首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal cells in culture display a limited capacity to divide and reach a non-proliferative state called cellular senescence. Spontaneous escape from senescence resulting in an indefinite life span is an exceptionally rare event for normal human cells and viral oncoproteins have been shown to extend the replicative life span but not to immortalize them. Telomere shortening has been proposed as a mitotic clock that regulates cellular senescence. Telomerase is capable of synthesizing telomere repeats onto chromosome ends to block telomere shortening and to maintain human fibroblasts in proliferation beyond their usual life span. However, the consequence of telomerase expression on the life span of human myoblasts and on their differentiation is unknown. In this study, the telomerase gene and the puromycin resistance gene were introduced into human satellite cells, which are the natural muscle precursors (myoblasts) in the adult and therefore, a target for cell-mediated gene therapy. Satellite cells expressing telomerase were selected, and the effects of the expression of the telomerase gene on proliferation, telomere length, and differentiation were investigated. Our results show that the telomerase-expressing cells are able to differentiate and to form multinucleated myotubes expressing mature muscle markers and do not form tumors in vivo. We also demonstrated that the expression of hTERT can extend the replicative life of muscle cells although these failed to undergo immortalization.  相似文献   

2.
Cultured human myoblasts fail to immortalize following the introduction of telomerase. The availability of an immortalization protocol for normal human myoblasts would allow one to isolate cellular models from various neuromuscular diseases, thus opening the possibility to develop and test novel therapeutic strategies. The parameters limiting the efficacy of myoblast transfer therapy (MTT) could be assessed in such models. Finally, the presence of an unlimited number of cell divisions, and thus the ability to clone cells after experimental manipulations, reduces the risks of insertional mutagenesis by many orders of magnitude. This opportunity for genetic modification provides an approach for creating a universal donor that has been altered to be more therapeutically useful than its normal counterpart. It can be engineered to function under conditions of chronic damage (which are very different than the massive regeneration conditions that recapitulate normal development), and to overcome the biological problems such as cell death and failure to proliferate and migrate that limit current MTT strategies. We describe here the production and characterization of a human myogenic cell line, LHCN-M2, that has overcome replicative aging due to the expression of telomerase and cyclin-dependent kinase 4. We demonstrate that it functions as well as young myoblasts in xenotransplant experiments in immunocompromized mice under conditions of regeneration following muscle damage.  相似文献   

3.
Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate.  相似文献   

4.
A major obstacle to the immortalization of primary human cells and the establishment of human cell lines is telomere-controlled senescence. Telomere-controlled senescence is caused by the shortening of telomeres that occurs each time somatic human cells divide. The enzyme telomerase can prevent the erosion of telomeres and block the onset of telomere-controlled senescence, but its expression is restricted to the early stages of embryonic development, and in the adult, to rare cells of the blood, skin and digestive track. However, we and others have shown that the transfer of an exogenous hTERT cDNA, encoding the catalytic subunit of human telomerase, can be used to prevent telomere shortening, overcome telomere-controlled senescence, and immortalize primary human cells. Most importantly, hTERT alone can immortalize cells without causing cancer-associated changes or altering phenotypic properties. Primary human cells that have so far been established by the forced expression of hTERT alone include fibroblasts, retinal pigmented epithelial cells, endothelial cells, oesophageal squamous cells, mammary epithelial cells, keratinocytes, osteoblasts, and Nestin-positive cells of the pancreas. In this article, we discuss the use of hTERT to immortalize of human cells, the properties of hTERT-immortalized cells, and their applications to cancer research and tissue engineering.  相似文献   

5.
《The Journal of cell biology》1994,125(6):1275-1287
The transplantation of cultured myoblasts into mature skeletal muscle is the basis for a new therapeutic approach to muscle and non-muscle diseases: myoblast-mediated gene therapy. The success of myoblast transplantation for correction of intrinsic muscle defects depends on the fusion of implanted cells with host myofibers. Previous studies in mice have been problematic because they have involved transplantation of established myogenic cell lines or primary muscle cultures. Both of these cell populations have disadvantages: myogenic cell lines are tumorigenic, and primary cultures contain a substantial percentage of non-myogenic cells which will not fuse to host fibers. Furthermore, for both cell populations, immune suppression of the host has been necessary for long-term retention of transplanted cells. To overcome these difficulties, we developed novel culture conditions that permit the purification of mouse myoblasts from primary cultures. Both enriched and clonal populations of primary myoblasts were characterized in assays of cell proliferation and differentiation. Primary myoblasts were dependent on added bFGF for growth and retained the ability to differentiate even after 30 population doublings. The fate of the pure myoblast populations after transplantation was monitored by labeling the cells with the marker enzyme beta-galactosidase (beta-gal) using retroviral mediated gene transfer. Within five days of transplantation into muscle of mature mice, primary myoblasts had fused with host muscle cells to form hybrid myofibers. To examine the immunobiology of primary myoblasts, we compared transplanted cells in syngeneic and allogeneic hosts. Even without immune suppression, the hybrid fibers persisted with continued beta-gal expression up to six months after myoblast transplantation in syngeneic hosts. In allogeneic hosts, the implanted cells were completely eliminated within three weeks. To assess tumorigenicity, primary myoblasts and myoblasts from the C2 myogenic cell line were transplanted into immunodeficient mice. Only C2 myoblasts formed tumors. The ease of isolation, growth, and transfection of primary mouse myoblasts under the conditions described here expand the opportunities to study muscle cell growth and differentiation using myoblasts from normal as well as mutant strains of mice. The properties of these cells after transplantation--the stability of resulting hybrid myofibers without immune suppression, the persistence of transgene expression, and the lack of tumorigenicity-- suggest that studies of cell-mediated gene therapy using primary myoblasts can now be broadly applied to mouse models of human muscle and non-muscle diseases.  相似文献   

6.
A general feature of stem cells is the ability to routinely proliferate to build, maintain, and repair organ systems. Accordingly, embryonic and germline, as well as some adult stem cells, produce the telomerase enzyme at various levels of expression. Our results show that, while muscle is a largely postmitotic tissue, the muscle stem cells (satellite cells) that maintain this biological system throughout adult life do indeed display robust telomerase activity. Conversely, primary myoblasts (the immediate progeny of satellite cells) quickly and dramatically downregulate telomerase activity. This work thus suggests that satellite cells, and early transient myoblasts, may be more promising therapeutic candidates for regenerative medicine than traditionally utilized myoblast cultures. Muscle atrophy accompanies human aging, and satellite cells endogenous to aged muscle can be triggered to regenerate old tissue by exogenous molecular cues. Therefore, we also examined whether these aged muscle stem cells would produce tissue that is “young” with respect to telomere maintenance. Interestingly, this work shows that the telomerase activity in muscle stem cells is largely retained into old age wintin inbred “long” telomere mice and in wild‐derived short telomere mouse strains, and that age‐specific telomere shortening is undetectable in the old differentiated muscle fibers of either strain. Summarily, this work establishes that young and old muscle stem cells, but not necessarily their progeny, myoblasts, are likely to produce tissue with normal telomere maintenance when used in molecular and regenerative medicine approaches for tissue repair. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

7.
Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i) myoblast survival by limiting their massive death, ii) myoblast expansion within the tissue and iii) myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.  相似文献   

8.
Like most somatic human cells, T lymphocytes have a limited replicative life span. This phenomenon, called senescence, presents a serious barrier to clinical applications that require large numbers of Ag-specific T cells such as adoptive transfer therapy. Ectopic expression of hTERT, the human catalytic subunit of the enzyme telomerase, permits fibroblasts and endothelial cells to avoid senescence and to become immortal. In an attempt to immortalize normal human CD8(+) T lymphocytes, we infected bulk cultures or clones of these cells with a retrovirus transducing an hTERT cDNA clone. More than 90% of transduced cells expressed the transgene, and the cell populations contained high levels of telomerase activity. Measuring the content of total telomere repeats in individual cells (by flowFISH) we found that ectopic hTERT expression reversed the gradual loss of telomeric DNA observed in control populations during long term culture. Telomere length in transduced cells reached the levels observed in freshly isolated normal CD8(+) lymphocytes. Nevertheless, all hTERT-transduced populations stopped to divide at the same time as nontransduced or vector-transduced control cells. When kept in IL-2 the arrested cells remained alive. Our results indicate that hTERT may be required but is not sufficient to immortalize human T lymphocytes.  相似文献   

9.
Hexose transport in human myoblasts.   总被引:1,自引:0,他引:1       下载免费PDF全文
The present investigation reports on the hexose transport properties of human myoblasts isolated from normal subjects and from patients with Duchenne muscular dystrophy (DMD). Similar to rat myoblast L6, normal human myoblasts possess a high- (HAHT) and a low- (LAHT) affinity hexose transport system. The non-metabolizable hexose analogue, 2-deoxyglucose, is preferentially taken up by HAHT. The transport of this analogue is the rate-limiting step in the uptake process. This human myoblast HAHT is also similar to that of the rat myoblast in its substrate specificity and in response to the energy uncouplers, cytochalasin B and phloretin. The human myoblast LAHT resembles that of rat myoblast in its insensitivity to energy uncouplers, and in its transport affinity and capacity for 3-O-methyl-D-glucose. Although DMD myoblasts resemble their normal counterpart in their ability to differentiate, they differ significantly in their hexose transport properties. In addition to HAHT and LAHT present in normal human myoblast, DMD myoblasts contain a super-high-affinity hexose transport system (SHAHT). SHAHT can be detected only at very low substrate concentrations. It differs from HAHT not only in its much higher transport affinity, but also in its response to the traditional hexose transport inhibitors. For example, SHAHT can be activated by cytochalasin B and phlorizin, whereas it is more sensitive to inhibition by phloretin. Unlike HAHT, energy uncouplers are found to be ineffective in inhibiting SHAHT. It should be mentioned that SHAHT cannot be detected in myoblasts isolated from patients with other types of myopathy. The present study serves to demonstrate that more than one hexose transport system is operating in human skeletal muscle cells, as found in other cell types.  相似文献   

10.
Myoblast transplantation has been extensively studied as a gene complementation approach for genetic diseases such as Duchenne Muscular Dystrophy. This approach has been found capable of delivering dystrophin, the product missing in Duchenne Muscular Dystrophy muscle, and leading to an increase of strength in the dystrophic muscle. This approach, however, has been hindered by numerous limitations, including immunological problems, and low spread and poor survival of the injected myoblasts. We have investigated whether antiinflammatory treatment and use of different populations of skeletal muscle–derived cells may circumvent the poor survival of the injected myoblasts after implantation. We have observed that different populations of muscle-derived cells can be isolated from skeletal muscle based on their desmin immunoreactivity and differentiation capacity. Moreover, these cells acted differently when injected into muscle: 95% of the injected cells in some populations died within 48 h, while others richer in desmin-positive cells survived entirely. Since pure myoblasts obtained from isolated myofibers and myoblast cell lines also displayed a poor survival rate of the injected cells, we have concluded that the differential survival of the populations of muscle-derived cells is not only attributable to their content in desmin-positive cells. We have observed that the origin of the myogenic cells may influence their survival in the injected muscle. Finally, we have observed that myoblasts genetically engineered to express an inhibitor of the inflammatory cytokine, IL-1, can improve the survival rate of the injected myoblasts. Our results suggest that selection of specific muscle-derived cell populations or the control of inflammation can be used as an approach to improve cell survival after both myoblast transplantation and the myoblast-mediated ex vivo gene transfer approach.  相似文献   

11.
An initiating role for RAS oncogene mutation in several epithelial cancers is supported by its high incidence in early-stage tumors and its ability to induce proliferation in the corresponding normal cells in vitro. Using retroviral transduction of thyroid epithelial cells as a model we ask here: (i) how mutant RAS can induce long-term proliferation in an epithelial cell in contrast to the premature senescence observed in fibroblasts; and (ii) what is the "clock" which eventually triggers spontaneous growth arrest even in epithelial clones generated by mutant RAS. The early response to RAS activation in thyroid epithelial cells showed two features not seen in fibroblasts: (i) a marked decrease in expression of the cyclin-dependent kinase inhibitor (CDKI) p27(kip1) and (ii) the absence of any induction of p21(waf1). When proliferation eventually ceased (after up to 20 population doublings) this occurred despite undiminished expression of mutant RAS and was tightly correlated with a return to the initial high level of p27(kip1) expression, together with the de novo appearance of p16(ink4a). Importantly, neither the CDKI changes nor the proliferative life span of RAS-induced epithelial clones was altered by induction of telomerase activity through forced expression of the catalytic subunit, hTERT, at levels sufficient to immortalize human fibroblasts. These data provide a basis for cell-type differences in sensitivity to RAS-induced proliferation which may explain the corresponding tumor-type specificity of RAS mutation. They also show for the first time in a primary human cell model that a telomere-independent mechanism can limit not only physiological but also oncogene-driven proliferation, pointing therefore to a tumour suppressor mechanism additional, or alternative, to the telomere clock.  相似文献   

12.
Life span determination in normal human cells may be regulated by nucleoprotein structures called telomeres, the physical ends of eukaryotic chromosomes. Telomeres have been shown to be essential for chromosome stability and function and to shorten with each cell division in normal human cells in culture and with age in vivo. Reversal of telomere shortening by the forced expression of telomerase in normal cells has been shown to elongate telomeres and extend the replicative life span (H. Vaziri and S. Benchimol, Curr. Biol. 8:279-282, 1998; A. G. Bodnar et al., Science 279:349-352, 1998). Extension of the life span as a consequence of the functional inactivation of p53 is frequently associated with loss of genomic stability. Analysis of telomerase-induced extended-life-span fibroblast (TIELF) cells by G banding and spectral karyotyping indicated that forced extension of the life span by telomerase led to the transient formation of aberrant structures, which were subsequently resolved in higher passages. However, the p53-dependent G1 checkpoint was intact as assessed by functional activation of p53 protein in response to ionizing radiation and subsequent p53-mediated induction of p21(Waf1/Cip1/Sdi1). TIELF cells were not tumorigenic and had a normal DNA strand break rejoining activity and normal radiosensitivity in response to ionizing radiation.  相似文献   

13.
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disease characterized by progressive muscle weakness caused by the lack of dystrophin expression at the sarcolemma of muscle fibers. Although various approaches to delivering dystrophin in dystrophic muscle have been investigated extensively (e.g., cell and gene therapy), there is still no treatment that alleviates the muscle weakness in this common inherited muscle disease. The transplantation of myoblasts can enable transient delivery of dystrophin and improve the strength of injected dystrophic muscle, but this approach has various limitations, including immune rejection, poor cellular survival rates, and the limited spread of the injected cells. The isolation of muscle cells that can overcome these limitations would enhance the success of myoblast transplantation significantly. The efficiency of cell transplantation might be improved through the use of stem cells, which display unique features, including (1) self-renewal with production of progeny, (2) appearance early in development and persistence throughout life, and (3) long-term proliferation and multipotency. For these reasons, the development of muscle stem cells for use in transplantation or gene transfer (ex vivo approach) as treatment for patients with muscle disorders has become more attractive in the past few years. In this paper, we review the current knowledge regarding the isolation and characterization of stem cells isolated from skeletal muscle by highlighting their biological features and their relationship to satellite cells as well as other populations of stem cells derived from other tissues. We also describe the remarkable ability of stem cells to regenerate skeletal muscle and their potential use to alleviate the muscle weakness associated with DMD.  相似文献   

14.
15.
Myoblast transplantation (MT) is a potential therapeutic approach for several muscular dystrophies. A major limiting factor is that only a low percentage of the transplanted myoblasts survives the procedure. Recent advances regarding how and when the myoblasts die indicate that events preceding actual tissue implantation and during the first days after the transplantation are crucial. Myoseverin, a recently identified tri-substituted purine, was shown to induce in vitro the fission of multinucleated myotubes and affect the expression of a variety of growth factors, and immunomodulation, extracellular matrix-remodeling, and stress response genes. Since the effects of myoseverin are consistent with the activation of pathways involved in wound healing and tissue regeneration, we have investigated whether pretreatment and co-injection of myoblasts with Tubulyzine (microtubule lysing triazine), an optimized myoseverin-like molecule recently identified from a triazine library, could reduce myoblast cell death following their transplantation and consequently improves the success of myoblast transplantation. In vitro, using annexin-V labeling, we showed that Tubulyzine (5 microM) prevents normal myoblasts from apoptosis induced by staurosporine (1 microM). In vivo, the pretreatment and co-injection of immortal and normal myoblasts with Tubulyzine reduced significantly cell death (assessed by the radio-labeled thymidine of donor DNA) and increased survival of myoblasts transplanted in Tibialis anterior (TA) muscles of mdx mice, thus giving rise to more hybrid myofibers compared to transplanted untreated cells. Our results suggest that Tubulyzine can be used as an in vivo survival factor to improve the myoblast-mediated gene transfer approach.  相似文献   

16.
The NK-susceptibility of dystrophic mouse myoblast cells was investigated. Spleen cells from 8- to 10-week-old normal (+/+) and dystrophic (dy2J/dy2J) male C57BL/6J mice were fractionated on Percoll density gradients and the cells at each density interface were incubated with either 51Cr-labeled YAC-1 or myoblast cells in a 6 hr 51Cr-release assay. Myoblast target cells were obtained from either heterozygous (+/dy2J) or homozygous (dy2J/dy2J) muscle cultures or a transformed tetraploid myoblast line (M14D2). The data indicate that the interface between the 50 and 60% (1.060-1.075 g/ml) Percoll density fractions of spleen cells from either normal or dystrophic mice contains the largest proportion of asialo GM-1 positive and NK-1 positive cells displaying NK activity. Myoblast cells from either heterozygous (phenotypically normal) or homozygous dystrophic mice were not significantly different in susceptibility to NK-mediated lysis by Percoll enriched normal or dystrophic mouse NK cells. However, dystrophic mouse spleen cells had the highest NK activity against both myoblast targets as compared with normal mouse spleen cells. The transformed myoblast cell line, M14D2, was significantly less susceptible to NK-mediated lysis by dystrophic mouse spleen cells when compared with freshly cultured myoblast target cells. Target cell binding studies revealed that conjugate forming cells from the 50% Percoll density interface of dystrophic mouse spleen cells were approximately twofold greater than that of normal mouse spleen cells against either heterozygous or homozygous dystrophic mouse myoblast targets. Cold target inhibition studies revealed that the natural killing of dystrophic mouse myoblast cells was due to a YAC-1 reactive NK cell. Breeding experiments between C57BL/6J homozygous "beige" (bgJ/bgJ) mutant mice and dystrophic (dy2J/dy2J) mice produced beige/dystrophic hybrid mice which displayed clinical symptoms of the dystrophy process by 3 to 4 weeks of age. Spleen cells from these hybrid mice showed no significant differences in NK activity against YAC-1 target cells when compared with homozygous beige mice. Taken together, these results demonstrate the first reported evidence that murine myoblasts are susceptible to NK-mediated lysis. In addition, the data indicate that although dystrophic mouse NK cells recognize myoblast cells as targets, the NK cell studies with the beige/dystrophic hybrid mice do not indicate a direct in vivo role for NK cells in the dystrophy process.  相似文献   

17.
The clinical trials of myoblast transplantation in Duchenne Muscular Dystrophy (DMD) patients produced disappointing results. The main problems responsible for these poor results have since then been identified and partially resolved. One of them was related to the use of an inadequate immunosuppression and, since then, immunosuppression with FK506 has permitted successful myoblast transplantation not only in mice but also in monkeys. The requirement for a sustained immunosuppression may be eventually avoided by developing a state of tolerance to the allogeneic cells or by autologous transplantation of genetically corrected myoblasts or stem cells. The rapid death of 75-80% of the injected myoblasts during the first five days has also contributed to the limited success of the early trials. This death was due to an inflammatory reaction and has been compensated in animal experiments by the injection of a larger number of cells (30 millions per cc). Finally, the myoblasts migrated only 0.5 mm away from their site of injection. This problem is currently compensated in animal experiments by injecting the myoblasts at every mm. The number of injections required may eventually be reduced by transfecting myoblasts with one or several metalloproteinase genes. The very good results obtained during the last two years in primates permit us to undertake a new phase I clinical trial to verify that myoblast transplantation can lead to the formation of muscle fibers expressing normal dystrophin in muscles of DMD patients.  相似文献   

18.
The expression of hTERT, the catalytic subunit of telomerase, immortalizes normal human urothelial cells (NHUC). Expression of a modified hTERT, without the ability to act in telomere maintenance, did not immortalize NHUC, confirming that effects at telomeres are required for urothelial immortalization. Previous studies indicate that inhibition of telomerase has an immediate effect on urothelial carcinoma (UC) cell line viability, before sufficient divisions to account for telomere attrition, implicating non-telomere effects of telomerase in UC. We analyzed the effects of telomerase on gene expression in isogenic mortal and hTERT-transduced NHUC. hTERT expression led to consistent alterations in the expression of genes predicted to be of phenotypic significance in tumorigenesis. A subset of expression changes were detected soon after transduction with hTERT and persisted with continued culture. These genes (NME5, PSCA, TSPYL5, LY75, IGFBP2, IGF2, CEACAM6, XG, NOX5, KAL1, and HPGD) include eight previously identified as polycomb group targets. TERT-NHUC showed overexpression of the polycomb repressor complex (PRC1 and PRC4) components, BMI1 and SIRT1, and down-regulation of multiple PRC targets and genes associated with differentiation. TERT-NHUC at 100 population doublings, but not soon after transduction, showed increased saturation density and an attenuated differentiation response, indicating that these are not acute effects of telomerase expression. Some of the changes in gene expression identified may contribute to tumorigenesis. Expression of NME5 and NDN was down-regulated in UC cell lines and tumors. Our data supports the concept of both telomere-based and non-telomere effects of telomerase and provides further rationale for the use of telomerase inhibitors in UC.  相似文献   

19.
Although cell therapy of the failing heart by intramyocardial injections of myoblasts to results in regenerative benefit, it has also been associated with undesired and prospectively fatal arrhythmias. We hypothesized that intramyocardial injections of myoblasts could enhance inflammatory reactivity and facilitate electrical cardiac abnormalities that can be reduced by epicardial myoblast sheet delivery. In a rat model of ischemic heart failure, myoblast therapy either by intramyocardial injections or epicardial cell sheets was given 2 weeks after occlusion of the coronary artery. Ventricular premature contractions (VPCs) were assessed, using an implanted three-lead electrocardiograph at 1, 7, and 14 days after therapy, and 16-point epicardial electropotential mapping (EEPM) was used to evaluate ventricular arrhythmogenicity under isoproterenol stress. Cardiac functioning was assessed by echocardiography. Both transplantation groups showed therapeutic benefit over sham therapy. However, VPCs were more frequent in the Injection group on day 1 and day 14 after therapy than in animals receiving epicardial or sham therapy (p < 0.05 and p < 0.01, respectively). EEPM under isoproterenol stress showed macroreentry at the infarct border area, leading to ventricular tachycardias in the Injection group, but not in the myoblast sheet- or sham-treated groups (p = 0.045). Both transplantation types modified the myocardial cytokine expression profile. In animals receiving epicardial myoblast therapy, selective reductions in the expressions of interferon gamma, interleukin (IL)-1β and IL12 were observed, accompanied by reduced infiltration of inflammatory CD11b- and CD68-positive leukocytes, compared with animals receiving myoblasts as intramyocardial injections. Intramyocardial myoblast delivery was associated with enhanced inflammatory and immunomodulatory reactivity and increased frequency of VPCs. In comparison to intramyocardial injection, the epicardial route may serve as the preferred method of skeletal myoblast transplantation to treat heart failure.  相似文献   

20.
Tumour Necrosis Factor (TNF) plays a major role in exacerbating necrosis of dystrophic muscle; however, the precise molecular mechanism underlying this effect of TNF is unknown. This study investigates the role that p53 plays in TNF-mediated necrosis of dystrophic myofibres by inhibiting p53 using pifithrin-α and three pifithrin-β analogues. Tissue culture studies using C2C12 myoblasts established that pifithrin-α was toxic to differentiating myoblasts at concentrations greater than 10 μM. While non-toxic concentrations of pifithrin-α did not prevent the TNF-mediated inhibition of myoblast differentiation, Western blots indicated that nuclear levels of p53 were higher in TNF-treated myoblasts indicating that TNF does elevate p53. In contrast, in vivo studies in adult mdx mice showed that pifithrin-α significantly reduced myofibre necrosis that resulted from voluntary wheel running over 48 h. These results support the hypothesis that p53 plays some role in TNF-mediated necrosis of dystrophic muscle and present a potential new target for therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号