共查询到20条相似文献,搜索用时 0 毫秒
1.
This article discusses how changes in luminal calcium concentration affect calcium release rates from triad-enriched sarcoplasmic reticulum vesicles, as well as single channel opening probability of the ryanodine receptor/calcium release channels incorporated in bilayers. The possible participation of calsequestrin, or of other luminal proteins of sarcoplasmic reticulum in this regulation is addressed. A comparison with the regulation by luminal calcium of calcium release mediated by the inositol 1,4,5-trisphosphate receptor/calcium channel is presented as well. 相似文献
2.
Györke S Györke I Terentyev D Viatchenko-Karpinski S Williams SC 《Biological research》2004,37(4):603-607
Calsequestrin (CASQ2) is a high capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR). Mutations in the cardiac calsequestrin gene (CASQ2) have been linked to arrhythmias and sudden death induced by exercise and emotional stress. We have studied the function of CASQ2 and the consequences of arrhythmogenic CASQ2 mutations on intracellular Ca signalling using a combination of approaches of reverse genetics and cellular physiology in adult cardiac myocytes. We have found that CASQ2 is an essential determinant of the ability of the SR to store and release Ca2+ in cardiac muscle. CASQ2 serves as a reservoir for Ca2+ that is readily accessible for Ca(2+)-induced Ca2+ release (CICR) and also as an active Ca2+ buffer that modulates the local luminal Ca-dependent closure of the SR Ca2+ release channels. At the same time, CASQ2 stabilizes the CICR process by slowing the functional recharging of SR Ca2+ stores. Abnormal restitution of the Ca2+ release channels from a luminal Ca-dependent refractory state could account for ventricular arrhythmias associated with mutations in the CASQ2 gene. 相似文献
3.
Evidence of a role for calmodulin in the regulation of calcium release from skeletal muscle sarcoplasmic reticulum 总被引:5,自引:0,他引:5
G Meissner 《Biochemistry》1986,25(1):244-251
The effect of calmodulin and calmodulin inhibitors on the "Ca2+ release channel" of "heavy" skeletal muscle sarcoplasmic reticulum (SR) vesicles was investigated. SR vesicles were passively loaded with 45Ca2+ in the presence of calmodulin and its inhibitors, followed by measurement of 45Ca2+ release rates by means of a rapid-quench-Millipore filtration method. Calmodulin at a concentration of 2-10 microM reduced 45Ca2+ efflux rates from passively loaded vesicles by a factor of 2-3 in media containing 10(-6)-10(-3) M Ca2+. At 10(-9) M Ca2+, calmodulin was without effect. 45Ca2+ release rates were varied 1000-fold (k1 approximately equal to 0.1-100 s-1) by using 10(-5) M Ca2+ with either Mg2+ or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) in the release medium. In all instances, a similar 2-3-fold reduction in release rates was observed. At 10(-5) M Ca2+, 45Ca2+ release was half-maximally inhibited by about 2 X 10(-7) M calmodulin, and this inhibition was reversible. Heavy SR vesicle fractions contained 0.1-02 micrograms of endogenous calmodulin/mg of vesicle protein. However, the calmodulin inhibitors trifluoperazine, calmidazolium, and compound 48/80 were without significant effect on 45Ca2+ release at concentrations which inhibit calmodulin-mediated reactions in other systems. Studies with actively loaded vesicles also suggested that heavy SR vesicles contain a Ca2+ permeation system that is inhibited by calmodulin. 相似文献
4.
Philip Palade Christine Dettbarn Donald Brunder Philip Stein Gary Hals 《Journal of bioenergetics and biomembranes》1989,21(2):295-320
Calcium release from sarcoplasmic reticulum (SR) has been elicited in response to additions of many different agents. Activators of Ca2+ release are here tentatively classified as activators of a Ca2+-induced Ca2+ release channel preferentially localized in SR terminal or as likely activators of other Ca2+ efflux pathways. Some of these pathways may be associated with several different mechanisms for SR Ca2+ release that have been postulated previously. Studies of various inhibitors of excitation-contraction coupling and of certain forms of SR Ca2+ release are summarized. The sensitivity of isolated SR to certain agents is unusually affected by experimental conditions. These effects can seriously undermine attempts to anticipate effects of the same pharmacological agentsin situ. Finally, mention is made of a new preparation (sarcoballs) designed to make the pharmacological study of SR Ca2+ release more accessible to electrophysiologists, and some concluding speculations on the future of SR pharmacology are offered. 相似文献
5.
Intravesicular calcium transient during calcium release from sarcoplasmic reticulum 总被引:12,自引:0,他引:12
The time course of changes in the intravesicular Ca2+ concentration ([Ca2+]i) in terminal cisternal sarcoplasmic reticulum vesicles upon the induction of Ca2+ release was investigated by using tetramethylmurexide (TMX) as an intravesicular Ca2+ probe. Upon the addition of polylysine at the concentration that led to the maximum rate of Ca2+ release, [Ca2+]i decreased monotonically in parallel with Ca2+ release. Upon induction of Ca2+ release by lower concentrations of polylysine, [Ca2+]i first increased above the resting level, followed by a decrease well below it. The release triggers polylysine, and caffeine brought about dissociation of calcium that bound to a nonvesicular membrane segment consisting of the junctional face membrane and calsequestrin bound to it, as monitored with TMX. No Ca2+ dissociation from calsequestrin-free junctional face membranes or from the dissociated calsequestrin was produced by release triggers, but upon reassociation of the dissociated calsequestrin and the junctional face membrane, Ca2+ dissociation by triggers was restored. On the basis of these results, we propose that the release triggers elicit a signal in the junctional face membrane, presumably in the foot protein moiety, which is then transmitted to calsequestrin, leading to the dissociation of the bound calcium; and in SR vesicles, to the transient increase of [Ca2+]i, and subsequently release across the membrane. 相似文献
6.
7.
Summary Ca2+-induced Ca2+ release at the terminal cisternae of skeletal sarcoplasmic reticulum was demonstrated using heavy sarcoplasmic reticulum vesicles. Ca2+ release was observed at 10 m Ca2+ in the presence of 1.25mm free Mg2+ and was sensitive to low concentrations of ruthenium red and was partially inhibited by valinomycin. These results suggest that the Ca2+-induced Ca2+ release is electrogenic and that an inside negative membrane potential created by the Ca2+ flux opens a second channel that releases Ca2+. Results in support of this formulation were obtained by applying a Cl– gradient or K+ gradient to sarcoplasmic reticulum vesicles to initiate Ca2+ release. Based on experiments the following hypothesis for the excitation-contraction coupling of skeletal muscle was formulated. On excitation, small amounts of Ca2+ enter from the transverse tubule and interact with a Ca2+ receptor at the terminal cisternae and cause Ca2+ release (Ca2+-induced Ca2+ release). This Ca2+ flux generates an inside negative membrane potential which opens voltage-gated Ca2+ channels (membrane potential-dependent Ca2+ release) in amounts sufficient for contraction. 相似文献
8.
Summary The structural consequences of clamping the transepithelial potential difference across the toad's urinary bladder have been examined. Reducing the potential to zero (short-circuiting) produced no apparent changes in the morphology of any of the four cell types which comprise the epithelium. Computer assisted, morphometric analysis of quick frozen specimens revealed no measurable difference in granular cell volume between open- and short-circuited preparations. However, when the open-circuit potential was quantitatively reversed (serosa negative with respect to mucosa), some of the preparations showed a marked increase in granular cell volume. To examine this more systematically twelve preparations were voltage-clamped at 50 mV (serosa negative); eight of the twelve revealed prominent granular cell swelling relative to control, short-circuited preparations. Only in this group of eight had the external circuit current fallen substantially during the clamping interval. Mitochondria-rich cells were not affected detectably. Application of the diuretic amiloride prior to clamping at reversed potential prevented granular cell swelling in every case. Goblet cells which were often affected by the –50 mV clamp were not protected by the diuretic. Granular cell swelling thus appeared to be dependent on sodium entry at the mucosal surface. We also observed that, after voltage reversal, the apical tight junctions of the bladders were blistered as they are with hypertonic mucosal media. This blistering was associated with an increase in passive ionic permeability and was not prevented by application of amiloride. This finding is consistent with the evidence that the junction is a complex barrier with asymetric, and hence, rectifying properties for intrinsic ionic conductance as well as hydraulic permeability. These findings, together with others from the literature, lead to the conclusion that the granular cells constitute the principal, if not sole, elements for active sodium transport across toad urinary bladder and that they swell when sodium entry exceeds the transport capacity of the pump at the basal-lateral surface. 相似文献
9.
10.
S T Ohnishi 《Journal of biochemistry》1979,86(4):1147-1150
A new method is introduced which allows the study of calcium-induced calcium release from fragmented sarcoplasmic reticulum. Results obtained with this method are in agreement with those obtained by previous investigators using skinned muscle fiber. It was also found that anesthetic drugs and alcohol increased the calcium- and caffeine-induced calcium release from the sarcoplasmic reticulum. 相似文献
11.
Rapid Ca2+ release from the sarcoplasmic reticulum (SR) can be triggered by either binding of heavy metals to a sulfhydryl (SH) group or by catalyzing the oxidation of endogenous groups to a disulfide. Ca2+ release has been monitored directly using isolated vesicle preparations or indirectly by monitoring phasic contractions in a skinned fiber preparation. SH oxidation triggered by addition of Cu2+ /mercaptans, phthalocyanine dyes, reactive disulfides, and various anthraquinones appears to involve a direct interaction with the Ca2+ release protein from the SR. A model is presented in which reversible oxidation and reduction of endogenous SH groups results in the opening and closing of the Ca2+ release channel from the SR.Abbreviations SR
sarcoplasmic reticulum
- SH
sulfhydryl
- T-tubule
transverse tubule
- 2,2-DTDP
2,2-dithiodipyridine
- 4,4-DTDP
4,4-dithiodipyridine
- DTT
dithiothreitol 相似文献
12.
Release of Ca2+ from skeletal sarcoplasmic reticulum vesicles was studied by the spectrophotometric stopped-flow technique using tetraphenylboron as a releasing agent. The extent of Ca2+ release shows a sigmoidal response, with respect to the tetraphenylboron concentration, being dependent on Ca2+ preloading and Ca2+-ATPase activity, since these experiments were performed on actively loaded vesicles. The release process has a rapid component with an apparent rate constant of 6-8 s-1, showing a linear relationship between the rapid rate of Ca2+ release and the Ca2+ content of the vesicles. The release is not mediated by the reversal of the Ca2+ pump. Since the amphipathic anion tetraphenylboron was unable to elicit a Ca2+-release response when added to a preparation of sarcoplasmic reticulum phospholipid vesicles, it is suggested that there may be an interaction with some membrane protein(s) at the hydrophobic/hydrophilic interface leading to the opening of some specific Ca2+-release pathway. 相似文献
13.
Kinetic studies of calcium release from sarcoplasmic reticulum in vitro 总被引:18,自引:0,他引:18
Release of Ca2+ from a heavy fraction of rabbit skeletal muscle sarcoplasmic reticulum was triggered by several different methods: (a) increasing extravesicular [Ca2+] [( CaO2+] from about 0.1 microM to 10 microM), (b), adding caffeine, (c) adding quercetin, and (d) substituting a solution containing equimolar choline+ for K+-containing solution (depolarization-induced Ca2+ release). The maximal rate of Ca2+ release triggered by caffeine or quercetin in the presence of 12.5 microM [CaO2+] (21-25 nmol of Ca2+/mg/s) is similar to that of the depolarization-induced Ca2+ release (19 nmol of Ca2+/mg/s), as determined by stopped flow spectrometry of changes in [CaO2+] with arsenazo III. The release is transient and all of the released Ca2+ is reaccumulated. The rates of Ca2+ release triggered by caffeine, quercetin, or membrane depolarization sharply decrease at high [CaO2+], suggesting a negative feedback effect of the released Ca2+. Inhibition of the release pathway allows the sarcoplasmic reticulum to reaccumulate Ca2+. The rate of Ca2+ release triggered by caffeine or quercetin, but not that triggered by membrane depolarization, is also reduced upon decreasing [CaO2+] to the submicromolar range. Passive efflux of intravesicular Ca2+ in solutions containing lower [CaO2+] in the absence of Mg.ATP is attenuated at about the same time (congruent to 1 min) regardless of the amounts of Ca2+ released, indicating that the opened Ca2+ channels close spontaneously. These results suggest that kinetically identical channels are responsible for Ca2+ release independent of the methods of triggering and this in vitro release is consistent with the physiological mechanism both in terms of the rapidity and the reversibility of Ca2+ release. 相似文献
14.
Marshall S. Millman Jamshid Azari 《Biochemical and biophysical research communications》1977,78(1):60-66
Calcium efflux from skeletal muscle fragmented sarcoplasmic reticulum was studied using a dilution technique and Millipore filtration. In the absence of Mg++ and external Ca++, addition of lmM adenosine triphosphate to the suspension resulted in an immediate loss of 26–55% of total vesicular calcium. The amount of calcium released was calculated to be sufficient to effect muscle contraction. After separation of the sarcoplasmic reticulum into light, intermediate and heavy vesicles, the light and heavy fractions were found to be only weakly responsive to adenosine triphosphate, whereas the intermediate fraction lost nearly half of its calcium. The significance of these results with respect to excitation-contraction coupling in muscle is discussed. 相似文献
15.
Mechanisms of calcium release in sarcoplasmic reticulum. 总被引:2,自引:0,他引:2
The involvement of Sarcoplasmic Reticulum (SR) in relaxation of skeletal muscle has been studied extensively since vesicular fragments of SR membrane were found in the microsomal fraction of muscle homogenates (1,2). It was shown that the isolated SR vesicles exhibit ATP dependent calcium transport in vitro, reducing the Ca2+ concentration in the medium to levels (3) and at rates (4,5) compatible with relaxation of myofibrils in physiological conditions (6).The question of calcium release, however, has been elusive for a long time. In this regard it is known that skeletal muscle SR is able to store an amount of calcium which is sufficient for activation of myofibrils. Therefore, it is simply assumed that upon membrane excitation calcium is released from SR, thereby raising the Ca2+ concentration in the myoplasm and initiating contraction.Recently various experiments were performed demonstrating that calcium release from SR can occur by different mechanisms of great interest and possibly of physiological relevance. These mechanisms will be discussed here. 相似文献
16.
Fluorescence conformational probe study of calcium release from sarcoplasmic reticulum 总被引:2,自引:0,他引:2
Sarcoplasmic reticulum isolated from rabbit skeletal muscle was labeled with a limited (0.625 nmol/mg sarcoplasmic reticulum protein) amount of the fluorescent thiol reagent N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide (DACM). The fluorescence intensity of the membrane-attached DACM decreased concurrently with (Ca2+ and caffeine)-induced Ca2+ release, depolarization-induced Ca2+ release and Ca2+-dependent dependent passive efflux of Ca2+. The decreased DACM fluorescence level initiated by a Ca2+ jump was subsequently reversed under passive efflux conditions when there was no ATP-dependent Ca2+ uptake, suggesting spontaneous closing of the channels. Therefore, the higher fluorescence level corresponds to a larger population of closed channels, whereas the lower level represents a larger population of opened channels. Under conditions when the Ca2+ release-coupled fluorescence change was maximal, a stoichiometric incorporation of DACM took place only into a 32-kDa protein. Furthermore, reconstituted vesicles, in which purified DACM-labeled 32-kDa protein was incorporated into unlabeled sarcoplasmic reticulum vesicles, were capable of both (Ca2+ and caffeine)-induced Ca2+ release and the release-coupled DACM fluorescence change. These results suggest that the 32-kDa protein is a constituent of the Ca2+ release channel or a protein which is in close contact with the channel. 相似文献
17.
Calcium release from isolated heavy sarcoplasmic reticulum of rabbit skeletal muscle by several calmodulin antagonistic drugs was measured spectrophotometrically with arsenazo III and compared with the properties of the caffeine-induced calcium release. Trifluoperazine and W7 (about 500 microM) released all actively accumulated calcium (half-maximum release at 129 microM and 98 microM, respectively) in the presence 0.5 mM MgCl2 and 1 mg/ml sarcoplasmic reticulum protein; calmidazolium (100 microM) and compound 48/80 (70 micrograms/ml) released maximally 30-40% calcium, whilst bepridil (100 microM) and felodipin (50 microM) with calmodulin antagonistic strength similar to trifluoperazine (determined by inhibition of the calcium, calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum) did not cause a detectable calcium release, indicating that this drug-induced calcium release is not due to the calmodulin antagonistic properties of the tested drugs. Calcium release of trifluoperazine, W7 and compound 48/80 and that of caffeine was inhibited by similar concentrations of magnesium (half-inhibition 1.4-4.2 mM compared with 0.97 mM for caffeine) and ruthenium red (half-inhibition for trifluoperazine, W7 and compound 48/80 was 0.22 microM, 0.08 microM and 0.63 micrograms/ml, respectively, compared with 0.13 microM for caffeine), suggesting that this drug-induced calcium release occurs via the calcium-gated calcium channel of sarcoplasmic reticulum stimulated by caffeine or channels with similar properties. 相似文献
18.
Mechanism of anthraquinone-induced calcium release from skeletal muscle sarcoplasmic reticulum 总被引:3,自引:0,他引:3
J J Abramson E Buck G Salama J E Casida I N Pessah 《The Journal of biological chemistry》1988,263(35):18750-18758
The anthraquinones, doxorubicin, mitoxantrone, daunorubicin and rubidazone are shown to be potent stimulators of Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles and to trigger transient contractions in chemically skinned psoas muscle fibers. These effects of anthraquinones are the direct consequence of their specific interaction with the [3H] ryanodine receptor complex, which constitutes the Ca2+ release channel from the triadic junction. In the presence of adenine nucleotides and physiological Mg2+ concentrations (approximately 1.0 mM), channel activation by doxorubicin and daunorubicin exhibits a sharp dependence on submicromolar Ca2+ which is accompanied by a selective, dose-dependent increase in the apparent affinity of the ryanodine binding sites for Ca2+, in a manner similar to that previously reported with caffeine. Unlike caffeine, however, anthraquinones increase [3H]ryanodine receptor occupancy to the level observed in the presence of adenine nucleotides. A strong interaction between the anthraquinone and the caffeine binding sites on the Ca2+ release channel is also observed when monitoring Ca2+ fluxes across the SR. Millimolar caffeine both inhibits anthraquinone-stimulated Ca2+ release, and reduces anthraquinone-stimulated [3H]ryanodine receptor occupancy, without changing the effective binding constant of the anthraquinone for its binding site. The degree of cooperativity for daunorubicin activation of Ca2+ release from SR also increases in the presence of caffeine. These results demonstrate that the mechanism by which anthraquinones stimulate Ca2+ release is caused by a direct interaction with the [3H]ryanodine receptor complex, and by sensitization of the Ca2+ activator site for Ca2+. 相似文献
19.
Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles 总被引:6,自引:0,他引:6
Micromolar concentrations of cupric ion (Cu2+) and mercaptans such as cysteine, cysteamine, and homocysteine trigger large and rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles. At the concentrations used, Cu2+ alone does not induce Ca2+ release nor does cysteine alone; both are required to induce Ca2+ release from SR. Cu2+ is known to catalyze the autooxidation of cysteine to its disulfide form cystine; Cu2+/mercaptan-induced Ca2+ release appears to be caused by Cu2+-catalyzed formation of a mixed disulfide between the exogenous mercaptan and a critical sulfhydryl on a transmembrane protein. In the oxidized state the SR is highly permeable to Ca2+. Supporting evidence for this interpretation is as follows. The order of Ca2+-releasing reactivity of the mercaptans is the same as the order in which these compounds undergo oxidation to disulfide forms in the presence of Cu2+. Ca2+ efflux induced by cysteine and Cu2+ can be reversed by the addition of the disulfide reducing agent dithiothreitol. Hypochlorous acid and plumbagin, both potential sulfhydryl oxidants, induce rapid Ca2+ efflux from SR vesicles; in addition, Cu2+, which catalyzes H2O2 oxidation of cysteine, enhances H2O2-induced release. Oxidation-induced Ca2+ release from SR can be partially reversed or blocked by ruthenium red or the local anesthetics procaine and tetracaine. The Ca2+ efflux rates are strongly Mg2+ dependent and are significantly higher in heavy SR than in light SR. These data suggest that the Ca2+ efflux thus induced is via the "Ca2+ release channel" and that the oxidation state of a critical sulfhydryl group on this protein may be the principal means by which the Ca2+ permeability of the SR is regulated in vivo. 相似文献
20.
A recent study by Blayney and co-workers (Blayney, L., Thomas, H., Muir, J. and Henderson, A. (1977) Biochim. Biophys. Acta 470, 128--133) purported to demonstrate that apparent spontaneous calcium release in sarcoplasmic reticulum is an artifact of the uptake of murexide dye. This report demonstrates that spontaneous calcium release (1) takes place despite equilibration of murexide sarcoplasmic reticulum to a stable baseline; (2) may be reversed by addition of ATP or oxalate after release has begun. The identical phenomenon can be demonstrated utilizing the indicator arsenazo III or Millipore filtration methods. The results suggest that equilibration of the murexide with sarcoplasmic reticulum vesicles must occur prior to ATP addition in order to achieve a stable baseline but that spontaneous calcium release is not an artifact. 相似文献