首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide triphosphate/haemoglobin (NTP/Hb) and nucleotide triphosphate/red cell (NTP/cell) ratios of rainbow trout increased during prolonged starvation. A decline was noted in blood lactic acid concentration. Red cell count, haemoglobin concentration and haematocrit also declined. Changes in mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were found not to be significant. The NTP/Hb and NTP/cell ratios of both fed and starved trout rose seven days following a 15% reduction in blood volume by cardiac puncture. A rise in whole blood NTP concentration was found only in the bleeding response of fed animals. No significant change was noted in blood lactic acid concentration. The decline in haematocrit was significant only in the starved group. In both groups, however, red cell count and blood haemoglobin concentration fell. MCV rose whereas MCHC declined in all bled animals. Changes in MCH were not significant in either group. Negative correlations were noted between red cell count and both the NTP/Hb and NTP/cell ratios and between haemoglobin concentration and the NTP/Hb ratio. Positive correlations were seen between the two ratios and between red cell count and haemoglobin concentration.  相似文献   

2.
Wounding both cotyledons ofBidens pilosa (var.radiatus) induces the inhibition of hypocotyl growth. The wound signal is transmitted very rapidly from cotyledon to hypocotyl and can be visualized by the change in nucleotide pools. First we have shown that the irradiance of the plant can change the ATP level without plant wounding. Therefore, plants were harvested at the start of the light period. Under these conditions, we have determined in hypocotyl the levels of adenosine triphosphate (ATP), guanosine triphosphate (GTP) and non adenylic triphosphates (NTP), and adenylate energy charge (AEC) after wounding. We have observed a transient (2 min) increase in the ATP level followed by a decrease 5 to 30 min later. A similar result was obtained for the GTP level but with some delay. The GTP level increased in 5 min and then decreased after 60 min. For the NTP level the decrease is effective from 5 to 60 min after wounding. The calculation of AEC has shown that a very tight control in the level of ATP may be involved in response to wounding.  相似文献   

3.
Brain metabolism and intracellular pH were studied during and after episodes of incomplete cerebral ischaemia in lambs under sodium pentobarbitone anaesthesia. 31P and 1H magnetic resonance spectroscopy was used to monitor brain pHi and brain concentrations of inorganic phosphate (Pi), phosphocreatine (PCr), beta-nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of arterio-cerebral venous concentration differences (AVDs) for oxygen, glucose, and lactate. Cerebral ischaemia was induced by a combination of bilateral carotid clamping and hypotension, and the acute effects of systemic administration of glucose and sodium bicarbonate were examined. The molar ratio of glucose to oxygen uptake by the brain (6G/O2) increased above unity during cerebral ischaemia. Statistically significant AVDs for lactate were not observed. Cerebral ischaemia was associated with a reduction in brain pHi PCr/Pi ratio, and an increase in brain lactate. No effect of arterial plasma glucose on brain lactate concentration or brain pHi was evident during cerebral ischaemia or in the postischaemic period. Administration of sodium bicarbonate systemically in the postischaemic period was associated with a rise in arterial and brain tissue PCO2. A fall in brain pHi occurred which was attributable in part to coincidental brain lactate accumulation. The increase in brain lactate measured by 1H nuclear magnetic resonance in vivo during ischaemia was insufficient to account for the change in buffer base calculated to have occurred from previous estimates of brain buffering capacity.  相似文献   

4.
Brain metabolism and intracellular pH were studied during and after episodes of ischaemia and hypoxia-ischaemia in lambs anaesthetised with sodium pentobarbitone. 31P and 1H magnetic resonance spectroscopy methods were used to monitor brain pHi and brain concentrations of Pi, phosphocreatine (PCr), beta--nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of cerebral blood flow and cerebral oxygen and glucose consumption. Cerebral ischaemia sufficient to reduce oxygen delivery to 75% of control values was associated with a fall in brain pHi and increase in brain Pi. Progressively severe hypoxia-ischaemia was associated with a progressive fall in brain pHi, PCr, and beta NTP and increase in brain Pi. In two animals the increase in brain lactate during hypoxia-ischaemia measured by 1H nuclear magnetic resonance (NMR) could be quantitatively accounted for by the increased net uptake of glucose by the brain in relation to oxygen, but was insufficient to account for the concomitant acidosis according to previous estimates of brain buffering capacity. In four animals brain pHi, PCr, Pi, and beta NTP had returned to normal 1 h after the hypoxic-ischaemic episode. In one animal brain pHi had reverted to normal at a time when 1H NMR indicated persistent elevation of brain lactate.  相似文献   

5.
The study deals with the interrelationship of the phosphate-transferring activities of the calcium-transporting sarcoplasmic reticulum membrane vesicles: the phosphate exchange between nucleoside triphosphate (NTP) and nucleoside diphosphate (NDP) (NTP-NDP exchange), the calcium-dependent NTase, and the phosphorylation of NDP by inorganic phosphate in the presence of NTP (NTP-Pi exchange). Different nucleotides were used as phosphate donors and acceptors. It is demonstrated for the phosphate transfer from ITP to GDP that the NTP-NDP exchange exhibits ping-pong kinetics with Mg-ITP and unliganded GDP as substrates. The apparent affinities of the enzyme for the nucleoside diphosphate and triphosphate species are deduced according to this mechanism. The enzyme's affinity for the nucleoside triphosphates and diphosphates depends on its functional state being considerably lower under conditions of NTP-NDP exchange than during NTP splitting or NTP synthesis. ATP and GTP are split with the same low rates when calcium-activated NTPase is inhibited by high internal calcium concentrations after calcium transport has reached steady state. The rates of the NTP-NDP exchange reactions, however, differ by a factor of about 10 being approximately equal to 3 mumol . mg-1 . min-1 for ATP-ADP and only approximately equal to 0.3 mumol . mg-1 . min-1 (22 degrees C) for GTP-GDP. When the sarcoplasmic reticulum vesicles are made calcium-permeable, the calcium transport ATPase is turned on and the rates of GTP and ATP splitting increase about tenfold. Yet, while the rate of ATP-ADP exchange is little reduced, the rate of GTP-GDP exchange drops by approximately 50%. The persisting exchange activity of calcium-permeable vesicles demonstrates that high internal calcium concentrations are not required for the transfer of the protein-bound phosphoryl group to NDP during NTP-NDP exchange.  相似文献   

6.
K L Menge  F R Bryant 《Biochemistry》1992,31(22):5151-5157
The structurally related nucleoside triphosphates, adenosine triphosphate (ATP), purine riboside triphosphate (PTP), inosine triphosphate (ITP), and guanosine triphosphate (GTP), are all hydrolyzed by the recA protein with the same turnover number (17.5 min-1). The S0.5 values for these nucleotides increase progressively in the order ATP (45 microM), PTP (100 microM), ITP (300 microM), and GTP (750 microM). PTP, ITP, and GTP are each competitive inhibitors of recA protein-catalyzed ssDNA-dependent ATP hydrolysis, indicating that these nucleotides all compete for the same catalytic site on the recA protein. Despite these similarities, ATP and PTP function as cofactors for the recA protein-promoted three-strand exchange reaction, whereas ITP and GTP are inactive as cofactors. The strand exchange activity of the various nucleotides correlates directly with their ability to support the isomerization of the recA protein to a strand exchange-active conformational state. The mechanistic deficiency of ITP and GTP appears to arise as a consequence of the hydrolysis of these nucleotides to the corresponding nucleoside diphosphates, IDP and GDP. We speculate the nucleoside triphosphates with S0.5 values greater than 100 microM will be intrinsically unable to sustain the strand exchange-active conformational state of the recA protein during ongoing NTP hydrolysis and will therefore be inactive as cofactors for the strand exchange reaction.  相似文献   

7.
Increases and subsequent decreases in gill Na+-K+ ATPase activity during parr-smolt transformation in coho salmon were accompanied by changes in blood nucleoside triphosphate (NTP) levels, hemoglobin concentrations and hematocrits. An advanced photoperiod schedule accelerated the parr-smolt transformation and the rate of changes in Na+-K+ ATPase activity, NTP and hematocrit levels. Ratios of NTP:hematocrits and of NTP:hemoglobin increased during smoltification. Hematological changes suggest preparation for increased oxygen demand during migration and greater energy requirements by erythrocytes during smoltification and sea-water adaptation.  相似文献   

8.
Summary Exposing tench to environmental hypoxia-hypercapnia reduces routine O2 consumption, sharply decreases arterial O2 tension and the difference between the water and the blood, and results in marked swelling of the erythrocytes. These changes are rapidly reversed upon return to normoxia.Hypoxic-hypercapnic conditions lower the blood NTP/Hb ratio to a new steady state level within 24 h, by reducing GTP/Hb but not ATP/Hb. A similar selective reduction of eryhtrocytic GTP content forms the initial response of blood incubated in vitro to anoxic conditions.The swelling as well as the reduced GTP/Hb ratio in the erythrocytes appear to improve O2 loading in the gills during environmental hypoxia-hypercapnia.Symbols and abbreviations a arterial - GTP guanosine triphosphate - Hct hematocrit - I inspired - NTP nucleoside triphosphate - w water  相似文献   

9.
Protein import into chloroplasts is initiated by a binding interaction between a precursor protein and the surface of the outer envelope. The binding step was previously shown to be energy-dependent (Olsen, L. J., Theg, S. M., Selman, B. R., and Keegstra, K. (1989) J. Biol. Chem. 264, 6724-6729). We took advantage of the broad nucleotide specificity of the energy requirement for binding to investigate the site of the nucleoside triphosphate (NTP) requirement. GTP supported precursor binding to chloroplasts. It was not converted to ATP, as determined by direct ATP measurements, and was not transported across the inner envelope. Thus, GTP supported binding from either the intermembrane space or outside the outer membrane. To distinguish between an intermembrane space and an external NTP requirement, we experimentally manipulated the NTP levels inside and outside chloroplasts. Internally generated ATP was able to support binding in the presence of an external membrane-impermeant ATP trap. Therefore, since GTP supported binding from either the intermembrane space or outside the chloroplast, and ATP supported binding from either the intermembrane space or the stroma, we concluded that the site of NTP utilization for precursor binding to chloroplasts was the intermembrane space between the two envelope membranes.  相似文献   

10.
  • 1. Oxygen equilibria ofHypostomus andPterygoplichthys hemoglobins and their sensitivities to the erythrocytic nucleotide triphosphates (NTP), ATP and guanosine triphosphate (GTP) are studied to investigate the mechanisms by which blood adapts to air- and water-breathing (cf. Weberet al., 1979).
  • 2. Hemoglobins of both species are heterogeneous. All hemoglobin fractions isolated by iso-electric focusing reveal a high sensitivity to NTP, but GTP depresses O2 affinity about twice as effectively as ATP. A cathodal hemoglobin component with a reversed Bohr effect was found inPterygoplichthys but not inHypostomus.
  • 3. The data are discussed in relation to thein vivo cofactor modulation of blood O2 affinity and the adaptive significance of functional heterogeneity of fish hemoglobins.
  相似文献   

11.
The early changes in the energetics of T47D-clone 11 human breast cancer cells, following treatment with adriamycin and several other anti-cancer drugs were characterized by 31P- and 13C-NMR spectroscopy. Treatment of the cells with cytotoxic doses of either adriamycin (10(-5) M), daunomycin (10(-5) M) or actinomycin-D (2 x 10(-6) M) induced an immediate increase in the content of the nucleoside triphosphate (NTP) pool. A maximum increase of 30 to 50% was reached 6 to 8 h after treatment, and was followed by a gradual decrease, in accord with the decline in cell number due to cell death. High-performance liquid chromatography measurements indicated that the adriamycin-induced build-up of the NTP pool was mainly due to a specific increase in ATP and GTP. Treatment with cytotoxic doses of cytosine arabinofuranoside (10(-4) M) and cis-platin (10(-4) M) and with the antiestrogen tamoxifen at a dose which inhibited growth (2 x 10(-6) M) did not induce an early increase in the NTP content. Adriamycin and actinomycin-D did not alter significantly the rates of glucose consumption and lactate production via glycolysis during the first 4 to 8 h of treatment. Both drug, however, caused during this time interval a 50% inhibition in the rate of glutamate synthesis via the Krebs cycle. Complementary flow cytometry studies have indicated that within 4 h of treatment with either adriamycin or actinomycin-D there is no detectable change in cell cycle distribution. Treatment for longer time periods indicated that each drug affects the cell cycle distribution in a different manner. Thus, the early increase in NTP can not be associated with a specific cell cycle distribution. The results suggest therefore that drugs of the anthracycline and actinomycin type exert a similar specific and early metabolic induction which may affect the energy state of the cells. This induction may relate to the cytotoxic mechanism and could potentially serve as an early marker for response to treatment.  相似文献   

12.
Summary Strenuous 5-min exercise resulted in a 0.3 unit drop in the dorsal aortic pH of striped bass. The acidosis was metabolic: the blood lactate concentration increased during the exercise, whereas blood CO2 tension decreased. Dorsal aortic oxygen content was maintained despite the acidosis. This was a result of increased blood O2 tension, haemoglobin concentration and red cell volume, decreased cellular nucleoside triphosphate (NTP) concentration, and decreased proton gradient across the red cell membrane. When the fish were treated with the beta-antagonist, propranolol, before the exercise, the arterial oxygen content decreased significantly in the stress. The mean cellular haemoglobin concentration and cellular NTP concentration increased slightly, and the proton gradient across the red cell membrane decreased less than in control exercise. These results show that the beta-adrenergic responses of striped bass red cells play an important role in maintaining the arterial O2 content in stress.Abbreviation NTP nucleoside triphosphates  相似文献   

13.
  • 1. Respiratory properties of piranha blood are distinguished from those of other fish primarily by the high CO2 buffering capacity (ΔHCO3/ΔpH= 19.6mmol/l for oxygenated blood and 39.1 mmol/l for deoxygenated blood).
  • 2. The concentration of nucleoside triphosphates (NTP) and the half-saturation tension (P50) of whole blood were found to be inversely related to body size.
  • 3. The higherP50 in smaller fish, analogous to values obtained in previous studies involving interspecies comparisons, could be adaptive to a higher weight-specific metabolic rate.
  • 4. Both ATP and guanosine triphosphate (GTP) lowered the oxygen affinity of purified hemoglobin solutions, accounting for the size-dependent correlation ofP50 and NTP concentration in whole blood.
  • 5. While similar in concentration in red cells, GTP is more potent than ATP as an allosteric modifier of hemoglobin function.
  相似文献   

14.
BACKGROUND: Dihydroneopterin triphosphate (H2NTP) is the central substrate in the biosynthesis of folate and tetrahydrobiopterin. Folate serves as a cofactor in amino acid and purine biosynthesis and tetrahydrobiopterin is used as a cofactor in amino acid hydroxylation and nitric oxide synthesis. In bacteria, H2NTP enters the folate biosynthetic pathway after nonenzymatic dephosphorylation; in vertebrates, H2NTP is used to synthesize tetrahydrobiopterin. The dihydroneopterin triphosphate epimerase of Escherichia coli catalyzes the inversion of carbon 2' of H2NTP. RESULTS: The crystal structure of the homo-octameric protein has been solved by a combination of multiple isomorphous replacement, Patterson search techniques and cyclic averaging and has been refined to a crystallographic R factor of 18.8% at 2.9 A resolution. The enzyme is a torus-shaped, D4 symmetric homo-octamer with approximate dimensions of 65 x 65 A. Four epimerase monomers form an unusual 16-stranded antiparallel beta barrel by tight association between the N- and C-terminal beta strands of two adjacent subunits. Two tetramers associate in a head-to-head fashion to form the active enzyme complex. CONCLUSIONS: The folding topology, quaternary structure and amino acid sequence of epimerase is similar to that of the dihydroneopterin aldolase involved in the biosynthesis of the vitamin folic acid. The monomer fold of epimerase is also topologically similar to that of GTP cyclohydrolase I (GTP CH-1), 6-pyrovoyl tetrahydropterin synthase (PTPS) and uroate oxidase (UO). Despite a lack of significant sequence homology these proteins share a common subunit fold and oligomerize to form central beta barrel structures employing different cyclic symmetry elements, D4, D5, D3 and D2, respectively. Moreover, these enzymes have a topologically equivalent acceptor site for the 2-amino-4-oxo pyrimidine (2-oxo-4-oxo pyrimidine in uroate oxidase) moiety of their respective substrates.  相似文献   

15.
Buttani V  Losi A  Polverini E  Gärtner W 《FEBS letters》2006,580(16):3818-3822
The blue-light sensitive protein YtvA from Bacillus subtilis is built of a photoactive, flavin-binding LOV (Light, Oxygen and Voltage) domain and a STAS domain with unknown function. Here we show that YtvA binds a fluorescent derivative of guanosine triphosphate (GTPTR) that can be displaced by both GTP or ATP. Unspecific NTP (N=G or A) binding is supported by the molecular model of YtvA-STAS. Blue-light activation of YtvA results in small and dark-reversible spectroscopic changes for GTPTR, suggesting that light-driven conformational changes are transmitted from the LOV core to the GTPTR binding site. These results support the idea that STAS domains may have a general NTP binding role and open a way to investigate the molecular functionality of YtvA-STAS.  相似文献   

16.
The blood oxygen affinity of vertebrates is regulated, in part, through changes in red cell phosphate levels and increased oxygen affinity during reductions in inspired oxygen and is a well-described and common feature. However, during anaemia, when oxygen delivery is compromised by a reduction in blood oxygen carrying capacity, a lowering of blood oxygen affinity will facilitate oxygen unloading in the tissues, while oxygen loading at the gas exchange organ is not impaired. The present study investigated the effects of artificially induced anaemia in vivo on the blood oxygen affinity and red cell nucleoside triphosphate (NTP) concentrations in the turtle, Chrysemys picta. Blood was obtained from conscious animals through an arterial catheter and oxygen equilibrium curves were determined using the Tucker method while NTP concentrations were analyzed spectrophotometrically. Before induction of anaemia haematocrit averaged 23% and P50 was 18.5 +/- 0.7 with a NTP/Hb of 0.20 +/- 0.01 (mmol/mmol). After the haematocrit had been reduced to approximately 10% by bleeding (48-96 h) (blood volume was maintained by re-infusion of plasma and Ringer) there were no effects on P50 or red cell NTP concentrations. Thus, in contrast to fish and mammals, turtles do not exhibit a change in blood oxygen affinity during anaemia.  相似文献   

17.
K L Menge  F R Bryant 《Biochemistry》1992,31(22):5158-5165
We have examined the effects of the structurally related nucleoside triphosphates, adenosine triphosphate (ATP), purine riboside triphosphate (PTP), inosine triphosphate (ITP), and guanosine triphosphate (GTP), on the recA protein-promoted DNA renaturation reaction (phi X DNA). In the absence of nucleotide cofactor, the recA protein first converts the complementary single strands into unit-length duplex DNA and other relatively small paired DNA species; these initial products are then slowly converted into more complex multipaired network DNA products. ATP and PTP stimulate the conversion of initial product DNA into network DNA, whereas ITP and GTP completely suppress network DNA formation. The formation of network DNA is also inhibited by all four of the corresponding nucleoside diphosphates, ADP, PDP, IDP, and GDP. Those nucleotides which stimulate the formation of network DNA are found to enhance the formation of large recA-ssDNA aggregates, whereas those which inhibit network DNA formation cause the dissociation of these nucleoprotein aggregates. These results not only implicate the nucleoprotein aggregates as intermediates in the formation of network DNA, but also establish the functional equivalency of ITP and GTP with the nucleoside diphosphates. Additional experiments indicate that the net effect of ITP and GTP on the DNA renaturation reaction is dominated by the corresponding nucleoside diphosphates, IDP and GDP, that are generated by the NTP hydrolysis activity of the recA protein.  相似文献   

18.
Many sharks are captured as untargeted by-catch during commercial fishing operations and are subsequently discarded. A reliable assessment of the proportion of discarded sharks that die post-release as a result of excessive physiological stress is important for fisheries management and conservation purposes, but a reliable physiological predictor of post-release mortality has not been identified. To investigate effects of gill-net capture on the acid-base balance of sharks, we exposed gummy sharks, Mustelus antarcticus, to 60 min of gill-net capture in a controlled setting, and obtained multiple blood and muscle tissue samples during a 72-h recovery period following the capture event. Overall mortality of gummy sharks was low (9%). Blood pH was significantly depressed immediately after the capture event due to a combination of respiratory and metabolic acidosis. Maximum concentrations of plasma lactate (9.9 ± 1.5 mmol L(-1)) were measured 3h after the capture event. Maximum intramuscular lactate concentrations (37.0 ± 4.6 μmol g(-1)) were measured immediately after the capture event, and intramuscular lactate concentrations were substantially higher than plasma lactate concentrations at all times. Sharks in poor condition had low blood pH and high intramuscular lactate concentration, but blood pH does not appear to be a reliable predictor of survival. Suitability of intramuscular lactate concentration as predictor of delayed mortality deserves further investigation.  相似文献   

19.
The effects of an acute intravenous infusion of ammonium acetate on rat cerebral glutamate and glutamine concentrations, energy metabolism, and intracellular pH were measured in vivo with 1H and 31P nuclear magnetic resonance (NMR). The level of blood ammonia maintained by the infusion protocol used in this study (approximately 500 microM, arterial blood) did not cause significant changes in arterial PCO2, PO2, or pH. Cerebral glutamate levels fell to at least 80% of the preinfusion value, whereas glutamine concentrations increased 170% relative to the preinfusion controls. The fall in brain glutamate concentrations followed a time course similar to that of the rise of brain glutamine. There were no detectable changes in the content of phosphocreatine (PCr) or nucleoside triphosphates (NTP), within the brain regions contributing to the sensitive volume of the surface coil, during the ammonia infusion. Intracellular pH, estimated from the chemical shift of the inorganic phosphate resonance relative to the resonance of PCr in the 31P spectrum, was also unchanged during the period of hyperammonemia. 1H spectra, specifically edited to allow quantitation of the brain lactate content, indicated that lactate rose steadily during the ammonia infusion. Detectable increases in brain lactate levels were observed approximately 10 min after the start of the ammonia infusion and by 50 min of infusion had more than doubled. Spectra acquired from rats that received a control infusion of sodium acetate were not different from the spectra acquired prior to the infusion of either ammonium or sodium acetate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
1. In order to assess whether the potential ability of heart ventricular muscle and liver to metabolise substrates such as alanine, aspartate and lactate varies as the sheep matures and its nutrition changes, the activities of the following enzymes were determined in tissues of lambs obtained at varying intervals between 50 days after conception to 16 weeks after birth and in livers from adult pregnant ewes: lactate dehydrogenase (EC 1.1.1.27), alanine aminotransferase (EC 2.6.1.2), pyruvate kinase (EC 2.7.1.40), pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxykinase (GTP)(EC 4.1.1.32), malate dehydrogenase (EC 1.1.1.37), aspartate aminotransferase (EC 2.6.1.1) and citrate (si)-synthase (EC 4.1.3.7). 2. In the heart a most marked increase in alanine aminotransferase activity was found throughout development. During this period the activities of citrate (si)-synthase, lactate dehydrogenase and pyruvate carboxylase also increased. There were no substantial changes in the activities of aspartate aminotransferase, malate dehydrogenase or pyruvate kinase. Pyruvate kinase activities were five times greater in the heart compared with those found in the liver. No significant activity of phosphoenolpyruvate carboxykinase (GTP) was detected in heart muscle. 3. In the liver the activities of both alanine aminotransferase and aspartate aminotransferase increased immediately following birth although the activity of alanine aminotransferase was lower in livers of pregnant ewes than in any of the lambs. As with alanine aminotransferase the highest activities of lactate dehydrogenase were found during the period of postnatal growth. No marked changes were observed in malate dehydrogenase or citrate (si)-synthase activities during development. A small decline in pyruvate kinase activity occurred whilst the activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (GTP) tended to rise during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号