首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Select metal adsorption by activated carbon made from peanut shells   总被引:12,自引:0,他引:12  
Agricultural by-products, such as peanut shells, contribute large quantities of lignocellulosic waste to the environment each growing season; but few, if any, value-added uses exist for their disposal. The objective of this study was to convert peanut shells to activated carbons for use in adsorption of select metal ions, namely, cadmium (Cd2+), copper (Cu2+), lead (Pb2+), nickel (Ni2+) and zinc (Zn2+). Milled peanut shells were pyrolyzed in an inert atmosphere of nitrogen gas, and then activated with steam at different activation times. Following pyrolysis and activation, the carbons underwent air oxidation. The prepared carbons were evaluated either for adsorption efficiency or adsorption capacity; and these parameters were compared to the same parameters obtained from three commercial carbons, namely, DARCO 12x20, NORIT C GRAN and MINOTAUR. One of the peanut shell-based carbons had metal ion adsorption efficiencies greater than two of the three commercial carbons but somewhat less than but close to Minotaur. This study demonstrates that peanut shells can serve as a source for activated carbons with metal ion-removing potential and may serve as a replacement for coal-based commercial carbons in applications that warrant their use.  相似文献   

2.
The objectives of this study were to evaluate selected physical and chemical properties of agricultural byproduct-based activated carbons made from pecan shells and sugarcane bagasse, and compare those properties to a commercial coal-based activated carbon as well as to compare the adsorption efficiency of these carbons for geosmin. Comparison of the physical and chemical properties of pecan shell- and bagasse-based carbons to the commercial carbon, Calgon Filtrasorb 400, showed that pecan shell carbon, but not the bagasse carbon, compared favorably to Filtrasorb 400, especially in terms of surface area, bulk density, ash and attrition. A carbon dosage study done in a model system showed the amount of geosmin adsorbed to be greater for Filtrasorb 400 and the bagasse-based carbon at low carbon concentrations than for the pecan shell carbons, but geosmin adsorption was similar in all carbons at higher carbon dosages. Application of the Freundlich isotherm model to the adsorption data showed that carbons made by steam activation of pecan shells or sugarcane bagasse had geosmin adsorption characteristics most like those of the commercial carbon. In terms of physical, chemical and adsorptive properties, steam-activated pecan shell carbon most resembled the commercial carbon and has the potential to replace Filtrasorb 400 in applications involving removal of geosmin from aqueous environments.  相似文献   

3.
Activated carbons were prepared from sewage sludge by chemical activation. Pyrolusite was added as a catalyst during activation and carbonization. The influence of the mineral addition on the properties of the activated carbons produced was evaluated. The results show that activated carbons from pyrolusite-supplemented sewage sludge had up to a 75% higher BET surface area and up to a 66% increase in mesoporosity over ordinary sludge-based activated carbons. Batch adsorption experiments applying the prepared adsorbents to synthetic dye wastewater treatment yielded adsorption data well fitted to the Langmuir isotherm. The adsorbents from pyrolusite-supplemented sludges performed better in dye removal than those without mineral addition, with the carbon from pyrolusite-augmented sludge T2 presenting a significant increase in maximum adsorption capacity of 50 mg/g. The properties of the adsorbents were improved during pyrolusite-catalyzed pyrolysis via enhancement of mesopore production, thus the mesopore channels may provide fast mass transfer for large molecules like dyes.  相似文献   

4.
In this batch study, the adsorption of malathion by using granular activated carbon with different parameters due to the particle size, dosage of carbons, as well as the initial concentration of malathion was investigated. Batch tests were carried out to determine the potential and the effectiveness of granular activated carbon (GAC) in removal of pesticide in agricultural run off. The granular activated carbon; coconut shell and palm shells were used and analyzed as the adsorbent material. The Langmuir and Freundlich adsorption isotherms models were applied to describe the characteristics of adsorption behavior. Equilibrium data fitted well with the Langmuir model and Freundlich model with maximum adsorption capacity of 909.1 mg/g. The results indicate that the GAC could be used to effectively adsorb pesticide (malathion) from agricultural runoff.  相似文献   

5.
The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon.  相似文献   

6.
Sugar syrup decolorization was studied using two commercial and eight beet pulp based activated carbons. In an attempt to relate decolorizing performances to other characteristics, surface areas, pore volumes, bulk densities and ash contents of the carbons in the powdered form; pH and electrical conductivities of their suspensions and their color adsorption properties from iodine and molasses solution were determined. The color removal capabilities of all carbons were measured at 1/100 (w/w) dosage, and isotherms were determined on better samples. The two commercial activated carbons showed different decolorization efficiencies; which could be related to their physical and chemical properties. The decolorization efficiency of beet pulp carbon prepared at 750 degrees C and activated for 5h using CO2 was much better than the others and close to the better one of the commercial activated carbons used. It is evident that beet pulp is an inexpensive potential precursor for activated carbons for use in sugar refining.  相似文献   

7.
Preparation of the activated carbons from sunflower oil cake by sulphuric acid activation with different impregnation ratios was carried out. Laboratory prepared activated carbons were used as adsorbents for the removal of methylene blue (MB) from aqueous solutions. Liquid-phase adsorption experiments were conducted and the maximum adsorption capacity of each activated carbon was determined. The effects of various process parameters i.e., temperature, pH, initial methylene blue concentration, contact time on the adsorption capacity of each activated carbon were investigated. The kinetic models for MB adsorption onto the activated carbons were studied. Langmuir isotherm showed better fit than Freundlich isotherm for all activated carbon samples. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The separation factor (R(L)) revealed the favorable nature of the isotherm of the MB activated carbon system.  相似文献   

8.
《Bioresource technology》2000,71(2):103-112
Granular activated carbons (GACs) were produced from sugarcane bagasse combined with one of two binders (corn syrup, coal tar) by physical activation and from pecan shells by physical and chemical activation. GACs were evaluated for their physical (hardness, bulk density), chemical (ash, pH), surface (surface area, pore size distribution, surface chemistry), and adsorption properties (molasses color removal, sugar decolorization) and compared with two commercial reference carbons. Results showed that larger surface area, a well-developed macro- and mesoporosity, and a minimal surface charge were desirable in GACs designed for sugar decolorization. Steam activation of pecan shells carbon was the only by-product-activation combination that produced GAC with all the above three desirable characteristics of a good sugar decolorizer. Chemical activation of pecan shells yielded GACs with high surface area and adequate pore size distribution but with large surface charge. In contrast, sugarcane bagasse-based GACs exhibited low surface areas and unsatisfactory physical/chemical properties.  相似文献   

9.
《Bioresource technology》2000,71(2):113-123
Representative samples of soft, low density, group 1 (rice straw, rice hulls, sugarcane bagasse) and hard, high density, group 2 agricultural by-products (pecan shells) were converted into granular activated carbons (GACs). GACs were produced from group 1 and 2 materials by physical activation or from group 2 materials by chemical activation. Carbons were evaluated for their physical (hardness, bulk density), chemical (ash, conductivity, pH), surface (total surface area), and adsorption properties (molasses color removal, sugar decolorization) and compared with two commercial reference carbons. The results show that the type of by-product, binder, and activation method determine the properties of GACs. Regardless of the binder, sugarcane bagasse showed a better potential than rice straw or rice hulls as precursor of GACs with the desirable properties of a sugar decolorizing carbon. Pecan shells produced GACs that were closest to the reference carbons in terms of all the properties investigated.  相似文献   

10.
The adsorption on activated carbons of dark colored compounds contained in sugar beet vinasse was studied. Four commercial activated carbons with different properties (particle size, residual acidity and microporous properties) were respectively checked for efficiency at two temperature levels (25 °C and 40 °C) and at four pH levels (2, 3.5, 7, 10). The adsorption of organic molecules was determined by quantifying the amounts of total polyphenolic compounds and total organic carbon. The results showed that the adsorption capacity of dark colored compounds was enhanced by the decrease in both temperature and pH values of the solution. In this study, it is shown that this capacity depends on activated carbon characteristics which can be classified in the following order: particle size > residual acidity > microporous volume. Three models (Langmuir, Freundlich and Dubinin–Radushkevich) were tested from experimental data and compared. The Langmuir model provided the best correlation on all the activated carbons studied.  相似文献   

11.
The powdered activated carbon prepared by phosphoric acid activation was significantly affected by the carbonization temperature and the weight ratio between raw material and phosphoric acid. With an activation time of 1h and an impregnation ratio of 1:1, the activated carbons with better adsorption capacity were obtained at 500 degrees C. A reduction in the adsorption capacity of the carbon product at higher acid content than this was observed, possibly due to the collapse of the micropore structure. The properties of the resulting activated carbon were: bulk density 0.251gcm(-3), ash content 4.88%, yield 26.2%, iodine adsorption 1043mgg(-1), methylene blue adsorption number 427mgg(-1), and BET surface area 1239m(2)g(-1).  相似文献   

12.
The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.  相似文献   

13.
Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this paper is to show that flax shive and cotton gin waste can serve as a precursor for activated carbon that can be used for adsorption of trichloroethylene (TCE) from both the liquid and gas phases. Testing was conducted on carbon activated with phosphoric acid or steam. The results show that activated carbon made from flax shive performed better than select commercial activated carbons, especially at higher TCE concentrations. The activation method employed had little effect on TCE adsorption in gas or vapor phase studies but liquid phase studies suggested that steam activation is slightly better than phosphoric acid activation. As expected, the capacity for the activated carbons depended on the fluid phase equilibrium concentration. At a fluid concentration of 2 mg of TCE/L of fluid, the capacity of the steam activated carbon made from flax shive was similar at 64 and 80 mg TCE/g of carbon for the vapor and liquid phases, respectively. Preliminary cost estimates suggest that the production costs of such carbons are $1.50 to $8.90 per kg, depending on activation method and precursor material; steam activation was significantly less expensive than phosphoric acid activation.  相似文献   

14.
The present research work deals with the production of activated carbons by chemical activation and pyrolysis of sewage sludges. The adsorbent properties of these sewage sludges based activated carbons were studied by liquid-phase adsorption tests. Dyes removal from colored wastewater being a possible application for sludge based adsorbents, methylene blue and saphranine removing from solution was studied. Pure and binary adsorption assays were performed in batch and fixed bed systems. In all cases studied, the adsorbents produced from sewage sludges were able to adsorb both the compounds considered here. Nevertheless, time required for reaching equilibrium, adsorptive capacity and fixed bed characteristic parameters were different for these two compounds. Methylene blue adsorption occurred faster than that of saphranine, and it was preferably adsorbed when treating binary solutions. It could be concluded that the sewage sludge-based activated carbons may be promising for dyes removal from aqueous streams.  相似文献   

15.
A series of phosphoric-acid activated carbons were made from almond shells using six different activation or activation/oxidation methods. The carbons were compared to each other and to two commercial carbons in an effort to ascertain the relative value of the carbons in terms of yield, surface area, attrition, surface functional groups, organic uptake, metal uptake, as well as estimated cost of production. Of the six methods investigated, the method that produced the best overall performing almond shell carbon and least expensive carbon in terms of production cost was the “Air-Activation” method. This method involved the simultaneous activation and oxidation of almond shells under an air atmosphere.  相似文献   

16.
Thermally and chemically activated carbons were used to investigate the extent of cometabolic bioregeneration in laboratory scale activated sludge reactors. Bioregeneration was determined and quantified by measuring the substrate and chloride concentrations, oxygen uptake rates, and deterioration in adsorption capacities. Activated carbons loaded with 2-chlorophenol could be partially bioregenerated in the presence of phenol as the growth substrate. The occurrence of exoenzymatic bioregeneration was also possible during cometabolic bioregeneration of thermally activated carbons. However, cometabolic bioregeneration of chemically activated carbons was much superior compared with thermally activated carbons. In cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol, biodegradation, rather than desorption, was the rate-limiting step. Environmental Scanning Electron Microscopy analyses showed that groups of cocci-shaped phenol-oxidizers were attached to the outer surface or internal cavities of activated carbon as a fingerprint of bioregeneration.  相似文献   

17.
ObjectiveIodine is an essential micro nutrient, and a deficiency or excessive intake of this mineral is related to changes in thyroid function. In Brazil, both deficiency and excessive intake of iodine are common; however, excessive intakes have recently been observed. Thus, the objective of the present study was to assess the iodine concentration in maternal milk, taking into account the salt iodine concentration of the participating households and in the infants’ urine.MethodUrine samples from 33 infants (less than 6 months of age), maternal milk samples and samples of the kitchen salt used by the mothers were collected. The iodine levels in the urine and maternal milk were assessed by ICP-MS; the iodine levels in the salt were assessed by titration.ResultThe median iodinuria value in the infants was 293 μg/L; the mean iodine concentration was 206 μg/L in the maternal milk and 39.9 mg I/kg in the salt. There was a positive correlation between the iodine concentration in the maternal milk and the infant iodinuria value.ConclusionThe median infant iodinuria was elevated due to the high iodine concentration present in the maternal milk. High iodine values were caused by high salt iodine levels, which should be reduced.  相似文献   

18.
Wen Q  Li C  Cai Z  Zhang W  Gao H  Chen L  Zeng G  Shu X  Zhao Y 《Bioresource technology》2011,102(2):942-947
The aim of this work is to evaluate the adsorption performances of activated carbon derived from sewage sludge (ACSS) for gaseous formaldehyde removal compared with three commercial activated carbons (CACs) using self-designing adsorption and distillation system. Formaldehyde desorption of the activated carbons for regeneration was also studied using thermogravimetric (TG) analysis. The porous structure and surface characteristics were studied using N2 adsorption and desorption isotherms, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that ACSS has excellent adsorption performance, which is overall superior to the CACs. Adsorption theory indicates that the ACSS outperforms the CACs due to its appropriate porous structure and surface chemistry characteristics for formaldehyde adsorption. The TG analysis of desorption shows that the optimum temperature to regenerate ACSS is 75 °C, which is affordable and economical for recycling.  相似文献   

19.
The paper presents the results of research devoted to reliability evaluation of the analysis of results of the porous structure of activated carbons based on incomplete nitrogen adsorption isotherms using the BET, t-plot, and NLDFT methods, as well as the LBET method comprising the unique numerical fast multivariant procedure of adsorption system identification. The research involved the application of the nitrogen adsorption isotherms obtained for five samples of activated carbons produced from waste materials of organic origin by way of chemical activation with potassium hydroxide, sodium hydroxide, and potassium carbonate with the use of microwave heating. The analyses performed pointed to a good correlation between the results obtained using the BET, t-plot, NLDFT, and LBET methods. Moreover, the parameters of the porous structure determined using these methods based on incomplete adsorption isotherms of nitrogen are in fact as reliable as these methods allow.  相似文献   

20.
Gao P  Liu ZH  Xue G  Han B  Zhou MH 《Bioresource technology》2011,102(3):3645-3648
Effects of different pretreatment protocols in (NH(4))(2)HPO(4) activation of rice straw on porous activated carbon evolution were evaluated. The pore structure, morphology and surface chemistry of obtained activated carbons were investigated by nitrogen adsorption, scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that pretreatment combining impregnation with (NH(4))(2)HPO(4) and preoxidation could significantly affect the physicochemical properties of prepared activated carbons. The apparent surface area and total pore volume as high as 1154 m(2)/g and 0.670 cm(3)/g were obtained respectively, when combined process of impregnation followed by preoxidation at 200°C and activation at 700°C was carried out. Meanwhile, the activated carbon yield and maximum methylene blue adsorption capacity up to 41.14% and 129.5 mg/g were achieved, respectively. The results exhibited that (NH(4))(2)HPO(4) could be an effective activating agent for producing activated carbons from rice straw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号