共查询到20条相似文献,搜索用时 15 毫秒
1.
Kouchi, H., Akao, S. and Yoneyama, T. 1986. Respiratory utilizationof 13C-labelled photosynthate in nodulated root systems of soybeanplants.J. exp. Bot. 37: 985993. An improved method for the measurement of respiratory utilizationof current photosynthate in the nodulated root system of water-culturedsoybean ( Glycine max L.) plants was developed using a steady-state 13CO 2 labelling technique. Well-nodulated plants at the latevegetative stage were allowed to assimilate 13CO 2 for 10 h incontinuous light at a constant CO 2 concentration with a constant 13C abundance. The respiratory evolution of 13CO 2 from rootsand nodules was measured continuously throughout the periodof 13CO 2 assimilation and during a subsequent 36 h chase periodby using a differential infrared 13CO 2 analyser. The plantswere grown with nitrogen-free or (15 mmol dm 3)-containing culture solution for 3 d before 13CO 2 assimilation. In plants grown without , nodule respiration averaged 69% of the total respiration of the undergroundparts over the full experimental period and the CO 2 respiredreached an apparent isotopic equilibrium at 8085% labellingafter initiating 13CO 2 assimilation. By contrast, the CO 2 respiredfrom the roots did not reach an isotopic equilibrium and labellingwas only 56% at the end of exposure to 13CO 2 These findingsdemonstrated that nodule respiration is strongly dependent onrecently assimilated carbon compared with root respiration. Plants supplied with in the culture solution showed a decreased rate of nodule respirationand a slightly increased rate of root respiration. The extentsand time courses of labelling of respired CO 2 from both theroots and nodules were similar in the presence and absence of except that the maximum level of labelling of CO 2 derived from nodule respiration in plantswith was significantly higher (about 91%) than for plants growing without . Key words: Soybean ( Glycine max L.), nodule respiration, 13CO 2, assimilation, carbon partitioning 相似文献
2.
Pinus strobus L. plants in their third year of growth were permitted to photoassimilate 14CO 2 for about 1 hour at monthly intervals between April and October, and the subsequent distribution of 14C in these plants was determined 8 hours, 1 month, 2 months or 4 months after photo-assimilation. In this way, the fate of 14CO 2 photo-assimilated during different months of the growing season was observed. In the spring, old needles played a significant role in photo-assimilating 14CO2 and exporting current photosynthate to the developing new shoots and roots. By July, the new shoot had replaced the old shoot both as the primary photo-assimilating part of the plant and as an exporter, particularly to the root. The root received current photosynthate from the shoot throughout the entire growing season, although plant analysis only 8 hours after photo-assimilation did not always reveal this. Translocation of recent photosynthate from shoot to root was particularly high in August, September, and October. The amounts of photo-assimilated 14C lost from the plants over a 4 month interval, principally through respiration and photorespiration, were about one-half of that absorbed during photo-assimilation, with the greatest loss occurring within the first month. 相似文献
3.
The economy of carbon in nodulated white lupin ( Lupinus albusL.) was studied in terms of consumption of net photosynthatein nitrogen fixation, in maintenance of respiration, and inthe production of dry matter and protein. Net photosynthesisrose to a maximum in early fruiting and then fell abruptly dueto shedding of leaves. Nodulated roots acquired translocateequivalent to 51% of the plant's net photosynthate, 78% of thecarbon of this translocate being respired, 10% entering drymatter, and 12% returning to the shoot attached to productsof nitrogen fixation. Nodules utilized 4?06?5 g C infixing 1 g nitrogen. Photosynthate was utilized most effectivelyfor nitrogen fixation in late vegetative growth. Fruits sequestered16% of the plant's net photosynthate, shoot night respiration17%, and dry matter formation in shoot vegetative parts 22%.Averaged over growth, 9?9 g net photosynthate was required toproduce 1 g seed dry matter and 31 g net photosynthate to produce1 g seed protein. Budgets for utilization of the carbon of netphotosynthate were constructed for 10 d intervals of the plant'sgrowth cycle. Feeding of shoots with 14CO 2 resulted in radiocarbonbecoming partitioned approximately as predicted by these budgets.The dependence of root respiration on recent photosynthate wasassessed by following the time course of release of 14CO 2 tothe rooting medium of the 14CO-labelled plants. 相似文献
4.
Soybean ( Glycine max [L.] Merr. cv Hobbit) plants were grown in a growth chamber for 56 days in a phosphorus- and nitrogen-deficient soil and were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd) Gerd. and Trappe and Rhizobium japonicum strain USDA 136, or by either organism alone, or by neither. Non-VAM plants received supplemental phosphorus and nonnodulated plants supplemental nitrogen to achieve the same rate of growth in all treatments. Plants of all four treatments had the same (P > 0.05) dry weights at harvest, but VAM plants had higher rates of CO 2 exchange (CER, P < 0.05) and lower leaf P concentrations (P < 0.01). Leaf nitrogen concentrations were lower in nodulated than in nitrogen-supplemented plants (P < 0.01) while starch concentrations were higher (P < 0.01). There was a significant negative relationship between nitrogen and starch ( r = −0.989). Statistical evaluation of the data showed that some parameters (CER, leaf area and phosphorus content) were associated with phosphorus nutrition (or the presence of the VAM fungus), others (leaf fresh weight and root dry weight) with nitrogen nutrition (or the presence of Rhizobium), and some (leaf nitrogen and starch content) by both factors. The development of microsymbiont structures and nodule activity were significantly lower in the tripartite association than in plants colonized by one endophyte only. The findings suggest that endophyte effects go beyond those of simple nutrition and associated source-sink relationships. 相似文献
5.
A method of continuous in vivo measurement of photo-assimilatepartitioning within an intact plant is proposed. The methodis demonstrated by analysis of photo-assimilate movement betweena pea pod to a single ovule and then to solution bathing thesurgically modified seed coat Key words: Photo-assimilate partitioning, partitioning coefficient, seed coat unloading, systems identification 相似文献
6.
Photosynthesis rate, internal CO 2 concentration, starch, sucrose, and metabolite levels were measured in leaves of sugar beet ( Beta vulgaris L.) during a 14-h period of sinusoidal light, which simulated a natural light period. Photosynthesis rate closely followed increasing and decreasing light level. Chloroplast metabolite levels changed in a manner indicating differential activation of enzymes at different light levels. Starch levels declined during the first and last 2 hours of the photoperiod, but increased when photosynthesis rate was greater than 50% of maximal. Sucrose and sucrose phosphate synthase levels were constant during the photoperiod, which is consistent with a relatively steady rate of sucrose synthesis during the day as observed previously (BR Fondy et al. [1989] Plant Physiol 89: 396-402). When starch was being degraded, glucose 1-phosphate level was high and there was a large amount of glucose 6-phosphate above that in equilibrium with fructose 6-phosphate, while fructose 6-phosphate and triose-phosphate levels were very low. Likewise, the regulatory metabolite, fructose, 2,6-bisphosphate was high, indicating that little carbon could move to sucrose from starch by the triose-phosphate pathway. These data cast doubt upon the feasibility of significant carbon flow through the triose-phosphate pathway during starch degradation and support the need for an additional pathway for mobilizing starch carbon to sucrose. 相似文献
7.
Seven-day-old seedlings of two cultivars (Cristalina and UFV ITM1) of Glycine max were inoculated with 0, 3,000, 9,000, or 27,000 eggs of Meloidogyne incognita race 3 or M. javanica and maintained in a greenhouse. Thirty days later, plants were exposed to ¹⁴CO₂ for 4 hours. Twenty hours after ¹⁴CO₂ exposure, the root fresh weight, leaf dry weight, nematode eggs per gram of root, total and specific radioactivity of carbohydrates in roots, and root carbohydrate content were evaluated. Meloidogyne javanica produced more eggs than M. incognita on both varieties. A general increase in root weight and a decrease in leaf weight with increased inoculum levels were observed. Gall tissue appeared to account for most of the root mass increase in seedlings infected with M. javanica. For both nematodes there was an increase of total radioactivity in the root system with increased levels of nematodes, and this was positively related to the number of eggs per gram fresh weight and to the root fresh weight, but negatively related to leaf dry weight. In most cases, specific radioactivities of sucrose and reducing sugars were also increased with increased inoculum levels. Highest specific radioactivities were observed with reducing sugars. Although significant changes were not observed in endogenous levels of carbohydrates, sucrose content was higher than reducing sugars. The data show that nematodes are strong metabolic sinks and significantly change the carbon distribution pattern in infected soybean plants. Carbon partitioning in plants infected with nematodes may vary with the nematode genotype. 相似文献
8.
In order to study the effects of inorganic phosphate (P1) starvationon C 4plants, 3-week-old maize plants ( Zea maysL cv. Brulouis)were grown in a growth chamber on a nutrient solution withoutP1 over 22 d During the first 2 weeks, Pi-starved plants grewas well as control plants The Pi concentration in the planttissue decreased rapidly with time, which suggests that normalbiomass production can be maintained at the expense of internalP1 In addition, photosynthetic CO2 assimilation measured 4-6h after dawn was not affected, but the concentration of glucose,sucrose, and starch in leaves was much higher than in the controls 14CO 2 pulse-chase experiments earned out on the ninth day oftreatment showed that 14CO 2 assimilation was perturbed duringthis initial period, resulting in a larger flow of carbon toboth starch and sucrose At the beginning of the third week ofP1 starvation (15 d after treatment) 14C incorporation intosucrose stayed high relative to controls but this was not thecase for starch At the end of the third week of P1-deficiency,shoot growth was considerably reduced and fresh weight was onlyone-third of that of the control plants. The P1 concentrationof both the leaf and root tissues was less than 1.0 µmolg 1 FW compared to 20-25µmol g 1 FW in the controls.Photosynthetic CO 2 assimilation was reduced and the leaf concentrationof sucrose and starch, which had begun to decrease after theend of the second week of P1 limitation, became lower than inthe controls. These results obtained on maize plants show thatphotosynthesis and carbon partitioning between sucrose and starchwere strongly affected by P1 deficiency, similar to C 3 species. Key words: CO 2 assimilation, corn, orthophosphate deficiency, starch, sucrose 相似文献
9.
The temporal relationship between sucrose (Suc) accumulation and carbon partitioning was investigated in developing sugarcane internodes. Radiolabeling studies on tissue slices, which contained Suc concentrations ranging from 14 to 42% of the dry mass, indicated that maturation coincided with a redirection of carbon from water-insoluble matter, respiration, amino acids, organic acids, and phosphorylated intermediates into Suc. It is evident that a cycle of Suc synthesis and degradation exists in all of the internodes. The decreased allocation of carbon to respiration coincides with a decreased flux from the hexose pool. Both the glucose and fructose (Fru) concentrations significantly decrease during maturation. The phosphoenolpyruvate, Fru-6-phosphate (Fru-6-P), and Fru-2,6-bisphosphate (Fru-2, 6-P2) concentrations decrease between the young and older internodal tissue, whereas the inorganic phosphate concentration increases. The calculated mass-action ratios indicate that the ATP-dependent phosphofructokinase, pyruvate kinase, and Fru-1,6-bisphosphatase reactions are tightly regulated in all of the internodes, and no evidence was found that major changes in the regulation of any of these enzymes occur. The pyrophosphate-dependent phosphofructokinase reaction is in apparent equilibrium in all the internodes. Substrate availability might be one of the prime factors contributing to the observed decrease in respiration. 相似文献
10.
Field experiments were conducted in 1981 and 1982 to study the effects of low-irradiance supplemental light on soybean ( Glycine max [L.] Merr. cv Evans) flower and pod abscission. Cool-white and red fluorescent lights illuminated the lower part of the soybean canopy during daylight hours for 3 weeks late in flowering. At the same time, flowers and young pods on half the plants were shaded with aluminum foil. Flowers were tagged at anthesis and monitored through abscission or pod maturity. Responses to red and white lights were similar. Supplemental light tended to reduce abscission and increase seed weight per node compared to natural light. Shading flowers and pods increased abscission and reduced seed weight per node. Number of flowers produced per node, individual seed weight, and seeds per pod were not affected by light or shade treatments. Further studies examined the effects of shading reproductive structures on their capacity to accumulate 14C-photoassimilates. Individual leaves were pulse labeled with 14CO2 1, 2, and 4 weeks post anthesis. Flowers and pods in the axil of the labeled leaf were covered with aluminum foil 0, 24, 72, and 120 hours before pulsing. Shading flowers and pods resulted in a 30% reduction in the relative amount of radiolabel accumulated from the source leaf. The reduction in 14C accumulation due to shading was evident regardless of the length of the shading period and was most pronounced when the shades were applied early in reproductive development. We conclude that light perceived by soybean flowers and young pods has a role in regulating both their abscission and their capacity to accumulate photoassimilates. 相似文献
11.
Carbon partitioning patterns of Opuntia ficus-indica, a widelycultivated crassulacean acid metabolism species, were analysedto estimate carbon fluxes. After labelling a cladode with 14CO 2,activities of 14C in various organs were measured for 6 weeks;the observed 14C time-courses for 14C in the labelled cladodeand for transfer into other organs were simulated with a compartmentmodel. Within the first week, half of the newly synthesizedcarbohydrate in the labelled cladode was either converted intostructural material in that cladode, lost by respiration ofthat cladode, or moved to other organs. In the non-labelledcladode and the roots, such newly synthesized carbohydrate initiallyincreased, reached maxima, and then declined. The basal cladodeand the daughter cladode used 65 and 96%, respectively, of theirown assimilate. Roots imported 12 and 2 % of carbohydrate fromthe basal cladode and the daughter cladode, respectively. Whenthe whole plant was shaded, the daughter cladode incorporatednearly threefold more carbohydrate from the basal cladode intostructural material compared with the control. When plants weredroughted, roots incorporated 23 % more and the daughter cladodeincorporated 68 % less carbohydrate from the basal cladode intotheir structural material than for the control. The basal cladodesof the 18-month-old plants exported 60% more carbon than thoseof the 6-month-old plants. Carbon flux rates derived from compartmentalanalysis can be used as parameter values in plant productionmodels. Carbon partitioning, compartment model, drought, plant age, shading 相似文献
12.
Kouchi, H. and Higuchi, T. 1988. Carbon flow from nodulatedroots to the shoots of soybean { Glycine max L. Merr.) plants:An estimation of the contribution of current photosynthate toureides in the xylem stream.J. exp. Bot. 39: 10151023. Well-nodulated, water-cultured soybean plants were allowed toassimilate 13CO 2 at a constant specific activity for 10 h andthe 13C-labelling of total carbon and ureides in xylem sap wasinvestigated. Labelled carbon appeared very rapidly in the xylem stream. Percentageof labelled carbon (relative specific activity, RSA) in xylemsap was 18% at 2 h after the start of 13CO 2 assimilation andreached 53% at the end of the 10 h assimilation. The amountof labelled carbon exported from nodulated roots to the shootsvia the xylem during the 10 h labelling period accounted for33% of total labelled carbon imported into the nodulated roots.Ureides (allantoin and allantoic acid) in xylem sap were stronglydependent on currently assimilated carbon. The RSA of ureidesin xylem sap had reached 83% at the end of the assimilationperiod. Labelled carbon in ureides accounted for 51% of totallabelled carbon returned from nodulated roots to the shootsvia the xylem during the 10 h assimilation period. A treatmentwith 20 mol m 3 nitrate in the culture medium for 2 ddecreased the ureide concentration in the xylem sap slightly,but greatly decreased the RSA of ureides. By comparing the data with the results of analysis of the xylemsap of nodule-detached plants, it was concluded that the majorityof labelled carbon exported to the xylem stream from noduleswas in ureide form. A considerable amount of carbon was alsoreturned from roots to shoots via the xylem stream but it wasmore dependent on (non-labelled) carbon reserved in the roottissues. Key words: Soybean( Glycine max L.), root nodule, carbon partitoning, 13CO 2 assimilation, xylem 相似文献
14.
Whole-plant diurnal C exchange analysis provided a noninvasive estimation of daily net C gain in transgenic tobacco ( Nicotiana tabacum L.) plants deficient in leaf cytosolic pyruvate kinase (PK c−). PK c− plants cultivated under a low light intensity (100 μmol m −2 s −1) were previously shown to exhibit markedly reduced root growth, as well as delayed shoot and flower development when compared with plants having wild-type levels of PK c (PK c+). PK c− and PK c+ source leaves showed a similar net C gain, photosynthesis over a range of light intensities, and a capacity to export newly fixed 14CO 2 during photosynthesis. However, during growth under low light the nighttime, export of previously fixed 14CO 2 by fully expanded PK c− leaves was 40% lower, whereas concurrent respiratory 14CO 2 evolution was 40% higher than that of PK c+ leaves. This provides a rationale for the reduced root growth of the PK c− plants grown at low irradiance. Leaf photosynthetic and export characteristics in PK c− and PK c+ plants raised in a greenhouse during winter months resembled those of plants grown in chambers at low irradiance. The data suggest that PK c in source leaves has a critical role in regulating nighttime respiration particularly when the available pool of photoassimilates for export and leaf respiratory processes are low. 相似文献
15.
The partitioning and utilization of carbon (C) and nitrogen(N) in nodulated roots and nodules of chickpea ( Cicer arietinumL.) was studied at two moisture levels at 10-d intervals 40140d after sowing (DAS). More C was used in respiration and lessin growth of nodulated roots and nodules under water stresscompared to controls during all growth stages except at theearly vegetative stage. Similarly, less nitrogen was investedin dry matter of both nodules and nodulated roots under stress,except during the vegetative stage where more nitrogen was used.Calculated over the entire growth period, as much as 14 and20% of the total nitrogen and 3 and 4% of the total carbon fixedby the plant was lost to the rooting medium under controlledand stressed conditions, respectively. The efficiency of nitrogen fixation with respect to net C utilizationwas maximal during seed filling under both control and stressconditions However, the efficiency of nitrogen fixation wasalways greater under drier conditions. Carbon, chickpea ( Cicer arietinum L.), nitrogen, nitrogen fixation, partitioning 相似文献
16.
To evaluate leaf carbon balance during rapid pod-fill in soybean ( Glycine max [L.] Merrill), measurements were made of CO 2 assimilation at mid-day and changes in specific leaf weight, starch, and sucrose concentrations over a 9-hour interval. Assimilate export was estimated from CO 2 assimilation and leaf dry matter accumulation. Chamber-grown `Amsoy 71' and `Wells' plants were subjected on the day of the measurements to one of six photosynthetic photon flux densities in order to vary CO 2 assimilation rates. Rate of accumulation of leaf dry matter and rate of export both increased as CO2 assimilation rate increased in each cultivar. Starch concentrations were greater in Amsoy 71 than in Wells at all CO2 assimilation rates. At low CO2 assimilation rates, export rates in Amsoy 71 were maintained in excess of 1.0 milligram CH2O per square decimeter leaf area per hour at the expense of leaf reserves. In Wells, however, export rate continued to decline with decreasing CO2 assimilation rate. The low leaf starch concentration in Wells at low CO2 assimilation rates may have limited export by limiting carbon from starch remobilization. Both cultivars exhibited positive correlations between CO2 assimilation rate and sucrose concentration, and between sucrose concentration and export rate. Carbon fixation and carbon partitioning both influenced export rate via effects on sucrose concentration. 相似文献
17.
The dry matter partitioning in vegetative plants of Dactylisglomerata was studied from experiments performed in controlledenvironments. Plants were grown hydroponically in growth chambers,at two constant temperatures (17 and 25 °C). In both experimentsthe root fraction decreased regularly with time, an effect thatwas more accentuated in the higher temperature regime. In orderto explain the change in dry matter partitioning, the experimentalshoot and root growth were analysed using a carbon budget modelwhich includes shoot and root maintenance requirements. Themodel predicts a relationship between the root specific growthrate and the product of shoot specific growth rate and shootto root dry weight ratio. In the range of experimental accuracy,this relationship was found to be linear at both temperatures,which should indicate that the partitioning coefficients andthe root maintenance coefficient remained constant during vegetativegrowth. The effect of temperature on the value of these coefficientscan be specified from a linear regression analysis. Between17 and 25 °C, the root maintenance coefficient increasedby about a factor of two, whereas the partitioning coefficientsdid not vary significantly. On the basis of these results, itwas shown that the decrease in root fraction during vegetativegrowth should be mainly attributed to the decrease in net specificactivity of shoots. Copyright 1994, 1999 Academic Press Dactylis glomerata L., vegetative growth, model, partitioning, root:shoot ratio, shoot specific activity, maintenance requirements 相似文献
18.
Komatsuna ( Brassica campestris L. var. rapa cv. Misugi) is aleafy vegetable that readily accumulates nitrate in its tissues.Plants grown hydroponically with 2 mM nitrate in a greenhousewere fed 15N-labeled nitrate for 2 h, followed with nonlabelednitrate for 8 h. At intervals of 2 h, the plants were sampledand analyzed for the distribution of 15N in the nitrate, aminoacids, and proteins in the tissues of roots, petioles plus midribs,and leaves. Nitrate reduction and nitrogen fluxes were examinedusing a compartmental analysis with 19 compartments and 28 transferrate constants. Nitrate existed in the three types of tissues as a large storagepool and a small metabolic pool. Nitrogen reduction was observedin these tissues, but mainly in the leaf tissue. Nitrate uptakeand reduction rates were smaller in the dark than in light,and particularly nitrate reduction in the shoot was less inthe dark. The rate of protein synthesis was much greater inthe light. The simulation, using compartment models and 15Ndistribution data, may be useful for estimating actual ratesof nitrogen transport and metabolism in the whole plant system. (Received October 15, 1986; Accepted March 26, 1987) 相似文献
19.
Photosynthetic acclimation was examined by exposing third trifoliolateleaves of soybeans to air temperatures of 20 to 30°C andphotosynthetic photon flux densities ( PPFD) of 150 to 950µmolphotons m 2 s 1 for the last 3 d before they reachedmaximum area. In some cases the environment of the third leafwas controlled separately from that of the rest of the plant.Photosynthesis, respiration and dry mass accumulation were determinedunder the treatment conditions, and photosynthetic capacity,and dry mass and protein content were determined at full expansion.Photosynthetic capacity, the light-saturated rate of net carbondioxide exchange at 25°C and 34 Pa external partial pressureof carbon dioxide, could be modified between 21 and 35 µmolCO 2 m 2 s 1 by environmental changes after leaveshad become exporters of photosynthate. Protein per unit leafmass did not differ between treatments, and photosynthetic capacityincreased with leaf mass per unit area. Photosynthetic capacityof third leaves was affected by the PPFD incident on those leaves,but not by the PPFD on other leaves on the plant. Photosyntheticcapacity of third leaves was affected by the temperature ofthe rest of the plant, but not by the temperature of the thirdleaves. Photosynthetic capacity was linearly related to carbondioxide exchange rate in the growth regimes, but not to daytime PPFD. At high PPFD, and at 25 and 30°C, mass accumulationwas about 28% of the mass of photosynthate produced. At lowerPPFD, and at 20°C, larger percentages of the photosynthateproduced accumulated as dry mass. The results suggest that photosynthatesupply is an important factor controlling leaf structural growthand, consequently, photosynthetic acclimation to light and temperature. Key words: Glycine max (L.) Merr., photosynthesis, temperature acclimation, light acclimation, photosynthate partitioning 相似文献
20.
Photosynthesis, photosynthate partitioning into foliar starch, and translocation were investigated in soybean plants ( Glycine max (L.) Merr. cv. Amsoy 71), grown under different photoperiods and photosynthetic periods to determine the controls of leaf starch accumulation. Starch accumulation rates in soybean leaves were inversely related to the length of the daily photosynthetic period under which the plants were grown. Photosynthetic period and not photoperiod per se appears to be the important factor. Plants grown in a 14-hour photosynthetic period partitioned approximately 60% of the daily foliar accumulation into starch whereas 7-hour plants partitioned about 90% of their daily foliar accumulation into starch. The difference in starch accumulation resulted from a change in photosynthate partitioning between starch and leaf residual dry weight. Residual dry weight is defined as leaf dry weight minus the weight of total nonstructural carbohydrates. Differences in photosynthate partitioning into starch were also associated with changes in photosynthetic and translocation rates, as well as with leaf and whole plant morphology. It is concluded that leaf starch accumulation is a programmed process and not simply the result of a limitation in translocation. 相似文献
|