen and carbon dioxide accounted for 0–7 mmol.l‐1 of acetate production per week. These results demonstrated that microorganisms could utilise natural gas impurities to produce organic acids. This activity could adversely affect the structural integrity (MIC) of high pressure natural gas pipelines.  相似文献   

10.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

11.
1. A study has been made of the incorporation of carbon from [14C]formaldehyde and [14C]formate by cultures of Pseudomonas methanica growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compounds for periods of up to 1min., has been analysed by chromatography and radioautography. 3. Radioactivity was fixed from [14C]formaldehyde mainly into the phosphates of the sugars, glucose, fructose, sedoheptulose and allulose. 4. Very little radioactivity was fixed from [14C]formate; after 1min. the only products identified were serine and malate. 5. The distribution of radioactivity within the carbon skeleton of glucose, obtained from short-term incubations with [14C]methanol of Pseudomonas methanica growing on methane, has been investigated. At the earliest time of sampling over 70% of the radioactivity was located in C-1; as the time increased the radioactivity spread throughout the molecule. 6. The results have been interpreted in terms of a variant of the pentose phosphate cycle, involving the condensation of formaldehyde with C-1 of ribose 5-phosphate to give allulose phosphate.  相似文献   

12.
Abstract: The molecular basis of the close linkage between oxidative metabolism and acetylcholine (ACh) synthesis is still unclear. We studied this problem in slices and synaptosomes by measurement of ACh synthesis from [U-14C]glucose, and 14CO2 production from [3,4-14C]- and [2-14C]glucose, an index of glucose decarboxylation by the pyruvate dehydrogenase complex (PDH) and the enzymes of the Krebs cycle, respectively. We examined both under conditions that either inhibited (low O2 or antimycin) or stimulated (2,4- dinitrophenol [DNP] or 35 mm -K+) 14CO2 production from [2-14C]- or [3,4-14C]glucose. Incorporation of [U-14C]glucose into ACh was reduced under low O2 and by antimycin or DNP (by 51-93%) and stimulated by 35 mm -K+ (by 30-60%). Under all of these conditions, ACh synthesis and the decarboxylation of [3,4-14C]- and [2-14C]glucose were linearly related (r= 0.741 and 0.579, respectively). The difference in the rate of 14CO2 production from [3,4-14C]- and [2-14C]glucose was used as a measure of the amount of glucose that was not oxidatively decarboxylated (efflux). We found that efflux was reduced (low 02 and antimycin), unchanged (DNP in slices), or increased (DNP in synaptosomes and K+ stimulation in slices) compared with control values under 100% O2. ACh synthesis and efflux were more closely related (r= 0.860) than ACh synthesis and 14CO2 production from variously labeled glucoses.  相似文献   

13.
The aim of this work was to discover how leucoplasts from suspension cultures of soybean (Glycine max L.) oxidize hexose monophosphates. Leucoplasts were isolated from protoplast lysates on a continuous gradient of Nycodenz with a yield of 28% and an intactness of 80%. Incubation of the leucoplasts with 14C-labelled substrates led to 14CO2 production, that was dependent upon leucoplast intactness, from [U-14C]glucose 6-phosphate, [U-14C]glucose 1-phosphate, [U-14C] fructose 6-phosphate and [U-14C]glucose+ATP, but not from [U-14C]fructose-1,6-bisphosphate or [U-14C]triose phosphate. The yield from [U-14C]glucose 6-phosphate was at least four times greater than that from any of the other substrates. When [1-14C]-, [2-14C]-, [3,4-14C]-, and [6-14C]glucose 6-phosphate were supplied to leucoplasts significant 14CO2 production that was dependent upon leucoplast intactness was found only for [1-14C]glucose 6-phosphate. It is argued that soybean cell leucoplasts oxidize glucose 6-phosphate via the oxidative pentose phosphate pathway with very little recycling, and that in these plastids glycolysis to acetyl CoA is negligible.S.A.C. thanks the Science and Engineering Research Council for a research studentship.  相似文献   

14.
1. The testis of the ram secretes considerable amounts of amino acids (200μmoles/day) into the fluid collected from the efferent ducts. The principal amino acid in this testicular fluid is glutamate, which is present in concentrations about eight times those in testicular lymph or in blood from the internal spermatic vein. 2. The concentration of glutamate in seminal plasma from the tail of the epididymis is about ten times that in testicular fluid, and, though glutamate is the major amino acid in ejaculated seminal plasma, its concentration is less than in epididymal plasma. 3. After the intravenous infusion of [U-14C]glucose, labelled glutamate was found in the testicular fluid. Radioactivity was also detected in alanine, glycine, serine plus glutamine and aspartate. Alanine had the highest specific activity, about 50% of the specific activity of blood glucose. 4. When [U-14C]glutamate was infused, the specific activity of glutamate in testicular fluid was only about 2% that in the blood plasma. 5. Testicular and ejaculated ram spermatozoa oxidized both [U-14C]glutamate and [U-14C]leucine to a small extent, but neither substrate altered the respiration from endogenous levels. 6. No radioactivity was detected in testicular spermatozoal protein after incubation with [U-14C]glutamate or [U-14C]leucine. Small amounts of radioactivity were detected in protein from ejaculated ram spermatozoa after incubation with [U-14C]glutamate. 7. The carbon of [U-14C]glucose was incorporated into amino acids by testicular spermatozoa; most of the radioactivity occurred in glutamate.  相似文献   

15.
Boron is required for fiber growth and development in cotton ovules cultured in vitro. Incorporation of [14C]glucose by such fiber from supplied UDP-[14C]glucose into the hot alkali-insoluble fraction is rapid and linear for about 30 minutes. Incorporation of [14C]glucose from such substrate by fibers grown in boron-deficient ovule cultures is much less than in the case with fibers from ovules cultured with boron in the medium. Total products (alkali-soluble plus alkali-insoluble fractions) were also greater in fibers from ovules cultured with boron. The fraction insoluble in acetic-nitric reagent was a small part of the total glucans; however, in the boron-sufficient fibers, there was significantly more of this fraction than in fibers from boron-deficient ovule cultures. The hot water-soluble glucose polymers from the labeled fibers had a significant fraction of the total [14C]glucose incorporated from UDP-[14C]glucose. Both β-1,4- and β-1,3- water-soluble polymers were formed in the boron-sufficient fibers, whereas the same water-soluble fraction from the boron-deficient fibers was predominantly β-1,3-polymers. The incorporation of [14C]glucose from GDP-[14C]glucose by the fibers attached to the ovules was insignificant.  相似文献   

16.
1. The rate of appearance of 14CO2 from [6-14C]glucose and [3-14C]pyruvate was measured. Pyruvate is oxidized to carbon dioxide twice as fast as glucose, although the oxygen uptake is almost the same with each substrate. 2. The presence of 30μm-2,4-dinitrophenol increases the output of 14CO2 from [6-14C]glucose sixfold whereas the oxygen uptake is not quite doubled. Similar results are obtained with 0·1m-potassium chloride. The stimulating action of these two agents on the output of 14CO2 from [3-14C]pyruvate is much less than on that from [6-14C]glucose. 3. The effects of oligomycin, ouabain and triethyltin on the respiration of control and stimulated brain-cortex slices were studied. Triethyltin (1·3μm) inhibited the oxidation of [6-14C]glucose more than 70%, but did not inhibit the oxidation of[3-14C]pyruvate. [3-14C]pyruvate. 4. The production of lactic acid by brain-cortex slices incubated with glucose is twice as great as that with pyruvate. Lactic acid increases two and a half times in the presence of either triethyltin or oligomycin when the substrate is glucose, but is no different from the control when the substrate is pyruvate. 5. With kidney slices the production of lactic acid from glucose is very low. It is increased by oligomycin but not by triethyltin. 6. The results are discussed in terms of the oxidation of the extramitochondrial NADH2 produced during glycolysis.  相似文献   

17.
Hepatocytes isolated from obese Zucker rats showed a significantly higher rate of both [U-14C]glucose and [U-14C]lactate incorporation into [14C]lipid than those from their lean counterparts. This was associated with a marked increase in the lipogenic rate measured by the incorporation of3H2O into the cell esterified fatty acids. Although there were no changes in the incorporation of the tracer into either [14C]glycogen or14CO2, the [14C] total uptake was significantly higher in the obese animals. The high rate of [14C]lipid synthesis from glucose was observed both at 15 and 30 mM substrate concentrations and was linked to an enhanced uptake of the tracer into the cell as measured using the decarboxilation of [1-14C]glucose in the presence of phenazine methosulphate. The presence of insulin in the incubation medium had no effect on the uptake of glucose by the liver cells. However, the large uptake of glucose by the hepatocytes from the obese animals was not related to an enhanced rate of transport as measured using 3-O-methyl[U-14C]glucose. The activity of glucose-6-phosphate dehydrogenase together with a higher [1-14C]glucose/[U-14C]glucose descarboxylation ratio indicate a predominant very active pentose phosphate pathway which may be responsible for the enhanced glucose uptake observed in the hepatocytes from the obese animals.  相似文献   

18.
In islets from adult rats injected with streptozotocin during the neonatal period, both a nonmetabolized analog of L-leucine and 3-phenylpyruvate augmented 14CO2 output from islets either prelabeled with L-[U-14C]glutamine or exposed to D-[2-14C]glucose and D-[6-14C]glucose in a manner qualitatively comparable to that found in islets from control rats. The islets of diabetic rats differed, however, from those of control rats by their unresponsiveness to both the L-leucine analog and a high concentration of D-glucose in terms of increasing 3HOH generation from [2-3H]glycerol, an impaired sparing action of the hexose upon 14CO2 output from islets prelabeled with [U-14C]palmitate, and, most importantly, by a decreased rate of D-[2-14C]glucose and D-[6-14C]glucose oxidation when either incubated at a high concentration of the hexose (16.7 mM) or stimulated by nonglucidic nutrient secretagogues at a low concentration of D-glucose (2.8 mM). In islet homogenates, the activity of glyceraldehyde phosphate dehydrogenase, glutamate decarboxylase, and NADP-malate dehydrogenase was lower in diabetic than control islets. Such was not the case for glutamatealanine transaminase, glutamate-aspartate transaminase, or glutamate dehydrogenase. The neonatal injection of streptozotocin thus affected, in the adult rats, the activity of several islet enzymes. Nevertheless, the metabolic data suggest that an impaired circulation in the glycerol phosphate shuttle, as observed in response to stimulation of the islets by either a high concentration of D-glucose or nonglucidic nutrient secretagogues, represents an essential determinant of the preferential impairment of glucose-induced insulin release in this model of non-insulin-dependent diabetes.  相似文献   

19.
The rate of [2-14C]glucose uptake has been used as an indication of the status of energy consumption by the rat brain, but the cost of this radiolabel can be prohibitive and the surgical manipulation involved in published methods is extensive. A method for measuring glucose utilization in vivo in mouse brain with [U-14C]glucose is described in this article. Glucose consumption in whole mouse brain obtained with [U-14C]glucose or [2-14C]glucose was 0.650±0.022 and 0.716±0.36 nmol/mg/min, respectively. In all instances the rate obtained with the uniformly labeled isotope was somewhat lower than that found with [2-14C]glucose. The rate of glucose utilization measured with either isotope was significantly depressed in sodium pentobarbital anesthetized mice. The method described here is advantageous because [U-14C]glucose is substantially less expensive than [2-14C]glucose and surgical intervention is avoided.  相似文献   

20.
The water-insoluble 1,4-β-linked products formed from UDP-[14C]glucose by pea membranes were dissolved in hot dimethyl-sulfoxide/paraformaldehyde and fractionated on columns of controlled pore glass beads calibrated with dextran standards. The products eluted with a peak size close to 70 kilodaltons in dextran equivalents. Similar elution profiles were obtained for products formed in brief or extended incubations and at high or low substrate concentrations. Methylation analysis indicated that only a few [14C]glucose units had been added to an endogenous acceptor to form this product. In the presence of UDP-xylose at concentrations equal to or less than UDP-[14C]glucose, incorporation from the latter was enhanced and the products elongated with time to a size range where the major components eluted between dextran 264 and 500 kilodaltons. Treatment with endo-1,4-β-glucanase resulted in a mixture of oligosaccharides, including the xyloglucan subunit Glc4Xyl3, which were hydrolyzed further by mixed glycosidases to labeled glucose and isoprimeverose (xylosyl-1,6-α-d-glucose). In pulse-chase experiments, the low molecular weight product formed from UDP-[14C]glucose alone was clearly a precursor for high molecular weight products formed subsequently in the presence of both UDP-glucose and UDP-xylose. It is concluded that the 1,4-β-transglucosylation activity detected in these tests was due to an enzyme that is required for biosynthesis of the backbone of xyloglucan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号