首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu X  Jiang M  Zhang A  Lu J 《Planta》2005,223(1):57-68
The histochemical and cytochemical localization of abscisic acid (ABA)-induced H2O2 production in leaves of maize (Zea mays L.) plants were examined, using 3,3-diaminobenzidine (DAB) and CeCl3 staining, respectively, and the relationship between ABA-induced H2O2 production and ABA-induced subcellular activities of antioxidant enzymes was studied. H2O2 generated in response to ABA treatment was detected within 0.5 h in major veins of the leaves and maximized at about 2–4 h. In mesophyll and bundle sheath cells, ABA-induced H2O2 accumulation was observed only in apoplast, and the greatest accumulation occurred in the walls of mesophyll cells facing large intercellular spaces. Meanwhile, ABA treatment led to a significant increase in the activities of the leaf chloroplastic and cytosolic antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), the O 2 scavenger Tiron and the H2O2 scavenger dimethylthiourea (DMTU) almost completely arrested the increase in the activities of these antioxidant enzymes. Our results indicate that the accumulation of apoplastic H2O2 is involved in the induction of the chloroplastic and cytosolic antioxidant enzymes. Moreover, an oxidative stress induced by paraquat (PQ), which generates O 2 and then H2O2 in chloroplasts, also up-regulated the activities of the chloroplastic and cytosolic antioxidant enzymes, and the up-regulation was blocked by the pretreatment with Tiron and DMTU. These data suggest that H2O2 produced at a specific cellular site could coordinate the activities of antioxidant enzymes in different subcellular compartments.  相似文献   

2.
Grabber JH  Lu F 《Planta》2007,226(3):741-751
Abstract Grass cell walls are atypical because their xylans are acylated with ferulate and lignins are acylated with p-coumarate. To probe the role and interactions of these p-hydroxycinnamates during lignification, feruloylated primary cell walls isolated from maize cell suspensions were lignified with coniferyl and sinapyl alcohols and with varying levels of p-coumarate esters. Ferulate xylan esters enhanced the formation of wall-bound syringyl lignin more than methyl p-coumarate, however, maximal concentrations of syringyl lignin were only one-third that of guaiacyl lignin. Including sinapyl p-coumarate, the presumed precursor of p-coumaroylated lignins, with monolignols unexpectedly accelerated peroxidase inactivation, interfered with ferulate copolymerization into lignin, and had minimal or adverse effects on cell wall lignification. Free phenolic groups of p-coumarate esters in isolated maize lignin and pith cell walls did not undergo oxidative coupling with each other or with added monolignols. Thus, the extensive formation of syringyl-rich lignins and the functional role of extensive lignin acylation by p-coumarate in grasses remains a mystery.  相似文献   

3.
Kerr EM  Fry SC 《Planta》2004,219(1):73-83
Cell-suspension cultures of maize (Zea mays L.) released soluble extracellular polysaccharides (SEPs) into their medium. Some or all of the SEPs had feruloyl ester groups. Pulse-labelling with [3H]arabinose was used to monitor changes in the SEPs Mr (estimated by gel-permeation chromatography) with time after synthesis. Newly released 3H-SEPs were 1.3–1.6 MDa, but between 2 days and 3 days after radiolabelling (in one experiment) or between 5 days and 6 days (in another), the 3H-SEPs abruptly increased to 17 MDa, indicating extensive cross-linking. The cross-linking involved both [3H]xylan and [3H]xyloglucan components of the SEPs. The cross-links could be cleaved by alkali, returning the SEPs to their original Mr. In 0.1 M NaOH at 37°C, 58% cleavage was effected within 24 h. The requirement for such prolonged alkali treatment indicates that ester-bonded (e.g. diferuloyl) groups were not solely responsible for the cross-linking. Bonds cleaved only by relatively severe alkali could include benzyl ether linkages formed between sugar residues and oxidised phenolics that had quinone methide structures. The ability of alkali to cleave the cross-links was independent of the age of the 3H-SEP molecules. Cross-linking of 3H-SEPs in vivo was delayed (up to approx. 7 days after radiolabelling) by exogenous sinapic acid, chlorogenic acid or rutin—agents predicted to compete with the oxidative coupling of feruloyl-polysaccharides. The cross-linking was promoted by exogenous ferulic acid or l-tyrosine, possibly because these compounds acted as precursors for polysaccharide feruloylation, thus providing additional partner substrates for the oxidative coupling of previously formed 3H-SEPs. The ability of certain phenolics to prevent the cross-linking of 3H-SEPs supports the idea that the cross-linking involved phenolic oxidation.Abbreviations DTT Dithiothreitol - Kav Elution volume relative to those of high-Mr dextran (Kav=0) and sucrose (Kav=1) - MLG Mixed-linkage -(13),(14)-d-glucan - Mr Relative molecular mass - PCW Primary cell wall - SEP Soluble extracellular polysaccharide - TFA Trifluoroacetic acid - V0 Void volume (centre of elution peak of high-Mr dextran) - Vi Totally included volume (centre of elution peak of sucrose)  相似文献   

4.
Hänsch R  Kurz T  Schulze J  Mendel RR  Cerff R  Hehl R 《Planta》2003,218(1):79-86
The maize (Zea mays L.) glyceraldehyde-3-phosphate dehydrogenase gene 4 (GapC4) promoter confers anaerobic gene expression in tobacco (Nicotiana tabacum L.), potato (Solanum tuberosum L.) and Arabidopsis thaliana (L.) Heynh. Here we have investigated its expression in hybrid poplar (Populus tremula × P. alba). Our results show that the promoter is not expressed in leaves and stems under normoxic conditions while anaerobiosis induces reporter gene expression in leaves up to a level observed for the STLS-1 promoter from potato that is shown to confer leaf-specific gene expression in transgenic poplar. Anaerobic induction is cell autonomous and requires a CO2 atmosphere and light. As in tobacco, the GapC4 promoter in poplar is wound inducible. The induction by CO2 and light may reflect a natural situation because flooding, a natural cause of anaerobiosis, is often accompanied by high CO2 concentrations in the floodwater. Our results show that the GapC4 promoter is suitable as an anaerobic reporter and as an inducible gene expression system in poplar.Abbreviations CaMV cauliflower mosaic virus - GapC4 glyceraldehyde-3-phosphate dehydrogenase gene 4 - GUS -glucuronidase - 4-MU methylumbelliferone - STLS-1 stem- and leaf-specific promoter 1  相似文献   

5.
The F 0 and F M level fluorescence from a wild-type barley, a Chl b-less mutant barley, and a maize leaf was determined from 430 to 685 nm at 10 nm intervals using pulse amplitude-modulated (PAM) fluorimetry. Variable wavelengths of the pulsed excitation light were achieved by passing the broadband emission of a Xe flash lamp through a birefringent tunable optical filter. For the three leaf types, spectra of F V/F M (=(F M − F 0)/F M) have been derived: within each of the three spectra of F V/F M, statistically meaningful variations were detected. Also, at distinct wavelength regions, the F V/F M differed significantly between leaf types. From spectra of F V/F M, excitation spectra of PS I and PS II fluorescence were calculated using a model that considers PS I fluorescence to be constant but variable PS II fluorescence. The photosystem spectra suggest that LHC II absorption results in high values of F V/F M between 470 and 490 nm in the two wild-type leaves but the absence of LHC II in the Chl b-less mutant barley leaf decreases the F V/F M at these wavelengths. All three leaves exhibited low values of F V/F M around 520 nm which was tentatively ascribed to light absorption by PS I-associated carotenoids. In the 550–650 nm region, the F V/F M in the maize leaf was lower than in the barley wild-type leaf which is explained with higher light absorption by PS I in maize, which is a NADP-ME C4 species, than in barley, a C3 species. Finally, low values of F V/F M at 685 in maize leaf and in the Chl b-less mutant barley leaf are in agreement with preferential PS I absorption at this wavelength. The potential use of spectra of the F V/F M ratio to derive information on spectral absorption properties of PS I and PS II is discussed.  相似文献   

6.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

7.
Seeds of the longcell mutant in maize (Zea mays L) have a defective-kernel phenotype: the embryo aborts at the early coleoptilar stage and the endosperm is reduced in size. Mutant embryos have severe alterations in morphogenesis. They have a suspensor-, an embryo axis- and a scutellum-like structure, but the shoot apical meristem (SAM) is not formed. Scanning electron microscopy showed that most of the cells in longcell embryos are tubular and abnormally enlarged. The level of expression of several genes involved in basic metabolism is not severely affected during early and mid embryogenesis, but storage molecule accumulation is reduced. Genes which in normal conditions are only expressed after germination, are expressed during kernel development in the longcell seeds. Mutant embryos undergo cell death in late embryogenesis. Nuclei in dying embryos are TUNEL positive, and different genes coding for hydrolytic enzymes are up-regulated. The expression of genes related to oxidative stress is also altered in longcell embryos. These results lead us to suggest that the longcell mutant may be cytokinesis-defective.  相似文献   

8.
Chromosome identification is essential in oyster genomic research. Fluorescence in situ hybridization (FISH) offers new opportunities for the identification of oyster chromosomes. It has been used to locate satellite DNAs, telomeres or ribosomal DNA sequences. However, regarding chromosome identification, no study has been conducted with simple sequence repeats (SSRs). FISH was used to probe the physical organization of three particular SSRs, (GGAT)(4), (GT)(7) and (TA)(10) onto metaphase chromosomes of the Pacific oyster, Crassostrea gigas. Hybridization signals were observed in all the SSR probes, but the distribution and intensity of signals varied according to the oligonucleotide repeat. The intercalary, centromeric and telomeric bands were observed along the chromosomes, and for each particular repeat every chromosome pair presented a similar pattern, allowing karyotypic analysis with all the SSRs tested. Our study is the first in mollusks to show the application of SSR in situ hybridization for chromosome identification and karyotyping. This technique can be a useful tool for oyster comparative studies and to understand genome organization in different oyster taxa.  相似文献   

9.
10.
In this article we report on construction of expression vector, heterologous expression in Escherichia coli, isolation, purification, and physicochemical characterization of an artificial chimeric protein HMWb(5)-EGFP consisting of full-length cytochrome b(5) (HMWb(5)) and green fluorescence protein (EGFP) from Aequorea. Optimization of expression conditions yielded an expression level up to 1500 nmol of chimeric protein per liter of culture. Recombinant chimeric protein HMWb(5)-EGFP was purified from cell membranes by using metal-affinity chromatography. It possesses physicochemical, spectral, and fluorescence properties of cytochrome b(5) and EGFP indicating independent character of protein folding in frames of the chimera. It is shown that there is a fluorescent resonance energy transfer in HMWb(5)-EGFP between the fluorophore of EGFP and heme of cytochrome b(5), and the distance between chromophores in the chimeric protein is approximately 67.3 A. The chimeric protein was shown to exist as a monomer in aqueous solution in the presence of detergents. The data indicate that the HMWb(5)-EGFP designed in the present work is a very promising model for modern biosensors and an instrument to study protein-protein interactions.  相似文献   

11.
Tomato (C3-plants) and maize (C4-plants) were grown in a nutrient solution to which triacontanol was added twice a week. After about 4 weeks the triacontanol treatment caused a significant increase in the dry weight of the tomato plants. Leaf area and dry weight measurements of tomato leaves at different stages of development showed that the largest increase in growth was obtained when triacontanol treatment was initiated before bud formation. In maize, no effect of the triacontanol treatment on dry wieght was observed. Photosynthesis was inhibited by 27% in young leaves from triacontanol-treated tomato plants and 39% in the controls, when the oxygen concentration was raised from 2% to 21%. In maize no change in photosynthesis could be observed, neither after altered oxygen concentration nor after triacontanol treatment. The difference in the response of C3- and C4-plants to triacontanol indicates that it regulates processes related to photosynthesis.  相似文献   

12.
Truitt CL  Paré PW 《Planta》2004,218(6):999-1007
Volicitin (N-[17-hydroxylinolenoyl]-l glutamine) present in the regurgitant of beet armyworm (Spodoptera exigua) activates the emissions of volatile organic compounds (VOCs) when in contact with damaged corn (Zea mays L.) leaves. VOC emission in turn serves as a signaling defense for the plant by attracting female parasitic wasps that prey on herbivore larvae. Chemical tracking of volicitin within plants has yet to be reported. Here we present biochemical data that beet armyworm regurgitant serves as a vector for the introduction of volicitin to the site of leaf damage under natural feeding conditions. Corn seedlings were 14CO2-labeled in situ, and beet armyworm larvae were allowed to feed on the labeled leaves. Herbivore oral secretions collected from late-third-instar larvae contained approximately 120 pmol volicitin (0.05 nCi pmol–1) per larva. When radiochemically labeled larvae were placed on unlabeled leaves, the amount of volicitin introduced to the damaged site was approximately 5.0 nCi (calc. 100 pmol/larvae). The mobility of volicitin in leaves was examined by allowing radiolabeled beet armyworms to feed on unlabeled plants. In such tracking experiments, radioactivity was not detected in the upper leaves; however, the exogenous application of 5 nCi of [U-14C]sucrose to the lower leaf did result in subsequent radioactivity being detected in the upper portion of the plant. The detection of labeled sucrose with the same radioactivity as that of administered volicitin indicated that volicitin was not readily transported to undamaged leaves and that volicitin may not directly serve as a mobile messenger in triggering the emissions of VOCs systemically.Abbreviations BAW Beet armyworm (Spodoptera exigua) - dpm Disintegrations per minute - FAA Fatty acid amide - JA Jasmonic acid - VOC Volatile organic compound  相似文献   

13.
14.
Fumonisin B1 (FB1) is an amphipathic toxin produced by the pathogenic fungus Fusarium verticillioides which causes stem, root and ear rot in maize (Zea mays L.). In this work, we studied the action of FB1 on the plasma membrane H+-ATPase (EC 3.6.1.34) from germinating maize embryos, and on the fluidity and lipid peroxidation of these membranes. In maize embryos the toxin at 40 M inhibited root elongation by 50% and at 30 M decreased medium acidification by about 80%. Irrespective of the presence and absence of FB1, the H+-ATPase in plasma membrane vesicles exhibited non-hyperbolic saturation kinetics by ATPH-Mg, with Hill number of 0.67. Initial velocity studies revealed that FB1 is a total uncompetitive inhibitor of this enzyme with an inhibition constant value of 17.5±1 M. Thus FB1 decreased Vmax and increased the apparent affinity of the enzyme for ATP-Mg to the same extent. Although FB1 increased the fluidity at the hydrophobic region of the membrane, no correlation was found with its effect on enzyme activity, since both effects showed different FB1-concentration dependence. Peroxidation of membrane lipids was not affected by the toxin. Our results suggest that, under in vivo conditions, the plasma membrane H+-ATPase is a potentially important target of the toxin, as it is inhibited not only by FB1 but also by its structural analogs, the sphingoid intermediates, which accumulate upon the inhibition of sphinganine N-acyltransferase by this toxin.  相似文献   

15.
The sequence characterized amplified region (SCAR) marker SCK13(603), associated with ascochyta blight resistance in a chickpea recombinant inbred line (RIL) population, was used as anchored sequence for genome walking. The PCRs performed in the walking steps to walk in the same direction produced eight bands in 5' direction and five bands in 3' direction with a length ranking from 530 to 2,871 bp. The assembly of the bands sequences along with the sequence of SCK13(603) resulted in 7,815 bp contig. Blastn analyses showed stretches of DNA sequence mainly distributed from the nucleotides 1,500 to 4,500 significantly similar to Medicago truncatula genomic DNA. Three open reading frames (ORFs) were identified and blastp analysis of predicted amino acids sequences revealed that ORF1, ORF2 and ORF3 had significant similarity to a CCHC zinc finger protein, to an integrase, and to a precursor of the glucoamylase s1/s2, respectively, from M. truncatula. The high homology of the putative proteins derived from ORF1 and ORF2 with retrotransposon proteins and the prediction of the existence of conserved domains usually present in retrotransposon proteins indicate that the marker SCK13(603) is located in a region of a putative retrotransposon. The information generated in this study has contributed to increase the knowledge of this important region for blight resistance in chickpea.  相似文献   

16.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

17.
The first PLA(2) (LsPA-1) from L. stenophrys snake venom was purified to homogeneity using three chromatographic steps and had its complete primary structure determined. An average molecular mass of 13,870.3 kDa was determined by mass spectrometry and a 3.3-fold increase in the PLA(2) activity was observed for LsPA-1 as compared to the whole venom. Multiple alignment of PLA(2) from Lachesis spp. snakes suggested the existence of two geographical clades for this genus in the New World, which is in accordance with morphological, behavioral and mtDNA data obtained by others. Phospholipases A(2) from Crotalus spp. snake venoms were similarly distributed into two groups. Intergroup analysis indicated that most amino acid substitutions were observed in the amino- and carboxy-terminal regions of the molecules in each clade. Both regions have been suggested to play important roles in determining the biological properties of PLA(2) from snake venoms. The dendogram derived for PLA(2) from Lachesis and Crotalus snakes highlighted the phylogenetic relationships between these two genera in the New World.  相似文献   

18.
Endogenous free IAA was examined with an immunohistochemical method for its involvement in the reduction of bud deterioration after GA3 was injected into the bulbs. We found that tulip bulbs stored at 20°C constantly developed severe bud deterioration, whereas the symptoms of deterioration was lighter in the bulbs with GA3 injection and not observed in the bulbs with 4°C treatment. 73% success in overcoming bud deterioration was achieved in 20°C with GA3 treatment after 8 weeks of bulb storage, and the success rate was 7% after 12 weeks of storage. IAA was detected in the parenchyma cells in the internodes of the shoot after the bulbs were stored at 4°C or at 20°C with GA3 injection for 4 weeks, but little was detected in the bulbs stored at 20°C constantly. Moreover, a weak IAA signal was present in between the cells of the internodes irrespective of bulb treatment. After planting, the bulbs that had been treated differently exhibited different flowering ability. The bulbs stored at 4°C for 4, 8 and 12 weeks attained high flowering percentage, which was lower in the 20°C with GA3 treatment and lowest in the 20°C treatment. It may be concluded that GA3 injection decreases bud deterioration of tulip bulbs during dry storage at 20°C by promoting the endogenous IAA in the internodes.  相似文献   

19.
Biological reduction of nitric oxide (NO) chelated by ferrous ethylenediaminetetraacetate (Fe(II)EDTA) to N2 is one of the core processes in a chemical absorption–biological reduction integrated technique for nitrogen oxide (NO x ) removal from flue gases. A new isolate, identified as Pseudomonas sp. DN-2 by 16S rRNA sequence analysis, was able to reduce Fe(II)EDTA-NO. The specific reduction capacity as measured by NO was up to 4.17 mmol g DCW−1 h−1. Strain DN-2 can simultaneously use glucose and Fe(II)EDTA as electron donors for Fe(II)EDTA-NO reduction. Fe(III)EDTA, the oxidation of Fe(II)EDTA by oxygen, can also serve as electron acceptor by strain DN-2. The interdependency between various chemical species, e.g., Fe(II)EDTA-NO, Fe(II)EDTA, or Fe (III)EDTA, was investigated. Though each complex, e.g., Fe(II)EDTA-NO or Fe(III)EDTA, can be reduced by its own dedicated bacterial strain, strain DN-2 capable of reducing Fe(III)EDTA can enhance the regeneration of Fe(II)EDTA, hence can enlarge NO elimination capacity. Additionally, the inhibition of Fe(II)EDTA-NO on the Fe(III)EDTA reduction has been explored previously. Strain DN-2 is probably one of the major contributors for the continual removal of NO x due to the high Fe(II)EDTA-NO reduction rate and the ability of Fe(III)EDTA reduction.  相似文献   

20.
A new Phospholipase A2 (PLA2) from Micrurus dumerilii carinicauda venom was isolated and its primary structure determined. This new PLA2 showed a low enzymatic activity when compared with other PLA2s and it is moderately basic with an isoelectric point of 8.0. Its amino acid sequence showed the presence of 120 amino acid residues and its sequence was: NLIQFLNMIQCTTPGREPLVAFANYGCYCGRGGSGTPVDELDRCCQVHDNCYDTAKKVFGCSPYFTMYSYDCSEGKLTCKDNNTKCKAAVCNCDRTAALCFAKAPYNDKNYKIDLTKRCQ. The structural model of MIDCA1, when compared with other strong neurotoxic PLA2s, such as Naja naja, showed significant differences in the β-wing and neurotoxic sites, despite the high level of amino acid sequence similarity. These observations indicate a dissociation between the biological and catalytic activity of this new PLA2, supporting the view that other regions of the protein are involved in the biological effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号