首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of DNA replication of porcine circovirus (PCV) was mapped to a 111-bp fragment. On top of a hairpin, a nonanucleotide (TAGTATTAC) homologous to nonanucleotides of other viruses was identified. Mutation of this element abolishes replication. PCV may be related to a virus family characterized by single-stranded circular DNA genomes, rolling-circle replication, and homology of their rep proteins.  相似文献   

2.
Cheung AK 《Journal of virology》2004,78(8):4268-4277
Nucleotide substitution mutagenesis was conducted to investigate the importance of the inverted repeats (palindrome) at the origin of DNA replication (Ori) of porcine circovirus type 1 (PCV1). Viral genomes with engineered mutations on either arm or both arms of the palindrome were not impaired in protein synthesis and yielded infectious progeny viruses with restored or new palindromes. Thus, a flanking palindrome at the Ori was not essential for initiation of DNA replication, but one was generated inevitably at termination. Among the 26 viruses recovered, 16 showed evidence of template strand switching, from minus-strand genome DNA to palindromic strand DNA, during biosynthesis of the Ori. Here I propose a novel rolling-circle "melting-pot" model for PCV1 DNA replication. In this model, the replicator Rep protein complex binds, destabilizes, and nicks the Ori sequence to initiate leading-strand DNA synthesis. All four strands of the destabilized inverted repeats exist in a "melted" configuration, and the minus-strand viral genome and a palindromic strand are available as templates, simultaneously, during initiation or termination of DNA replication. Inherent in this model is a "gene correction" or "terminal repeat correction" mechanism that can restore mutilated inverted-repeat sequences to a palindrome at the Ori of circular DNAs or at the termini of circularized linear DNAs. Potentially, the melted state of the inverted repeats increases the rate of noncomplementary or illegitimate nucleotide incorporation into the palindrome. Thus, this melting-pot model provides insight into the mechanisms of DNA replication, gene correction, and illegitimate recombination at the Ori of PCV1, and it may be applicable to the replication of other circular DNA molecules.  相似文献   

3.
The RepK protein, which is encoded by the rolling-circle plasmid pKYM, binds to the PR I site in the pKYM DNA replication origin. We have identified HU as a protein that binds to the PR II and PR III sites in the replication-enhancing region which is downstream of PR I. DNA footprinting assays show that HU binds to these two sites only when RepK is bound to PR I, and that HU also enhances the binding of RepK to PR I. In vivo, pKYM was unable to transform an HU null strain. Two mutant RepK proteins, RepKW179Y, which contains a Trp-to-Tyr exchange at position 179, and RepKD277L, which contains an Asp-to-Leu mutation at residue 277, initiate DNA replication in vivo in the absence of HU. In vitro, these mutant RepK proteins form more stable complexes with the pKYM origin region than does the wild-type RepK protein. These results indicate that HU plays a role in the formation of a stable RepK-origin complex, which is required for the initiation of pKYM DNA replication. Received: 24 July 1996 / Accepted: 30 December 1996  相似文献   

4.
The replication of porcine circovirus type 1 (PCV1) is thought to occur by rolling-circle replication (RCR), whereby the introduction of a single-strand break generates a free 3'-hydroxyl group serving as a primer for subsequent DNA synthesis. The covalently closed, single-stranded genome of PCV1 replicates via a double-stranded replicative intermediate, and the two virus-encoded replication-associated proteins Rep and Rep' have been demonstrated to be necessary for virus replication. However, although postulated to be involved in RCR-based virus replication, the mechanism of action of Rep and Rep' is as yet unknown. In this study, the ability of PCV1 Rep and Rep' to "nick" and "join" strand discontinuities within synthetic oligonucleotides corresponding to the origin of replication of PCV1 was investigated in vitro. Both proteins were demonstrated to be able to cleave the viral strand between nucleotides 7 and 8 within the conserved nonanucleotide motif (5'-TAGTATTAC-3') located at the apex of a putative stem-loop structure. In addition, the Rep and Rep' proteins of PCV1 were demonstrated to be capable of joining viral single-stranded DNA fragments, suggesting that these proteins also play roles in the termination of virus DNA replication. This joining activity was demonstrated to be strictly dependent on preceding substrate cleavage and the close proximity of origin fragments accomplished by base pairing in the stem-loop structure. The dual "nicking/joining" activities associated with PCV1 Rep and Rep' are pivotal events underlying the RCR-based replication of porcine circoviruses in mammalian cells.  相似文献   

5.
6.
Kinetoplast DNA (kDNA) is the mitochondrial DNA of trypanosomatids. Its major components are several thousand topologically interlocked DNA minicircles. Their replication origins are recognized by universal minicircle sequence-binding protein (UMSBP), a CCHC-type zinc finger protein, which has been implicated with minicircle replication initiation and kDNA segregation. Interactions of UMSBP with origin sequences in vitro have been found to be affected by the protein's redox state. Reduction of UMSBP activates its binding to the origin, whereas UMSBP oxidation impairs this activity. The role of redox in the regulation of UMSBP in vivo was studied here in synchronized cell cultures, monitoring both UMSBP origin binding activity and its redox state, throughout the trypanosomatid cell cycle. These studies indicated that UMSBP activity is regulated in vivo through the cell cycle dependent control of the protein's redox state. The hypothesis that UMSBP's redox state is controlled by an enzymatic mechanism, which mediates its direct reduction and oxidation, was challenged in a multienzyme reaction, reconstituted with pure enzymes of the trypanosomal major redox-regulating pathway. Coupling in vitro of this reaction with a UMSBP origin-binding reaction revealed the regulation of UMSBP activity through the opposing effects of tryparedoxin and tryparedoxin peroxidase. In the course of this reaction, tryparedoxin peroxidase directly oxidizes UMSBP, revealing a novel regulatory mechanism for the activation of an origin-binding protein, based on enzyme-mediated reversible modulation of the protein's redox state. This mode of regulation may represent a regulatory mechanism, functioning as an enzyme-mediated, redox-based biological switch.  相似文献   

7.
Backert S 《The EMBO journal》2002,21(12):3128-3136
The mitochondrial (mt) plasmid mp1 of Chenopodium album replicates by a rolling-circle (RC) mechanism initiated at two double-stranded replication origins (dso1 and dso2). Two-dimensional gel electrophoresis and electron microscopy of early mp1 replication intermediates revealed novel spots. Ribonucleotide (R)-loops were identified at dso1, which function as a precursor for the RCs in vivo and in vitro. Bacteriophage T4-like networks of highly branched mp1 concatemers with up to 20 monomer units were mapped and shown to be mainly formed by replicating, invading, recombining and resolving molecules. A new model is proposed in which concatemers were separated into single units by a "snap-back" mechanism and homologous recombination. dso1 is a recombination hotspot, with sequence homology to bacterial Xer recombination cores. mp1 is a unique eukaryotic plasmid that expresses features of phages like T4 and could serve as a model system for replication and maintenance of DNA concatemers.  相似文献   

8.
载体表达的siRNA分子对猪圆环病毒2型复制的抑制作用   总被引:2,自引:0,他引:2  
王海燕  刘文博  高崧  刘秀梵 《微生物学报》2008,48(11):1507-1513
[目的]寻找一种基于RNA干扰技术的猪圆环病毒2型感染的防控方法.[方法]根据猪圆环病毒2型毒株基因组核苷酸序列,设计了3条特异性小干扰RNA(short interfering RNA,siRNA)分子,其中2条针对猪圆环病毒1型和2型复制酶基因(rep),1条针对猪圆环病毒2型核衣壳蛋白基因(cap),将合成的DNA片段退火形成双链,分别连接到RNAi-Ready pSIREN-RetroQ ZsGreen载体鼠源U6启动子下游,转化大肠杆菌得到阳性克隆,测序鉴定后分别命名为Retro-SH1,Retro-SH4,Retro-SH6.用上述质粒转染PCV2感染前、后的Dulac细胞及肌肉注射PCV2感染前、后的BALB/c小鼠,应用实时定量PCR试验评价其对病毒在细胞及小鼠体内复制的抑制作用,免疫组化法检测脾脏中病毒的存在.[结果]感染PCV2前或后转染500 ng Retro-SH1,Retro-SH4,Retro-SH6质粒能有效抑制PCV2在Dulac细胞上的复制,抑制率最高可达99%以上,对10株不同来源的临床分离株在细胞中复制的抑制作用同样明显,且不同毒株间差异不大.动物试验中,肌肉注射10μg上述不同siRNA分子对小鼠体内PCV2的复制有一定的抑制作用,其抑制率在26%至99%之间.[结论]载体表达的siRNA分子可能成为防控猪圆环病毒2型感染的一种新工具.  相似文献   

9.
Porcine circovirus is the only mammalian DNA virus so far known to contain a single-stranded circular genome (Tischer et al. (1982) Nature 295, 64-66). Replication of its small viral DNA (1.76 kb) appears to be dependent on cellular enzymes expressed during S-phase of the cell cycle (Tischer et al. (1987) Arch. Virol. 96, 39-57). In this paper we have exploited the porcine circovirus genome to probe for in vitro initiation and elongation of DNA replication by different preparations of calf thymus DNA polymerase alpha and delta as well as by a partially purified preparation from pig thymus. The results indicated that three different purification fractions of calf thymus DNA polymerase alpha and one from pig thymus initiate DNA synthesis at several sites on the porcine circovirus DNA. It appears that the sites at which DNA primase synthesizes primers are not entirely random. Subsequent DNA elongation by a highly purified DNA polymerase alpha holoenzyme which had been isolated by the criterion of replicating single-stranded M13 DNA (Ottiger et al. (1987) Nucleic Acids Res. 15, 4789-4807) is very efficient. Complete conversion to the double-stranded form is obtained in less than 1 min. When the DNA synthesis by DNA polymerase alpha is blocked with the DNA polymerase alpha specific monoclonal antibody SJK 132-20 after initiation by DNA primase, DNA polymerase delta can efficiently replicate from the primers. This in vitro DNA replication system may be used in analogy to the bacteriophage systems in E. coli to study initiation and elongation of DNA replication.  相似文献   

10.
Parker C  Zhang XL  Henderson D  Becker E  Meyer R 《Plasmid》2002,48(3):7254-192
Strand-replacement synthesis during conjugative mating has been characterized by introducing into donor cells R1162 plasmid DNA containing a base-pair mismatch. Conjugative synthesis in donors occurs in the absence of vegetative plasmid replication, but with a lag between rounds of transfer, and with most strands being initiated at the normal site within the replicative origin. These characteristics argue against the idea that multiple plasmid copies are generated for successive rounds of transfer by rolling-circle replication. However, the R1162 relaxase protein can process molecules containing multiple transfer origins in the manner expected for the conversion of single-strand multimers, generated by rolling-circle replication, to unit-length molecules. This capability appears to be the result of a secondary cleavage reaction carried out by the protein. The possibility is raised that the processing of molecules with more than one origin of transfer might be a repair mechanism directed against adventitious DNA synthesis during transfer.  相似文献   

11.
The complete and accurate duplication of genomic information is vital to maintain genome stability in all domains of life. In Escherichia coli, replication termination, the final stage of the duplication process, is confined to the “replication fork trap” region by multiple unidirectional fork barriers formed by the binding of Tus protein to genomic ter sites. Termination typically occurs away from Tus-ter complexes, but they become part of the fork fusion process when a delay to one replisome allows the second replisome to travel more than halfway around the chromosome. In this instance, replisome progression is blocked at the nonpermissive interface of the Tus-ter complex, termination then occurs when a converging replisome meets the permissive interface. To investigate the consequences of replication fork fusion at Tus-ter complexes, we established a plasmid-based replication system where we could mimic the termination process at Tus-ter complexes in vitro. We developed a termination mapping assay to measure leading strand replication fork progression and demonstrate that the DNA template is under-replicated by 15 to 24 bases when replication forks fuse at Tus-ter complexes. This gap could not be closed by the addition of lagging strand processing enzymes or by the inclusion of several helicases that promote DNA replication. Our results indicate that accurate fork fusion at Tus-ter barriers requires further enzymatic processing, highlighting large gaps that still exist in our understanding of the final stages of chromosome duplication and the evolutionary advantage of having a replication fork trap.  相似文献   

12.
Recognition of the DNA origin by the Epstein-Barr nuclear antigen 1 (EBNA1) protein is the primary event in latentphase genome replication of the Epstein-Barr virus, a model for replication initiation in eukaryotes. We carried out an extensive thermodynamic and kinetic characterization of the binding mechanism of the DNA binding domain of EBNA1, EBNA1452-641, to a DNA fragment containing a single specific origin site. The interaction displays a binding energy of 12.7 kcal mol-1, with 11.9 kcal mol-1 coming from the enthalpic change with a minimal entropic contribution. Formation of the EBNA1452-641.DNA complex is accompanied by a heat capacity change of -1.22 kcal mol-1 K-1, a very large value considering the surface area buried, which we assign to an unusually apolar protein-DNA interface. Kinetic dissociation experiments, including fluorescence anisotropy and a continuous native electrophoretic mobility shift assay, confirmed that two EBNA1.DNA complex conformers are in slow equilibrium; one dissociates slowly (t1/2 approximately 41 min) through an undissociated intermediate species and the other corresponds to a fast twostep dissociation route (t1/2 approximately 0.8 min). In line with this, at least two parallel association events from two populations of protein conformers are observed, with on-rates of 0.25-1.6x10(8) m-1 s-1, which occur differentially either in excess protein or DNA molecules. Both parallel complexes undergo subsequent firstorder rearrangements of approximately 2.0 s-1 to yield two consolidated complexes. These parallel association and dissociation routes likely allow additional flexible regulatory events for site recognition depending on site availability according to nucleus environmental conditions, which may lock a final recognition event, dissociate and re-bind, or slide along the DNA.  相似文献   

13.
Nucleohistone as template for the replication of DNA   总被引:2,自引:0,他引:2  
  相似文献   

14.
The effect of base pair substitutions on the function of the polyoma virus origin of DNA replication was studied. The mutations were all C-G to T-A transitions, induced by bisulfite treatment of recombinant DNA molecules. The mutagenesis was directed to short single-stranded gaps in duplex DNA, or to loops in heteroduplex molecules. Modification of a 34 base pair sequence of dyad symmetry led to cis-acting inhibition of viral DNA synthesis, ranging from slight defects to total inactivation. One of the mutants was temperature sensitive. Mutants with base changes in an adjacent DNA segment, including an 18 base pair long purine-pyrimidine tract, had similar, but less severe, deficiences. In contrast to the effect of mutations in the homologous region of the simian virus 40 genome, there was no strict relationship between mutation of the putative large T-antigen-binding base sequence GPuGGC and defective viral DNA synthesis.  相似文献   

15.
All studied origins of replication of DNA in Saccharomyces cerevisiae contain DNA unwinding elements. The introduction of unrestrained negative supercoiling leads to melting of the two DNA strands in DNA unwinding elements. To understand the mechanism of DNA replication it is important to know whether the most unstable region of DNA coincides with the origin of replication. Two-micrometer plasmid DNA from S. cerevisiae inserted in pBR322 was investigated by cleaving with snake venom phosphodiesterase. Its single-strand endonucleolytic activity allows cutting of negatively supercoiled DNA in the DNA unwinding elements. The sites of the venom phosphodiesterase hydrolysis were mapped by restriction enzymes. This study shows that the unwinding of the two-micrometers plasmid DNA of S. cerevisiae takes place only in the origin of replication as a result of unrestrained negative supercoiling.  相似文献   

16.
Cai L  Han X  Hu D  Li X  Wang B  Ni J  Zhou Z  Yu X  Zhai X  Tian K 《Journal of virology》2012,86(12):7017
Here, we report a novel porcine circovirus type 2a (PCV2a) strain with 11 nucleotides (nt) inserted in the origin of genome replication (Ori). This is the first report of a PCV2a strain with nucleotide insertion in Ori. Our study will help further epidemiological studies and extend our knowledge of evolutionary characteristics of PCV2.  相似文献   

17.
Replication of the chromosome of bacteriophage lambda depends on the cooperative action of two phage-coded proteins and seven replication and heat shock proteins from its Escherichia coli host. As previously described, the first stage in this process is the binding of multiple copies of the lambda O initiator to the lambda replication origin (ori lambda) to form the nucleosomelike O-some. The O-some serves to localize subsequent protein-protein and protein-DNA interactions involved in the initiation of lambda DNA replication to ori lambda. To study these interactions, we have developed a sensitive immunoblotting protocol that permits the protein constituents of complex nucleoprotein structures to be identified. Using this approach, we have defined a series of sequential protein assembly and protein disassembly events that occur at ori lambda during the initiation of lambda DNA replication. A second-stage ori lambda.O (lambda O protein).P (lambda P protein).DnaB nucleoprotein structure is formed when O, P, and E. coli DnaB helicase are incubated with ori lambda DNA. In a third-stage reaction the E. coli DnaJ heat shock protein specifically binds to the second-stage structure to form an ori lambda.O.P.DnaB.DnaJ complex. Each of the nucleoprotein structures formed in the first three stages was isolated and shown to be a physiological intermediate in the initiation of lambda DNA replication. The E. coli DnaK heat shock protein can bind to any of these early stage nucleoprotein structures, and in a fourth-stage reaction a complete ori lambda.O.P.DnaB.DnaJ.DnaK initiation complex is assembled. Addition of ATP to the reaction enables the DnaK and DnaJ heat shock proteins to mediate a partial disassembly of the fourth-stage complex. These protein disassembly reactions activate the intrinsic helicase activity of DnaB and result in localized unwinding of the ori lambda template. The protein disassembly reactions are described in the accompanying articles.  相似文献   

18.
Circoviruses are the smallest circular single-stranded DNA viruses able to replicate in mammalian cells. Essential to their replication is the replication initiator, or Rep protein that initiates the rolling circle replication (RCR) of the viral genome. Here we report the NMR solution three-dimensional structure of the endonuclease domain from the Rep protein of porcine circovirus type 2 (PCV2), the causative agent of postweaning multisystemic wasting syndrome in swine. The domain comprises residues 12-112 of the full-length protein and exhibits the fold described previously for the Rep protein of the representative geminivirus tomato yellow leaf curl Sardinia virus. The structure, however, differs significantly in some secondary structure elements that decorate the central five-stranded beta-sheet, including the replacement of a beta-hairpin by an alpha-helix in PCV2 Rep. The identification of the divalent metal binding site was accomplished by following the paramagnetic broadening of NMR amide signals upon Mn(2+) titration. The site comprises three conserved acidic residues on the exposed face of the central beta-sheet. For the 1:1 complex of the PCV2 Rep nuclease domain with a 22mer double-stranded DNA oligonucleotide chemical shift mapping allowed the identification of the DNA binding site on the protein and aided in constructing a model of the protein/DNA complex.  相似文献   

19.
Selection and licensing of mammalian DNA replication origins may be regulated by epigenetic changes in chromatin structure. The Epstein-Barr virus (EBV) origin of plasmid replication (OriP) uses the cellular licensing machinery to regulate replication during latent infection of human cells. We found that the minimal replicator sequence of OriP, referred to as the dyad symmetry (DS), is flanked by nucleosomes. These nucleosomes were subject to cell cycle-dependent chromatin remodeling and histone modifications. Restriction enzyme accessibility assay indicated that the DS-bounded nucleosomes were remodeled in late G1. Remarkably, histone H3 acetylation of DS-bounded nucleosomes decreased during late G1, coinciding with nucleosome remodeling and MCM3 loading, and preceding the onset of DNA replication. The ATP-dependent chromatin-remodeling factor SNF2h was also recruited to DS in late G1, and formed a stable complex with HDAC2 at DS. siRNA depletion of SNF2h reduced G1-specific nucleosome remodeling, histone deacetylation, and MCM3 loading at DS. We conclude that an SNF2h-HDAC1/2 complex coordinates G1-specific chromatin remodeling and histone deacetylation with the DNA replication initiation process at OriP.  相似文献   

20.
Simian virus 40 large T antigen untwists DNA at the origin of DNA replication.   总被引:18,自引:0,他引:18  
Simian virus 40 large tumor antigen (SV40 T antigen) untwists DNA at the SV40 replication origin. In the presence of ATP, T antigen shifted the average linking number of an SV40 origin-containing plasmid topoisomer distribution. The loss of up to two helical turns was detected. The reaction required the presence of the 64-base pair core origin of replication containing T antigen DNA binding site II; binding site I had no effect on the untwisting reaction. The presence of human single-stranded DNA binding protein (SSB) slightly reduced the degree of untwisting in the presence of ATP. ATP hydrolysis was not required since untwisting occurred in the presence of nonhydrolyzable analogs of ATP. However, in the presence of a nonhydrolyzable analog of ATP, the requirement for the SV40 origin sequence was lost. The origin requirement for DNA untwisting was also lost in the absence of dithiothreitol. The origin-specific untwisting activity of T antigen is distinct from its DNA helicase activity, since helicase activity does not require the SV40 origin but does require ATP hydrolysis. The lack of a requirement for SSB or ATP hydrolysis and the reduction in the pitch of the DNA helix by just a few turns at the replication origin distinguishes this reaction from the T antigen-mediated DNA unwinding reaction, which results in the formation of a highly underwound DNA molecule. Untwisting occurred without a lag after the start of the reaction, whereas unwound DNA was first detected after a lag of 10 min. It is proposed that the formation of a multimeric T antigen complex containing untwisted DNA at the SV40 origin is a prerequisite for the initiation of DNA unwinding and replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号