首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene encoding lipoamide dehydrogenase from Azotobacter vinelandii has been cloned in Escherichia coli. Fragments of 9-23 kb from Azotobacter vinelandii chromosomal DNA obtained by partial digestion with Sau3A were ligated into the BamHI site of plasmid pUC9. E. coli TG2 cells were transformed with the resulting recombinant plasmids. Screening for clones which produced A. vinelandii lipoamide dehydrogenase was performed with antibodies raised against the purified enzyme. A positive colony was found which produced complete chains of lipoamide dehydrogenase as concluded form SDS gel electrophoresis of the cell-free extract, stained for protein or used for Western blotting. After subcloning of the 14.7-kb insert of this plasmid the structural gene could be located on a 3.2-kb DNA fragment. The nucleotide sequence of this subcloned fragment (3134 bp) has been determined. The protein-coding sequence of the gene consists of 1434 bp (478 codons, including the AUG start codon and the UAA stop codon). It is preceded by an intracistronic region of 85 bp and the structural gene for succinyltransferase. A putative ribosome-binding site and promoter sequence are given. The derived amino acid composition is in excellent agreement with that previously published for the isolated enzyme. The predicted relative molecular mass is 50223, including the FAD. The overall homology with the E. coli enzyme is high with 40% conserved amino acid residues. From a comparison with the three-dimensional structure of the related enzyme glutathione reductase [Rice, D. W., Schultz, G. E. & Guest, J. R. (1984) J. Mol. Biol. 174, 483-496], it appears that essential residues in all four domains have been conserved. The enzyme is strongly expressed, although expression does not depend on the vector-encoded lacZ promoter. The cloned enzyme is, in all the respects tested, identical with the native enzyme.  相似文献   

2.
Short-chain dehydrogenase/reductase homologues from Escherichia coli (YdfG) and Saccharomyces cerevisiae (YMR226C) show high sequence similarity to serine dehydrogenase from Agrobacterium tumefaciens. We cloned each gene encoding YdfG and YMR226C into E. coli JM109 and purified them to homogeneity from the E. coli clones. YdfG and YMR226C consist of four identical subunits with a molecular mass of 27 and 29 kDa, respectively. Both enzymes require NADP(+) as a coenzyme and use L-serine as a substrate. Both enzymes show maximum activity at about pH 8.5 for the oxidation of L-serine. They also catalyze the oxidation of D-serine, L-allo-threonine, D-threonine, 3-hydroxyisobutyrate, and 3-hydroxybutyrate. The k(cat)/K(m) values of YdfG for L-serine, D-serine, L-allo-threonine, D-threonine, L-3-hydroxyisobutyrate, and D-3-hydroxyisobutyrate are 105, 29, 199, 109, 67, and 62 M(-1) s(-1), and those of YMR226C are 116, 110, 14600, 7540, 558, and 151 M(-1) s(-1), respectively. Thus, YdfG and YMR226C are NADP(+)-dependent dehydrogenases acting on 3-hydroxy acids with a three- or four-carbon chain, and L-allo-threonine is the best substrate for both enzymes.  相似文献   

3.
A psychrophilic bacterium, Cytophaga sp. strain KUC-1, that abundantly produces a NAD(+)-dependent L-threonine dehydrogenase was isolated from Antarctic seawater, and the enzyme was purified. The molecular weight of the enzyme was estimated to be 139,000, and that of the subunit was determined to be 35,000. The enzyme is a homotetramer. Atomic absorption analysis showed that the enzyme contains no metals. In these respects, the Cytophaga enzyme is distinct from other L-threonine dehydrogenases that have thus far been studied. L-Threonine and DL-threo-3-hydroxynorvaline were the substrates, and NAD(+) and some of its analogs served as coenzymes. The enzyme showed maximum activity at pH 9.5 and at 45 degrees C. The kinetic parameters of the enzyme are highly influenced by temperatures. The K(m) for L-threonine was lowest at 20 degrees C. Dead-end inhibition studies with pyruvate and adenosine-5'-diphosphoribose showed that the enzyme reaction proceeds via the ordered Bi Bi mechanism in which NAD(+) binds to an enzyme prior to L-threonine and 2-amino-3-oxobutyrate is released from the enzyme prior to NADH. The enzyme gene was cloned into Escherichia coli, and its nucleotides were sequenced. The enzyme gene contains an open reading frame of 939 bp encoding a protein of 312 amino acid residues. The amino acid sequence of the enzyme showed a significant similarity to that of UDP-glucose 4-epimerase from Staphylococcus aureus and belongs to the short-chain dehydrogenase-reductase superfamily. In contrast, L-threonine dehydrogenase from E. coli belongs to the medium-chain alcohol dehydrogenase family, and its amino acid sequence is not at all similar to that of the Cytophaga enzyme. L-Threonine dehydrogenase is significantly similar to an epimerase, which was shown for the first time. The amino acid residues playing an important role in the catalysis of the E. coli and human UDP-glucose 4-epimerases are highly conserved in the Cytophaga enzyme, except for the residues participating in the substrate binding.  相似文献   

4.
The structural gene for NADP+-dependent serine dehydrogenase [EC 1.1.1.-] from Agrobacterium tumefaciens ICR 1600 was cloned into Escherichia coli cells and its complete DNA sequence was analyzed. The gene encodes a polypeptide containing 249 amino acid residues. The enzyme had high sequence similarity to short-chain alcohol dehydrogenases from bacteria and unknown proteins of Haemophilus influenzae, Escherichia coli, and Saccharomyces cerevisiae.  相似文献   

5.
6.
We studied the physiology of cells of Klebsiella aerogenes containing the structural gene for glutamine synthetase (glnA) of Escherichia coli on an episome. The E. coli glutamine synthetase functioned in cells of K. aerogenes in a manner similar to that of the K. aerogenes enzyme: it allowed the level of histidase to increase and that of glutamate dehydrogenase to decrease during nitrogen-limited growth. The phenotype of mutations in the glnA site was restored to normal by the introduction of the episomal glnA+ gene. These results are consistent with the hypothesis that glutamine synthetase regulates the function of its own structural gene.  相似文献   

7.
The β-hydroxyacid dehydrogenases are a structurally conserved family of enzymes that catalyze the NAD+ or NADP+-dependent oxidation of specific β-hydroxyacid substrates like β-hydroxyisobutyrate. These enzymes share distinct domains of amino acid sequence homology, most of which now have assigned putative functions. 6-phosphogluconate dehydrogenase and β-hydroxyisobutyrate dehydrogenase, the most well-characterized members, both appear to be readily inactivated by chemical modifiers of lysine residues, such as 2,4,6-trinitrobenzene sulfonate (TNBS). Peptide mapping by ESI-LCMS showed that inactivation of β-hydroxyisobutyrate dehydrogenase with TNBS occurs with the labeling of a single lysine residue, K248. This lysine residue is completely conserved in all family members and may have structural importance relating to cofactor binding. The structural framework of the β-hydroxyacid dehydrogenase family is shared by many bacterial homologues. One such homologue from E. coli has been cloned and expressed as recombinant protein. This protein was found to have enzymatic activity characteristic of tartronate semialdehyde reductase, an enzyme required for bacterial biosynthesis of d-glycerate. A homologue from H. influenzae was also cloned and expressed as recombinant protein. This protein was active in the oxidation of d-glycerate, but showed approximately ten-fold higher activity with four carbon substrates like β-d-hydroxybutyrate and d-threonine. This enzyme might function in H. influenzae, and other species, in the utilization of polyhydroxybutyrates, an energy storage form specific to bacteria. Cloning and characterization of these bacterial β-hydroxyacid dehydrogenases extends our knowledge of this enzyme family.  相似文献   

8.
Mammalian tissues contain protein carboxyl methyltransferases that catalyze the transfer of methyl groups from S-adenosylmethionine to the free carboxyl groups of D-aspartyl or L-isoaspartyl residues (EC 2.1.1.77). These enzymes have been postulated to play a role in the repair and/or degradation of spontaneously damaged proteins. We have now characterized a similar activity from Escherichia coli that recognizes L-isoaspartyl-containing peptides as well as protein substrates such as ovalbumin. The enzyme was purified by DEAE-cellulose, hydroxylapatite, Sephadex G-100, polyaspartate, and reversed-phase chromatography and was shown to consist of a single 24-kDa polypeptide chain. The sequence determined for the N-terminal 39 residues was used to design an oligonucleotide probe that allowed the precise localization of its structural gene (pcm) on the physical map of the E. coli chromosome at 59 min. Transformation of E. coli cells with a plasmid containing DNA from this region results in a 3-4-fold overproduction of enzyme activity. The nucleotide sequence determined for the pcm gene and its flanking regions was used to deduce a mature amino acid sequence of 207 residues with a calculated molecular weight of 23,128. This sequence shows 30.8% sequence identity with the human L-isoaspartyl/D-aspartyl methyltransferase and suggests that this enzyme catalyzes a fundamental reaction in both procaryotic and eucaryotic cells.  相似文献   

9.
The gene encoding D-lactate dehydrogenase (D-lactate: NAD+ oxidoreductase, EC 1.1.1.28) of Lactobacillus plantarum has been sequenced, and expressed in Escherichia coli cells with an inducible expression plasmid, in which the 5'-noncoding region of the gene was replaced with the tac promoter. Comparison of the sequence of D-lactate dehydrogenase with L-lactate dehydrogenases, including the L. plantarum L-lactate dehydrogenase, showed no significant homology. In contrast, the D-lactate dehydrogenase is homologous to E. coli D-3-phosphoglycerate dehydrogenase and Lactobacillus casei D-2-hydroxyisocaproate dehydrogenase. This indicates that D-lactate dehydrogenase is a member of a new family of 2-hydroxyacid dehydrogenases recently proposed, being distinct from L-lactate dehydrogenase and L-malate dehydrogenase, and strongly suggests that the new family consists of D-isomer-stereospecific enzymes. In the reductive reaction, the enzyme showed a broad substrate specificity, although pyruvate was the most favorable of all 2-ketocarboxylic acids tested. In particular, hydroxypyruvate is effectively reduced by the enzyme, the reaction rate, and Km value being comparable to those in the case of pyruvate, indicating that the enzyme has not only D-lactate dehydrogenase activity but also D-glycerate dehydrogenase activity. The conserved residues in this family appear to be the residues involved in the substrate binding and the catalytic reaction, and thus to be targets for site-directed mutagenesis.  相似文献   

10.
The gene encoding the thermostable phenylalanine dehydrogenase [EC 1.4.1.-] of a thermophile, Thermoactinomyces intermedius, was cloned and its complete DNA sequence was determined. The phenylalanine dehydrogenase gene (pdh) consists of 1,098 nucleotides and encodes 366 amino acid residues corresponding to the subunit (Mr 41,000) of the hexameric enzyme. The amino acid sequence deduced from the nucleotide sequence of the pdh gene of T. intermedius was 56.0 and 42.1% homologous to those of the phenylalanine dehydrogenases of Bacillus sphaericus and Sporosarcina ureae, respectively. It shows 47.5% homology to that of the thermostable leucine dehydrogenase from B. stearothermophilus. The pdh gene was highly expressed in E. coli JM109, the amount of phenylalanine dehydrogenase produced amounting up to about 8.3% of that of the total soluble protein. We purified the enzyme to homogeneity from transformant cells in a day, with a 58% recovery.  相似文献   

11.
The gene encoding the dihydrolipoyltransacetylase component (E2) of the pyruvate dehydrogenase complex from Azotobacter vinelandii has been cloned in Escherichia coli. A plasmid containing a 2.8-kbp insert of A. vinelandii chromosomal DNA was obtained and its nucleotide sequence determined. The gene comprises 1911 base pairs, 637 codons excluding the initiation codon GUG and stop codon UGA. It is preceded by the gene encoding the pyruvate dehydrogenase component (E1) of pyruvate dehydrogenase complex and by an intercistronic region of 11 base pairs containing a good ribosome binding site. The gene is followed downstream by a strong terminating sequence. The relative molecular mass (64913), amino acid composition and N-terminal sequence are in good agreement with information obtained from studies on the purified enzyme. Approximately the first half of the gene codes for the lipoyl domain. Three very homologous sequences are present, which are translated in three almost identical units, alternated with non-homologous regions which are very rich in alanyl and prolyl residues. The N-terminus of the catalytic domain is sited at residue 381. Between the lipoyl domain and the catalytic domain, a region of about 50 residues is found containing many charged amino acid residues. This region is characterized as a hinge region and is involved in the binding of the pyruvate dehydrogenase and lipoamide dehydrogenase components. The homology with the dihydrolipoyltransacetylase from E. coli is high: 50% amino acid residues are identical.  相似文献   

12.
d-Threonine dehydrogenase (EC 1.1.1) catalyses the oxidation of the 3-hydroxyl group of d-threonine. The nucleotide sequence of the structural gene, dtdS, for this enzyme from Pseudomonas cruciviae IFO 12047 was determined. The dtdS gene encodes a 292 amino acid polypeptide. The enzyme was overproduced in Escherichia coli cells; the activity was found in cell extracts of the clone. The enzyme showed high sequence similarity to 3-hydroxyisobutyrate dehydrogenases. This is the first example showing the primary structure of an enzyme catalysing the NADP+-dependent dehydrogenation of d-threo-3-hydroxyamino acids.  相似文献   

13.
The gene for leucine dehydrogenase (EC 1.4.1.9) from Bacillus stearothermophilus was cloned and expressed in Escherichia coli. The selection for the cloned gene was based upon activity staining of the replica printed E. coli cells. A transformant showing high leucine dehydrogenase activity was found to carry an about 9 kilobase pair plasmid, which contained 4.6 kilobase pairs of B. stearothermophilus DNA. The nucleotide sequence including the 1287 base pair coding region of the leucine dehydrogenase gene was determined by the dideoxy chain termination method. The translated amino acid sequence was confirmed by automated Edman degradation of several peptide fragments produced from the purified enzyme by trypsin digestion. The polypeptide contained 429 amino acid residues corresponding to the subunit (Mr 49,000) of the hexameric enzyme. Comparison of the amino acid sequence of leucine dehydrogenase with those of other pyridine nucleotide dependent oxidoreductases registered in a protein data bank revealed significant sequence similarity, particularly between leucine and glutamate dehydrogenases, in the regions containing the coenzyme binding domain and certain specific residues with catalytic importance.  相似文献   

14.
3-Hydroxyisobutyrate, a central metabolite in the valine catabolic pathway, is reversibly oxidized to methylmalonate semialdehyde by a specific dehydrogenase belonging to the 3-hydroxyacid dehydrogenase family. To gain insight into the function of this enzyme at the atomic level, we have determined the first crystal structures of the 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8: holo enzyme and sulfate ion complex. The crystal structures reveal a unique tetrameric oligomerization and a bound cofactor NADP+. This bacterial enzyme may adopt a novel cofactor-dependence on NADP, whereas NAD is preferred in eukaryotic enzymes. The protomer folds into two distinct domains with open/closed interdomain conformations. The cofactor NADP+ with syn nicotinamide and the sulfate ion are bound to distinct sites located at the interdomain cleft of the protomer through an induced-fit domain closure upon cofactor binding. From the structural comparison with the crystal structure of 6-phosphogluconate dehydrogenase, another member of the 3-hydroxyacid dehydrogenase family, it is suggested that the observed sulfate ion and the substrate 3-hydroxyisobutyrate share the same binding pocket. The observed oligomeric state might be important for the catalytic function through forming the active site involving two adjacent subunits, which seems to be conserved in the 3-hydroxyacid dehydrogenases. A kinetic study confirms that this enzyme has strict substrate specificity for 3-hydroxyisobutyrate and serine, but it cannot distinguish the chirality of the substrates. Lys165 is likely the catalytic residue of the enzyme.  相似文献   

15.
The primary structure of Escherichia coli L-threonine dehydrogenase   总被引:2,自引:0,他引:2  
The complete primary structures of Escherichia coli L-threonine dehydrogenase has been deduced by sequencing the cloned tdh gene. The primary structure so determined agrees with results obtained independently for the amino acid composition, the N-terminal amino acid sequence (20 residues), and a short sequence at the end of an internal peptide of the purified enzyme. The presence of a predicted Asp-Pro bond at residues 148 and 149 was confirmed by treatment of purified threonine dehydrogenase with dilute acid and subsequent analysis of the resulting cleavage products. The primary structure of L-threonine dehydrogenase from E. coli has been examined for possible homology to other NAD+-dependent dehydrogenases; indications are that this enzyme is a member of the zinc-containing long-chain alcohol/polyol dehydrogenase family.  相似文献   

16.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   

17.
We have isolated and characterized a gene, fdh, from Neurospora crassa which is developmentally regulated and which produces formate dehydrogenase activity when expressed in Escherichia coli. The gene is closely linked (less than 0.6 kb apart) to the leu-5 gene encoding mitochondrial leucyl-tRNA synthetase; the two genes are transcribed convergently from opposite strands. The expression patterns of these genes differ: fdh mRNA is found only during conidiation and early germination and is not detectable during mycelial growth, while leu-5 mRNA appears during germination and mycelial growth. The structure of the fdh gene was determined from the sequence of cDNA and genomic DNA clones and from mRNA mapping studies. The gene encodes a 375-amino-acid-long protein with sequence similarity to NAD-dependent dehydrogenases of the E. coli 3-phosphoglycerate dehydrogenase (serA gene product) subfamily. In particular, there is striking sequence similarity (52% identity) to formate dehydrogenase from Pseudomonas sp. strain 101. All of the residues thought to interact with NAD in the crystal structure of the Pseudomonas enzyme are conserved in the N. crassa enzyme. We have further shown that expression of the N. crassa gene in E. coli leads to the production of formate dehydrogenase activity, indicating that the N. crassa gene specifies a functional polypeptide.  相似文献   

18.
Lipoyl-lysine swinging arms are crucial to the reactions catalysed by the 2-oxo acid dehydrogenase multienzyme complexes. A gene encoding a putative lipoate protein ligase (LplA) of Thermoplasma acidophilum was cloned and expressed in Escherichia coli. The recombinant protein, a monomer of molecular mass 29 kDa, was catalytically inactive. Crystal structures in the absence and presence of bound lipoic acid were solved at 2.1 A resolution. The protein was found to fall into the alpha/beta class and to be structurally homologous to the catalytic domains of class II aminoacyl-tRNA synthases and biotin protein ligase, BirA. Lipoic acid in LplA was bound in the same position as biotin in BirA. The structure of the T.acidophilum LplA and limited proteolysis of E.coli LplA together highlighted some key features of the post-translational modification. A loop comprising residues 71-79 in the T.acidophilum ligase is proposed as interacting with the dithiolane ring of lipoic acid and discriminating against the entry of biotin. A second loop comprising residues 179-193 was disordered in the T.acidophilum structure; tryptic cleavage of the corresponding loop in the E.coli LplA under non-denaturing conditions rendered the enzyme catalytically inactive, emphasizing its importance. The putative LplA of T.acidophilum lacks a C-terminal domain found in its counterparts in E.coli (Gram-negative) or Streptococcus pneumoniae (Gram-positive). A gene encoding a protein that appears to have structural homology to the additional domain in the E.coli and S.pneumoniae enzymes was detected alongside the structural gene encoding the putative LplA in the T.acidophilum genome. It is likely that this protein is required to confer activity on the LplA as currently purified, one protein perhaps catalysing the formation of the obligatory lipoyl-AMP intermediate, and the other transferring the lipoyl group from it to the specific lysine residue in the target protein.  相似文献   

19.
The glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei (optimal growth temperature, 100 to 103 degrees C) was purified to homogeneity. This enzyme was strictly phosphate dependent, utilized either NAD+ or NADP+, and was insensitive to pentalenolactone like the enzyme from the methanogenic archaebacterium Methanothermus fervidus. The enzyme exhibited a considerable thermostability, with a 44-min half-life at 100 degrees C. The amino acid sequence of the glyceraldehyde-3-phosphate dehydrogenase from P. woesei was deduced from the nucleotide sequence of the coding gene. Compared with the enzyme homologs from mesophilic archaebacteria (Methanobacterium bryantii, Methanobacterium formicicum) and an extremely thermophilic archaebacterium (Methanothermus fervidus), the primary structure of the P. woesei enzyme exhibited a strikingly high proportion of aromatic amino acid residues and a low proportion of sulfur-containing residues. The coding gene of P. woesei was expressed at a high level in Escherichia coli, thus providing an ideal basis for detailed structural and functional studies of that enzyme.  相似文献   

20.
The gene encoding (6R)-2,2,6-trimethyl-1,4-cyclohexanedione (levodione) reductase was cloned from the genomic DNA of the soil isolate bacterium Corynebacterium aquaticum M-13. The gene contained an open reading frame consisting of 801 nucleotides corresponding to 267 amino acid residues. The deduced amino acid sequence showed approximately 35% identity with other short chain alcohol dehydrogenase/reductase (SDR) superfamily enzymes. The probable NADH-binding site and three catalytic residues (Ser-Tyr-Lys) were conserved. The enzyme was sufficiently produced in recombinant Escherichia coli cells using an expression vector pKK223-3, and purified to homogeneity by two-column chromatography steps. The enzyme purified from E. coli catalyzed stereo- and regio-selective reduction of levodione, and was strongly activated by monovalent cations, such as K+, Na+, and NH4+, as was the case of that from C. aquaticum M-13. To our knowledge, this is the first sequencing report of a monovalent cation-activated SDR enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号