首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Arabidopsis thaliana, two genes encoding phytochelatin synthase (PCS; EC 2.3.2.15), AtPCS1 and AtPCS2, have been identified. Until now, only AtPCS1 was shown to play a role in response to Cd. To gain insight into the putative role of AtPCS2, three Cd concentrations (50, 100 and 200 μM) and long-term exposure (7 days) were tested on 1-week-old A. thaliana ecotype Wassilewskija (Ws) seedlings. Since 100 μM Cd did not alter seedling metabolism, as shown by unchanged total soluble protein and free proline contents, we investigated plantlet response to this concentration in addition to Cd accumulation. Seedlings accumulated Cd in roots and shoots. As phytochelatins and glutathione (GSH) contents increased in treated seedlings, we suggested that Cd might be translocated via the phytochelatin pathway. Specific enzymatic activities of γ-glutamylcysteine synthetase (GCS; EC 6.3.2.2), glutathione synthetase (GS; EC 6.3.2.3) and PCS were twice much more stimulated in shoots and roots after Cd exposure except GS that remained constant in shoots. As expression of genes encoding GCS and GS was unchanged in response to Cd, we suggested a regulation at translational or post-translational level. Surprisingly, AtPCS1 and AtPCS2 were differentially up-regulated after Cd treatment: AtPCS1 in shoots and AtPCS2 in whole plantlets. This last result suggests that PCS2 could be involved in plant response to high concentration of Cd in Ws ecotype and supports a putative role of PCS2, not redundant with PCS1, in a long-term response to Cd.  相似文献   

2.
S Clemens  E J Kim  D Neumann    J I Schroeder 《The EMBO journal》1999,18(12):3325-3333
Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of approximately 55 kDa with no similarity to proteins of known function. We identified homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans. The Arabidopsis and S.pombe genes were also demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells accumulate more Cd2+ than controls. PCS expression mediates Cd2+ tolerance even in yeast mutants that are either deficient in vacuolar acidification or impaired in vacuolar biogenesis. PCS-induced metal resistance is lost upon exposure to an inhibitor of glutathione biosynthesis, a process necessary for phytochelatin formation. Schizosaccharomyces pombe cells disrupted in the PCS gene exhibit hypersensitivity to Cd2+ and Cu2+ and are unable to synthesize phytochelatins upon Cd2+ exposure as determined by HPLC analysis. Saccharomyces cerevisiae cells expressing PCS produce phytochelatins. Moreover, the recombinant purified S.pombe PCS protein displays phytochelatin synthase activity. These data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes.  相似文献   

3.
4.
植物对重金属镉的耐受机制   总被引:48,自引:0,他引:48  
镉离子(Cd^2+)具有强植物毒性,抑制植物生长,甚至使植物死亡。由于长期的环境选择和适应进化,植物发展出耐受机制,可减轻或避免Cd^2+的毒害。硫转运蛋白、硫还原相关酶类以及半胱氨酸、谷胱甘肽和植物螯合肽合成基因的表达受Cd^2+调控。同时这些基因的过表达也能提高植物对Cd^2+的耐性。植物抗氧化系统对Cd^2+胁迫诱发的活性氧的清除作用,具转运Cd^2+活性的质膜转运蛋白促进Cd^2+经共质体途径向木质部运输、装载,而后随蒸腾流向地上部迁移,具转运Cd^2+活性的液泡膜转运蛋白促进Cd^2+进入液泡的隔离作用,都在植物对Cd^2+的耐性中起作用。  相似文献   

5.
Higher plants respond to cadmium exposure with the production of phytochelatins (PCn), small heavy metal binding peptides, which are synthesized from glutathione by phytochelatin synthase (PCS). The isolation of a PCS cDNA clone from Brassica juncea L. cv. Vitasso, a candidate species for phytoremediation, is reported here. CLUSTAL analysis revealed a close relationship of BjPCS1 with PCS proteins from Arabidopsis thaliana and Thlaspi caerulescens. BjPCS1 expressed as recombinant protein in E. coli had PCS activity in vitro that was activated by 50 microM Cu and 200 microM Cd to a similar extent. Immunoblot analysis with an antiserum directed against recombinant BjPCS1 showed constitutive PCS expression during plant development. As a percentage of the total protein, the expression was higher in the roots, internodes and petioles in comparison with the leaf tissue. When B. juncea plants were treated with 25 microM cadmium, PCn accumulated increasingly over a 6 d period. Levels in shoots were about 3-fold higher than in roots. Prolonged cadmium exposure caused a significant increase of PCS protein in leaves, whereas in roots PCS protein levels were not affected.  相似文献   

6.
7.
Withania somnifera is one of the most important medicinal plant and is credited with various pharmacological activities. In this study, in vitro multiple shoot cultures were exposed to different concentrations (5–300 μM) of cadmium (Cd) as cadmium sulphate to explore its ability to accumulate the heavy metal ion and its impact on the metabolic status and adaptive responses. The results showed that supplemental exposure to Cd interfered with N, P, and K uptake creating N, P, and K deficiency at higher doses of Cd that also caused stunting of growth, chlorosis, and necrosis. The study showed that in vitro shoots could markedly accumulate Cd in a concentration-dependent manner. Enzymatic activities and isozymic pattern of catalase, ascorbate peroxidase, guaiacol peroxidase, peroxidase, glutathione-S-transferase, glutathione peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase were altered substantially under Cd exposure. Sugar metabolism was also markedly modulated under Cd stress. Various other parameters including contents of photosynthetic pigments, phenolics, tocopherol, flavonoids, reduced glutathione, nonprotein thiol, ascorbate, and proline displayed major inductive responses reflecting their protective role. The results showed that interplay of enzymatic as well as nonenzymatic responses constituted a system endeavor of tolerance of Cd accumulation and an efficient scavenging strategy of its stress implications.  相似文献   

8.
9.
In the present study, the level of thiols and activity of related enzymes were investigated in coontail (Ceratophyllum demersum L.) plants to analyze their role in combating the stress caused upon exposure to cadmium (Cd; 0–10 μM) for a duration up to 7 d. Plants showed the maximum accumulation of 1293 μg Cd g?1 dw after 7 d at 10 μM. Significant increases in the level of total non-protein thiols (NP-SH) including phytochelatins (PCs) as well as upstream metabolites of the PC biosynthetic pathway, cysteine and glutathione (GSH) were observed. In addition, significant increases in the activities of cysteine synthase (CS), glutathione-S-transferase (GST), glutathione reductase (GR), as well as in vitro activation of phytochelatin synthase (PCS), were noticed in response to Cd. In conclusion, under Cd stress, plants adapted to a new metabolic equilibrium of thiols through coordinated synthesis and consumption to combat Cd toxicity and to accumulate it.  相似文献   

10.
Phytochelatins, heavy-metal-binding polypeptides, are synthesized by phytochelatin synthase (PCS) (EC 2.3.2.15). Previous studies on plants overexpressing PCS genes yielded contrasting phenotypes, ranging from enhanced cadmium tolerance and accumulation to cadmium hypersensitivity. This paper compares the effects of overexpression of AtPCS1 and CePCS in tobacco (Nicotiana tabacum var. Xanthi), and demonstrates how the introduction of single homologous genes affects to a different extent cellular metabolic pathways leading to the opposite of the desired effect. In contrast to WT and CePCS transformants, plants overexpressing AtPCS1 were Cd-hypersensitive although there was no substantial difference in cadmium accumulation between studied lines. Plants exposed to cadmium (5 and 25 muM CdCl2) differed, however, in the concentration of non-protein thiols (NPT). In addition, PCS activity in AtPCS1 transformants was around 5-fold higher than in CePCS and WT plants. AtPCS1 expressing plants displayed a dramatic accumulation of gamma-glutamylcysteine and concomitant strong depletion of glutathione. By contrast, in CePCS transformants, a smaller reduction of the level of glutathione was noticed, and a less pronounced change in gamma-glutamylcysteine concentration. There was only a moderate and temporary increase in phytochelatin levels due to AtPCS1 and CePCS expression. Marked changes in NPT composition due to AtPCS1 expression led to moderately decreased Cd-detoxification capacity reflected by lower SH:Cd ratios, and to higher oxidative stress (assessed by DAB staining), which possibly explains the increase in Cd-sensitivity. The results indicate that contrasting responses to cadmium of plants overexpressing PCS genes might result from species-dependent differences in the activity of phytochelatin synthase produced by the transgenes.  相似文献   

11.
Glutathione (gamma-glu-cys-gly; GSH) is usually present at high concentrations in most living cells, being the major reservoir of non-protein reduced sulfur. Because of its unique redox and nucleophilic properties, GSH serves in bio-reductive reactions as an important line of defense against reactive oxygen species, xenobiotics and heavy metals. GSH is synthesized from its constituent amino acids by two ATP-dependent reactions catalyzed by gamma-glutamylcysteine synthetase and glutathione synthetase. In yeast, these enzymes are found in the cytosol, whereas in plants they are located in the cytosol and chloroplast. In protists, their location is not well established. In turn, the sulfur assimilation pathway, which leads to cysteine biosynthesis, involves high and low affinity sulfate transporters, and the enzymes ATP sulfurylase, APS kinase, PAPS reductase or APS reductase, sulfite reductase, serine acetyl transferase, O-acetylserine/O-acetylhomoserine sulfhydrylase and, in some organisms, also cystathionine beta-synthase and cystathionine gamma-lyase. The biochemical and genetic regulation of these pathways is affected by oxidative stress, sulfur deficiency and heavy metal exposure. Cells cope with heavy metal stress using different mechanisms, such as complexation and compartmentation. One of these mechanisms in some yeast, plants and protists is the enhanced synthesis of the heavy metal-chelating molecules GSH and phytochelatins, which are formed from GSH by phytochelatin synthase (PCS) in a heavy metal-dependent reaction; Cd(2+) is the most potent activator of PCS. In this work, we review the biochemical and genetic mechanisms involved in the regulation of sulfate assimilation-reduction and GSH metabolism when yeast, plants and protists are challenged by Cd(2+).  相似文献   

12.
Phytochelatin (PC), a class of heavy metal-binding peptides, is synthesized from the tripeptide glutathione (GSH) and/or previously synthesized PC in a reaction mediated by PC synthase (PCS). In the present study, the PC production rate catalyzed by recombinant Arabidopsis PCS1 (rAtPCS1) in the presence of a constant free Cd(II) level increased steadily and the kinetic parameters were approximated using a substituted-enzyme mechanism in which GSH and bis(glutathionato)cadmium acted as co-substrates. In contrast, the PC production rate as a function of GSH concentration at a constant total Cd(II) concentration reached a maximum, which shifted toward higher GSH concentrations as the concentration of Cd(II) was increased. These observations are consistent with the suggestion that rAtPCS1 possesses a Cd(II) binding site where Cd(II) binds to activate the enzyme. The affinity constant, optimized using a one-site mathematical model, successfully simulated the experimental data for the assay system using lower concentrations of Cd(II) (5 or 10 μM) but not for the assay using higher concentrations (50 or 500 μM), where a sigmoidal increase in PCS activity was evident. Furthermore, the PCS activity determined at a constant GSH concentration as a function of Cd(II) concentration also reached a maximum. These findings demonstrate that rAtPCS1 also possesses a second Cd(II) binding site where Cd(II) binds to induce an inhibitory effect. A two-site mathematical model was applied successfully to account for the observed phenomena, supporting the suggestion that rAtPCS1 possesses two Cd(II) binding sites.  相似文献   

13.
The enzymatically synthesized thiol peptide phytochelatin (PC) plays a central role in heavy metal tolerance and detoxification in plants. In response to heavy metal exposure, the constitutively expressed phytochelatin synthase enzyme (PCS) is activated leading to synthesis of PCs in the cytosol. Recent attempts to increase plant metal accumulation and tolerance reported that PCS over-expression in transgenic plants paradoxically induced cadmium hypersensitivity. In the present paper, we investigate the possibility of synthesizing PCs in plastids by over-expressing a plastid targeted phytochelatin synthase (PCS). Plastids represent a relatively important cellular volume and offer the advantage of containing glutathione, the precursor of PC synthesis. Using a constitutive CaMV 35S promoter and a RbcS transit peptide, we successfully addressed AtPCS1 to chloroplasts, significant PCS activity being measured in this compartment in two independent transgenic lines. A substantial increase in the PC content and a decrease in the glutathione pool were observed in response to cadmium exposure, when compared to wild-type plants. While over-expressing AtPCS1 in the cytosol importantly decreased cadmium tolerance, both cadmium tolerance and accumulation of plants expressing plastidial AtPCS1 were not significantly affected compared to wild-type. Interestingly, targeting AtPCS1 to chloroplasts induced a marked sensitivity to arsenic while plants over-expressing AtPCS1 in the cytoplasm were more tolerant to this metalloid. These results are discussed in relation to heavy metal trafficking pathways in higher plants and to the interest of using plastid expression of PCS for biotechnological applications.  相似文献   

14.
Phytochelatin synthase (PCS), the key enzyme involved in heavy metal detoxification and accumulation has been used from various sources to develop transgenic plants for the purpose of phytoremediation. However, some of the earlier studies provided contradictory results. Most of the PCS genes were isolated from plants that are not potential metal accumulators. In this study, we have isolated PCS gene from Ceratophyllum demersum cv. L. (CdPCS1), a submerged rootless aquatic macrophyte, which is considered as potential accumulator of heavy metals. The CdPCS1 cDNA of 1,757?bp encodes a polypeptide of 501 amino acid residues and differs from other known PCS with respect to the presence of a number of cysteine residues known for their interaction with heavy metals. Complementation of cad1-3 mutant of Arabidopsis deficient in PC (phytochelatin) biosynthesis by CdPCS1 suggests its role in the synthesis of PCs. Transgenic tobacco plants expressing CdPCS1 showed several-fold increased PC content and precursor non-protein thiols with enhanced accumulation of cadmium (Cd) and arsenic (As) without significant decrease in plant growth. We conclude that CdPCS1 encodes functional PCS and may be part of metal detoxification mechanism of the heavy metal accumulating plant C. demersum. KEY MESSAGE: Heterologous expression of PCS gene from C. demersum complements Arabidopsis cad1-3 mutant and leads to enhanced accumulation of Cd and As in transgenic tobacco.  相似文献   

15.
Effect of cadmium on growth, antioxidative enzymes namely catalase, peroxidase, glutathione reductase, level of glutathione and phytochelatin synthesis was investigated in callus and seedlings of Cuscuta reflexa. A time, concentration and tissue dependent response of Cd was observed. Cd inhibited the growth of callus and seedlings by 50% at 300 and 500 micromol/L concentrations, respectively. Shorter exposure of low concentration of Cd led to augmentation of antioxidant activity, both in callus and seedlings, while longer exposure and high concentration of Cd led to a concentration dependent decrease in callus. Analysis of phytochelatin (PC) synthesis in callus and seedlings of C. reflexa revealed both quantitative and qualitative changes. Cd at low concentrations led to synthesis of predominantly PC4, while at higher concentrations, PC3 was the major form being synthesized. Amelioration of antioxidative systems of C. reflexa in response to Cd stress might be playing a protective role, alleviating the damaging effects of ROS, generated during Cd stress. Concomitantly, chelation and sequestering of toxic Cd ions in this parasite was mediated by synthesis of PC. The response to Cd stress shown by this holoparasitic plant was found to be similar to those of non-parasitic plants (hosts).  相似文献   

16.
Cadmium (Cd(2+)) is one of well-known toxic heavy metal ions. To gain a global understanding how Cd(2+) affects cells at the molecular level, we systematically studied the cellular response of the fission yeast Schizosaccharomyces pombe to Cd(2+) using our integrated proteomic strategy of amino acid-coded mass tagging (AACT) and liquid chromatography-tandem mass spectrometry. Our proteome-wide investigation unequivocally identified 1133 S. pombe proteins. Of which, the AACT-based quantitative analysis revealed 106 up-regulated and 55 down-regulated proteins on the Cd(2+) exposure. The most prevalent functional class in the up-regulated proteins, approximately 28% of our profile, was the proteins involved in protein biosynthesis, showing a time-dependent biphasic expression pattern characteristic with rapid initial induction and later repression. Most significantly, 27 proteins functionally classified as cell rescue and defense were up-regulated for oxygen and radical detoxification, heat shock response, and other stress response. Furthermore, the large precursor sequence coverage of our AACT approach allowed us to unequivocally identify and quantitate different isozymes for glutathione S-transferase, which have close similarity in their amino acid sequence. Our quantitative dataset also showed that 80% of the up-regulated proteins found in the S. pombe response were different from those in the Saccharomyces cerevisiae response. The function of some of the key identifications was validated through biochemical assays. It is very interesting that the induction of cysteine synthase expression was not observed in our study, although it has been proven as a critical enzyme to supply free cysteines for the enhancing synthesis of Cd(2+)-sequestering molecules such as glutathione and phytochelatins in plants and some yeasts. Our quantitative proteomic result instead suggested that, as an alternative mechanism for the detoxification of Cd(2+), S. pombe produced significantly higher level of inorganic sulfide to immobilize cellular Cd(2+) as a form of CdS nanocrystallites capped with glutathione and/or phytochelatins.  相似文献   

17.
The effects of cadmium stress (0, 25, 50, 75, and 100 mg/L) on morpho-physiological features and selected genes (carotenoid hydroxilase, amidase, GR, bHLH, NRAMP and YSL) expression were demonstrated in Arundo donax L. The plants were assessed for Cd uptake and its effects on chlorophyll and antioxidants after 30 days of exposure. The expression of genes conferring metal tolerance was evaluated after 10 days of Cd exposure. The results showed a maximum Cd uptake in roots (872 mg/kg) followed by stem (734 mg/kg) and leaves (298 mg/kg) at highest supplied Cd concentration. The Cd uptake reduced dry weight, Chla, Chlb, and total Chl contents of giant reed. The SOD, CAT, POD activities and MDA content increased at the maximum Cd concentration over control. The highest genes expression for carotenoid hydroxylase, glutathione reductase and amidase was observed in plants exposed to 100 mg/L. However, differential bHLH gene expression and slightly increased gene expression of NRAMP was noted for different Cd treatments. Amidase expressed under Cd stress which is pioneer report in A. donax. These results provided insights into the mechanisms of A. donax tolerance and survival under Cd Stress.  相似文献   

18.
植物镉忍耐的分子机理   总被引:10,自引:4,他引:10  
Cd是植物非必需的微量元素,对植物有很强的毒性.Cd抑制植物细胞生长,抑制氧化磷酸化,引发氧化胁迫,影响光合作用,损伤核仁和影响质膜ATP酶的活力.一些耐Cd植物通过诱导形成螯合肽、金属硫蛋白、植物应激蛋白等抵御Cd毒,也有的耐Cd植物则通过细胞壁固定、液泡分隔、腺体分泌等途径来抵御Cd毒.植物螯合肽合成酶(PCS)相关的一些基因已得到克隆.金属硫蛋白(MT)的克隆基因导入植物,使植物对Cd毒的抗性增加;植物胁迫蛋白可提高植物对Cd毒的抗性,Zn转运蛋白可运转Cd.修饰基因则通过影响主要基因提高植物对Cd的忍耐能力.野生型植物耐Cd毒是多基因控制的,而植物短期的Cd忍耐,则仅受一个或少数基因控制.  相似文献   

19.
Strid  ke 《Plant & cell physiology》1993,34(6):949-953
Alterations in the amounts of mRNA for different types of defencegenes after exposure of peas to supplementary ultraviolet-Bradiation are demonstrated. The expression of the genes whichencode the chalcone synthase of the flavonoid biosynthetic pathwayand glutathione reductase was induced, while a decrease wasfound for the chloroplastic radical-scavenging enzyme, superoxidedismutase. (Received March 22, 1993; Accepted May 31, 1993)  相似文献   

20.
We expressed the Arabidopsis thaliana gene for phytochelatin synthase (PCS(At)) in Mesorhizobium huakuii subsp. rengei B3, a microsymbiont of Astragalus sinicus, a legume used as manure. The PCS(At) gene was expressed under the control of the nifH promoter, which regulates the nodule-specific expression of the nifH gene. The expression of the PCS(At) gene was demonstrated in free-living cells under low-oxygen conditions. Phytochelatin synthase (PCS) was expressed and catalyzed the synthesis of phytochelatins [(gamma-Glu-Cys)(n)-Gly; PCs] in strain B3. A range of PCs, with values of n from 2 to 7, was synthesized by cells that expressed the PCS(At) gene, whereas no PCs were found in control cells that harbored the empty plasmid. The presence of CdCl(2) activated PCS and induced the synthesis of substantial amounts of PCs. Cells that contained PCs accumulated 36 nmol of Cd(2+)/mg (dry weight) of cells. The expression of the PCS(At) gene in M. huakuii subsp. rengei B3 increased the ability of cells to bind Cd(2+) approximately 9- to 19-fold. The PCS protein was detected by immunostaining bacteroids of mature nodules of A. sinicus containing the PCS(At) gene. When recombinant M. huakuii subsp. rengei B3 established the symbiotic relationship with A. sinicus, the symbionts increased Cd(2+) accumulation in nodules 1.5-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号