首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signal regulatory proteins (SIRP-alpha, -beta, and -gamma) are important regulators of several innate immune functions that include leukocyte migration. Membrane distal (D1) domains of SIRPalpha and SIRPgamma, but not SIRPbeta, mediate binding to a cellular ligand termed CD47. Because the extracellular domains of all SIRPs are highly homologous, we hypothesized that some of the 16 residues unique to SIRPalpha.D1 mediate binding to CD47. By site-directed mutagenesis, we determined that SIRPalpha binding to CD47 is independent of N-glycosylation. We also identified three residues critical for CD47 binding by exchanging residues on SIRPalpha with corresponding residues from SIRPbeta. Cumulative substitutions of the critical residues into SIRPbeta resulted in de novo binding of the mutant protein to CD47. Homology modeling of SIRPalpha.D1 revealed topological relationships among critical residues and allowed the identification of critical residues common to SIRPalpha and SIRPbeta. Mapping these critical residues onto the recently reported crystal structure of SIRPalpha.D1 revealed a novel region that is required for CD47 binding and is distinct and lateral to another putative CD47 binding site described on that crystal structure. The importance of this lateral region in mediating SIRPalpha.D1 binding to CD47 was confirmed by epitope mapping analyses of anti-SIRP Abs. These observations highlight a complex nature of the ligand binding requirements for SIRPalpha that appear to be dependent on two distinct but adjacent regions on the membrane distal Ig loop. A better understanding of the structural basis of SIRPalpha/CD47 interactions may provide insights into therapeutics targeting pathologic inflammation.  相似文献   

2.
SIRPalpha and SIRPbeta1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPalpha with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPbeta1 shares highly homologous extracellular IgV structure with SIRPalpha, it does not bind to CD47. Here, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPalpha, but not SIRPbeta1, which determine the extracellular binding interaction of SIRPalpha to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPalpha directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPalpha extracellular binding mediated cell interactions and cell migration. Another SIRPalpha-specific residue, Met102, appears to assist SIRPalpha IgV binding through Gln67 and Ala/Val57. An essential role of these amino acid residues in SIRPalpha binding to CD47 was further confirmed by introducing these residues into the SIRPbeta1 IgV domain, which dramatically converts SIRPbeta1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPalpha binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses.  相似文献   

3.
4.
CD47 is a widely distributed cell-surface protein that acts a marker of self through interactions of myeloid and neural cells. We describe the high-resolution X-ray crystallographic structures of the immunoglobulin superfamily domain of CD47 alone and in complex with the N-terminal ligand-binding domain of signal regulatory protein alpha (SIRPalpha). The unusual and convoluted interacting face of CD47, comprising the N terminus and loops at the end of the domain, intercalates with the corresponding regions in SIRPalpha. We have also determined structures of the N-terminal domains of SIRPbeta, SIRPbeta(2), and SIRPgamma; proteins that are closely related to SIRPalpha but bind CD47 with negligible or reduced affinity. These results explain the specificity of CD47 for the SIRP family of paired receptors in atomic detail. Analysis of SIRPalpha polymorphisms suggests that these, as well as the activating SIRPs, may have evolved to counteract pathogen binding to the inhibitory SIRPalpha receptor.  相似文献   

5.
Two closely related proteins, signal regulatory protein alpha (SIRPalpha; SHPS-1/CD172) and SIRPbeta, have been described in humans. The existence of a third SIRP protein has been suggested by cDNA sequence only. We show that this third SIRP is a separate gene that is expressed as a protein with unique characteristics from both alpha and beta genes and suggest that this gene should be termed SIRPgamma. We have expressed the extracellular region of SIRPgamma as a soluble protein and have shown that, like SIRPalpha, it binds CD47, but with a lower affinity (K(d), approximately 23 microM) compared with SIRPalpha (K(d), approximately 2 microM). mAbs specific to SIRPgamma show that it was not expressed on myeloid cells, in contrast to SIRPalpha and -beta, being expressed instead on the majority of T cells and a proportion of B cells. The short cytoplasmic tail of SIRPgamma does not contain any known signaling motifs, nor does it contain a characteristic lysine, as with SIRPbeta, that is required for DAP12 interaction. DAP12 coexpression is a requirement for SIRPbeta surface expression, whereas SIRPgamma is expressed in its absence. The SIRPgamma-CD47 interaction may therefore not be capable of bidirectional signaling as with the SIRPalpha-CD47, but, instead, use unidirectional signaling via CD47 only.  相似文献   

6.
CD47, a cell surface transmembrane Ig superfamily member, is an extracellular ligand for signal regulatory protein (SIRPalpha). Interactions between CD47 and SIRPalpha regulate many important immune cell functions including neutrophil (PMN) transmigration. Here we report identification of a novel function-blocking peptide, CERVIGTGWVRC, that structurally mimics an epitope on CD47 and binds to SIRPalpha. The CERVIGTGWVRC sequence was identified by panning phage display libraries on the inhibitory CD47 mAb, C5D5. In vitro PMN migration assays demonstrated that peptide CERVIGTGWVRC specifically inhibited PMN migration across intestinal epithelial monolayers and matrix in a dose-dependent fashion. Further studies using recombinant proteins indicated that the peptide specifically blocks CD47 and SIRPalpha binding in a dose-dependent fashion. Protein binding assays using SIRPalpha domain-specific recombinant proteins demonstrated that this peptide directly bound to the distal-most Ig loop of SIRPalpha, the same loop where CD47 binds. In summary, these findings support the relevance of CD47-SIRPalpha interactions in regulation of PMN transmigration and provide structural data predicting the key residues involved on the surface of CD47. Such peptide reagents may be useful for studies on experimental models of inflammation and provide a template for the design of anti-inflammatory agents.  相似文献   

7.
Signal regulatory proteins (SIRPs) are receptor-like transmembrane proteins, the majority of which contain a cytoplasmic proline-rich region and four cytoplasmic tyrosines that, when phosphorylated, bind SH2 domain-containing protein tyrosine phosphatases (SHP). We demonstrated previously that growth hormone (GH) induces tyrosyl phosphorylation of SIRPalpha and association of SIRPalpha with SHP-2. The GH-activated tyrosine kinase JAK2 associates with and tyrosyl-phosphorylates SIRPalpha1. Here we show that JAK2-SIRPalpha1 association does not require phosphotyrosines in SIRPalpha1 or JAK2 or the proline-rich region of SIRPalpha1. However, when the C-terminal 30 amino acids of SIRPalpha1 containing the proline-rich region and tyrosine 495 are deleted, tyrosyl phosphorylation of SIRPalpha1 by JAK2 and association of SHP-2 with SIRPalpha1 are reduced. GH-dependent tyrosyl phosphorylation of JAK2 is reduced when wild-type SIRPalpha1 compared with SIRPalpha1 lacking the four cytoplasmic tyrosines (SIRP 4YF) is expressed in cells, suggesting that SIRPalpha1 negatively regulates GHR/JAK2 signaling. Consistent with reduced JAK2 activity, overexpression of wild-type SIRPalpha1 but not SIRP 4YF reduces GH-induced phosphorylation of ERKs 1 and 2, STAT3, and STAT5B. These results suggest that SIRPalpha1 is a negative regulator of GH signaling and that the ability of SIRPalpha1 mutants to negatively regulate GHR-JAK2 signaling correlates with their ability to bind SHP-2.  相似文献   

8.
VCAM-1 is an immunoglobulin (Ig) superfamily member expressed in endothelial cells that mediates adhesion to a variety of leukocytes in a VLA-4 dependent manner. In the mouse, two distinct forms of VCAM are produced. One form, VCAM(tm), contains seven Ig domains followed by a single transmembrane region and a short cytoplasmic domain. A second form, VCAMGPI, which is preferentially induced by cytokines and LPS, contains only the first three Ig domains and is attached to the cell surface via a glycosylphosphatidylinositol (GPI) anchor. Both vascular and nonvascular expression of VCAM have been reported in a variety of normal and pathological settings. One possible role for the two VCAM isoforms is to allow for the targeted localization of VCAM to specific cell surface domains of polarized cells. This may be particularly relevant since VCAM is known to be expressed by two different polarized cell types, namely endothelial cells and kidney epithelial cells. In this study, MDCK cells permanently expressing either VCAM(tm) or VCAMGPI were established and used to examine the targeting of VCAM proteins to different polarized surface domains. VCAM(tm) was primarily located on the basolateral surface while VCAMGPI was located on the apical surface of polarized MDCK cells. Data is also presented that demonstrates that polarized expression is reversed in endothelial cells where VCAM(tm) was observed primarily on the apical surface. The differential localization of VCAM isoforms on the cell surface has direct implications for the ability of VCAM to mediate cell adhesion and transmigration.  相似文献   

9.
The MAPK family member JNK/stress-activated MAPK (SAPK) is involved in extracellular stress and proinflammatory cytokine responses, including production of cytokines such as IL-12. The JNK1 and 2 isoforms are widely expressed, but JNK3 is largely restricted to tissues of the brain, testis, and heart. In this study, we focus on mouse neutrophils, a cell type in which JNK/SAPK expression and activity has been given little study. We used Western blot analysis to examine expression patterns of JNK/SAPK in wild-type and JNK2-/- polymorphonuclear leukocytes (PMN). Surprisingly, neutrophils displayed a major deficiency in JNK1 expression, in contrast to macrophages that expressed high levels of both JNK1 and JNK2 MAPK. JNK1 expression was steadily reduced during the neutrophil maturation in bone marrow. We used PMN infection with the protozoan parasite Toxoplasma gondii to determine whether neutrophil JNK2 was functional. The parasite induced rapid JNK2 phosphorylation and intracellular FACS staining demonstrated preferential activation in infected neutrophils. Use of JNK2-/- neutrophils revealed that this MAPK family member was required for PMN IL-12p40 and CCL2/MCP-1 production. The chemotactic response displayed a minor JNK2 dependence but phagocytosis and oxidative burst activity did not require this MAPK. These findings are important because they demonstrate 1) a previously unrecognized unusual JNK expression pattern in mouse neutrophils, 2) JNK2 in PMN is activated by Toxoplasma invasion, and 3) a requirement for JNK2 in PMN IL-12p40 and CCL2/MCP-1 production in response to a microbial pathogen.  相似文献   

10.
BACKGROUND: Adhesion of intratubular leukocytes to proximal tubules in biopsies of patients with rapidly progressive glomerulonephritis and the appearance of leukocytes in the urine in interstitial nephritis suggest interactions between leukocytes and tubular epithelia in renal diseases. The aim of this study was to investigate the effect of cytokines and endotoxin on leukocyte migration through proximal tubular epithelial cells and also to determine the role of the transmembrane adhesion molecules ICAM-1 and CD47 in this process. METHODS: Experiments determined transepithelial migration (TEM) of PMN (polymorphonuclear) leukocytes through monolayers of HK-2. Expression of ICAM-1 and CD47 was assessed via confocal immunofluorescence, FACS analysis and western blotting. The effect of antibodies against ICAM-1 and CD47 on TEM was examined. Furthermore measurements of cytokine release (IL- 6 and IL-8) were performed. RESULTS: Preincubation of HK-2 cells with either TNFalpha or LPS resulted in stimulation of PMN migration through monolayers of HK-2 cells. There was no preferred direction of transmigration. ICAM-1 was expressed by HK-2 cells and expression was increased after 4 h stimulation with TNFalpha or LPS. Application of ICAM-1 antibodies inhibited TEM. CD47 was expressed in both HK-2 cells and PMN. CD47 antibodies inhibited predominantly basolateral-to-apical TEM. HK-2 cells released IL-8 and IL-6 preferably into the apical compartment. Additionally, we showed that fMLP induced transmigration through monolayers of HK-2 cells was associated with significant increased CD47 expression on PMN cell surfaces. CONCLUSIONS: Inflammatory mediators stimulate TEM of PMN through monolayers of HK-2 cells without a clearly discernible preference of direction. Mechanisms involved in TEM stimulated by cytokines or endotoxin appear to be mainly changes in surface receptor densities of HK-2 cells with ICAM-1 and CD47 playing an essential role.  相似文献   

11.
Mechanical deformation of polymorphonuclear leukocytes (PMN) changes their expression of the surface adhesion molecule CD11b/CD18. We tested the hypothesis that mechanical deformation of PMN enhances their adhesiveness. Purified human PMN were deformed through either 5- or 3-microm polycarbonate membrane filters and allowed to adhere to 96-well plates coated with human recombinant intercellular adhesion molecule-1 (ICAM-1). Flow cytometric studies showed that deformation of PMN increased CD11b/CD18 expression (P < 0.01). PMN adhesion to ICAM-1-coated plates was dependent on the magnitude of cell deformation (5 microm, 63.8 +/- 8.1%, P < 0.04; 3 microm, 232.4 +/- 20.9%, P < 0.01). Priming of PMN (0.5 nM N-formyl-methionyl-leucyl-phenylalanine) before deformation (5 microm) increased PMN adhesion (63.8 +/- 8.1 vs. 105.3 +/- 16.4%; P < 0.04). Stimulation (5% zymosan-activated plasma) of PMN after deformation resulted in increased adhesion, and the degree of increase was dependent on the magnitude of PMN deformation (stimulation, 50.6 +/- 4%; 5-microm filtration and stimulation, 62.9 +/- 6.6%; 3-microm filtration and stimulation, 249.9 +/- 24.2%; P < 0.01). This study shows that mechanical deformation of PMN causes an increase in PMN adhesiveness to ICAM-1 that was enhanced by both priming of PMN before deformation and stimulation after cell deformation.  相似文献   

12.
The responses of human neutrophils (PMN) involve reorganization and phosphorylation of cytoskeletal components. We investigated the translocation of protein kinase C (PKC) isoforms to PMN cytoskeletal (Triton-insoluble) fractions, in conjunction with activation of the respiratory burst enzyme NADPH oxidase. In resting PMN, PKC-delta (29%) and small amounts of PKC-alpha (0.6%), but not PKC-betaII, were present in cytoskeletal fractions. Upon stimulation with the PKC agonist PMA, the levels of PKC-alpha, PKC-betaII, and PKC-delta increased in the cytoskeletal fraction, concomitant with a decrease in the noncytoskeletal (Triton-soluble) fractions. PKC-delta maximally associated with cytoskeletal fractions at 160 nM PMA and then declined, while PKC-alpha and PKC-betaII plateaued at 300 nM PMA. Translocation of PKC-delta was maximal by 2 min and sustained for at least 10 min. Translocation of PKC-alpha and PKC-betaII was biphasic, plateauing at 2-3 min and then increasing up to 10 min. Under maximal stimulation conditions, PKC isoforms were entirely cytoskeletal associated. Translocation of the NADPH oxidase component p47phox to the cytoskeletal fraction correlated with translocation of PKC-alpha and PKC-betaII, but not with translocation of PKC-delta. Oxidase activity in cytoskeletal fractions paralleled translocation of PKC-alpha, PKC-betaII, and p47phox. Stimulation with 1,2-dioctanoylglycerol resulted in little translocation of PKC isoforms or p47phox, and in minimal oxidase activity. We conclude that conventional PKC isoforms (PKC-alpha and/or PKC-betaII) may regulate PMA-stimulated cytoskeletal association and activation of NADPH oxidase. PKC-delta may modulate other PMN responses that involve cytoskeletal components.  相似文献   

13.
CD47, a cell surface glycoprotein, plays an important role in modulating neutrophil (PMN) migration across endothelial and epithelial monolayers. Here we show that anti-CD47 monoclonal antibodies (mAbs) delay PMN migration across collagen-coated filters or T84 epithelial monolayers toward the chemoattractant formylmethionylleucylphenylalanine (fMLP). Despite delayed transmigration by anti-CD47 mAbs, the numbers of PMN migrating across in either condition were the same as in the presence of control non-inhibitory mAbs. Cell surface labeling and immunoprecipitation demonstrated upregulation of CD47 to the PMN cell surface with kinetics similar to those of the transmigration response. Subcellular fractionation studies revealed redistribution of CD47 from intracellular compartments that co-sediment with secondary granules to plasma membrane-containing fractions after fMLP stimulation. Experiments performed to investigate potential signaling pathways revealed that inhibition of tyrosine phosphorylation with genistein reversed the anti-CD47-mediated PMN migration delay, whereas inhibition of phosphatidylinositol 3-kinase only partially reversed anti-CD47 effects that correlated with a rapid increase in PMN cell surface CD47. Analysis of the contribution of epithelial-expressed CD47 to PMN transmigration revealed that PMN migration across CD47-deficient epithelial monolayers (CaCO2) was significantly increased after stable transfection with CD47. These results suggest that cell surface CD47 and downstream tyrosine phosphorylation signaling events regulate, in part, the rate of PMN migration during the inflammatory response.  相似文献   

14.
We previously reported a specific stimulation of polymorphonuclear leukocyte (PMN) tubulin tyrosinolation as induced by the peptide chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fmet-leu-phe) and the Ca2+ ionophore A23187 that is coupled to the NADPH oxidase-mediated stimulation of the PMN respiratory burst. The present study demonstrates that the presence of extracellular Ca2+ is necessary for fmet-leu-phe- and A23187-induced stimulation of PMN tubulin tyrosinolation, as indicated by the complete inhibition of the response by the addition of 1 mM EGTA to the extracellular medium. Methoxyverapamil (10(-5) M), a putative calcium channel blocker, completely inhibited the fmet-leu-phe-induced stimulation of tubulin tyrosinolation in PMN, but did not inhibit the A23187-induced response. Moreover, the calmodulin-binding drugs, trifluoperazine, fluphenazine, or chlorpromazine, at concentrations of 1 to 10 microM, caused significant inhibition of fmet-leu-phe- or A23187-induced stimulation of tubulin tyrosinolation. In related studies, enzymatic [14C]-tyrosinolation in isolated subcellular fractions of PMN revealed the presence of native tubulin in PMN fractions that were enriched in plasma membranes, the specific granules, or the azurophil granules. Most interestingly, tubulin tyrosine ligase (ligase), primarily a cytoplasmic enzyme, was detected in association with the PMN azurophil granule-rich fraction. Immunoautoradiography with the alpha-tubulin antibody YL 1/2 of isolated PMN subcellular fractions demonstrated a preferential stimulation of tyrosinolation of tubulin associated with the plasma membrane-rich fraction of fmet-leu-phe-stimulated cells. A significant stimulation was also observed in the cytoplasmic tubulin fraction. Consistent with the findings of in vitro tyrosinolation studies with PMN subcellular fractions, tyrosinolated tubulin was detected in the azurophil granule-enriched fractions isolated from both resting and fmet-leu-phe-stimulated cells. The antibody YL 1/2, which reacts with tyrosinolated alpha-tubulin and not with the detyrosinolated form, showed significant cross-reaction with several nontubulin PMN proteins.  相似文献   

15.
VCAM-1 is an immunoglobulin (Ig) superfamily member expressed in endothelial cells that mediates adhesion to a variety of leukocytes in a VLA-4 dependent manner. In the mouse, two distinct forms of VCAM are produced. One form, VCAM(tm), contains seven Ig domains followed by a single transmembrane region and a short cytoplasmic domain. A second form, VCAMGPI, which is preferentially induced by cytokines and LPS, contains only the first three Ig domains and is attached to the cell surface via a glycosylphosphatidylinositol (GPI) anchor. Both vascular and nonvascular expression of VCAM have been reported in a variety of normal and pathological settings. One possible role for the two VCAM isoforms is to allow for the targeted localization of VCAM to specific cell surface domains of polarized cells. This may be particularly relevant since VCAM is known to be expressed by two different polarized cell types, namely endothelial cells and kidney epithelial cells. In this study, MDCK cells permanently expressing either VCAM(tm) or VCAMGPI were established and used to examine the targeting of VCAM proteins to different polarized surface domains. VCAM(tm) was primarily located on the basolateral surface while VCAMGPI was located on the apical surface of polarized MDCK cells. Data is also presented that demonstrates that polarized expression is reversed in endothelial cells where VCAM(tm) was observed primarily on the apical surface. The differential localization of VCAM isoforms on the cell surface has direct implications for the ability of VCAM to mediate cell adhesion and transmigration.  相似文献   

16.
Recent studies have demonstrated that CD47 plays an important role in regulating human neutrophil (PMN) chemotaxis. Two ligands for CD47, thrombospondin and SIRPalpha, have been described. However, it is not known if SIRP-CD47 interactions play a role in regulating PMN migration. In this study, we show that SIRPalpha1 directly binds to the immunoglobulin variable domain loop of purified human CD47 and that such SIRP-CD47 interactions regulate PMN transmigration. Specifically, PMN migration across both human epithelial monolayers and collagen-coated filters was partially inhibited by anti-SIRP monoclonal antibodies. Similar kinetics of inhibition were observed for PMN transmigration in the presence of soluble, recombinant CD47 consisting of the SIRP-binding loop. In contrast, anti-CD47 monoclonal antibodies inhibited PMN transmigration by markedly different kinetics. Results of signal transduction experiments suggested differential regulation of PMN migration by SIRP versus CD47 by phosphatidylinositol 3-kinase and tyrosine kinases, respectively. Immunoprecipitation followed by Western blotting after SDS-PAGE under nonreducing conditions suggested that several SIRP protein species may be present in PMN. Stimulation of PMN with fMLP resulted in increased surface expression of these SIRP proteins, consistent with the existence of intracellular pools. Taken together, these results demonstrate that PMN migration is regulated by CD47 through SIRPalpha-dependent and SIRPalpha-independent mechanisms.  相似文献   

17.
Expression and modulation of CD44 variant isoforms in humans   总被引:15,自引:0,他引:15  
CD44 is a ubiquitous surface molecule that exists as a number of isoforms, generated by alternative splicing of 10 "variant" exons. Little is known about the expression and function of the variant isoforms, except that certain isoforms may play a role in cancer metastasis. We produced mAbs against CD44 variant regions encoded by exons 4v, 6v, and 9v, by immunizing mice with a fusion protein spanning variant exons 3v to 10v. A comprehensive analysis of human tissues revealed that CD44 variant isoforms were expressed widely throughout the body, principally by epithelial cells. However there was differential expression of CD44 variant exons by different epithelia. Most epithelia expressed exon 9v, but much fewer expressed 6v or 4v. The regions of epithelia that expressed the highest levels of the variant isoforms were the generative cells, particularly the basal cells of stratified squamous epithelium, and of glandular epithelium. CD44 variant isoforms were also expressed differentially by leukocytes, with CD44-9v expressed at very low levels and CD44-6v and 4v virtually absent. However, CD44-9v and CD44-6v were the main variants that were transiently upregulated on T cells after mitogenic stimulation and on myelomonocytic cell lines by TNF alpha and IFN gamma treatment. Some epithelial cell lines could preferentially upregulate CD44-6v upon IFN gamma incubation. These results show that CD44 variant isoforms are expressed much more widely than first appreciated, and that expression of the variant isoforms on some cell types can be modulated by particular cytokines.  相似文献   

18.
Using simultaneous recording of aggregation and chemiluminescence, responses of human polymorphonuclear leukocytes, blood platelets and their mixture were investigated after stimulation by specific as well as non-specific stimuli for each cell. In our experimental settings, aggregation of platelets and PMN leukocytes was increased in the following order of stimuli: PMA相似文献   

19.
20.
Ectosomes released by human neutrophils are specialized functional units.   总被引:4,自引:0,他引:4  
Here we show that human polymorphonuclear leukocytes (PMN) release ectosomes independently of complement attack during their activation both in vitro and at the site of inflammation in vivo. Patterns of biotinylated proteins on the surface of PMN and on PMN-derived ectosomes indicated a specific sorting of cell surface proteins into and out of ectosomes. Ectosomes expressed clusters of complement receptor 1 (CR1), which allowed them to bind efficiently to opsonized bacteria. Myeloperoxidase and human leukocyte elastase, both stored within the azurophilic granules of PMN, were found to colocalize on ectosomes with CR1. Furthermore, myeloperoxidase colocalized with human leukocyte elastase. In contrast, not present on CR1-expressing ectosomes were CD63, a selective marker for the azurophilic granules, and CD14, which is located within the same granules and the secretory vesicles as CR1. Of the other complement regulatory proteins expressed by PMN, only CD59 colocalized with CR1, while CD55 and CD46 were almost absent. Ectosomes released by activated PMN at the site of inflammation may function as a well organized element (ecto-organelle), designed to focus antimicrobial activity onto opsonized surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号