首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inorganic coordination chemistry of peroxovanadium compounds relevant to insulin mimesis is reviewed. The structure and kinetic reactivity of solutions of vanadate anion, vanadyl complexes and peroxovanadate complexes are briefly compared. Peroxovanadium compounds contain an oxo group, one or two peroxo ligands (O2 2–) and an ancillary ligand which is usually bidentate. These compounds approximate a trigonal bipyramidal structure which can be divided conceptually into a polar oxo half and a relatively non-polar organic half. This presents a number of interesting design variations which are discussed with respect to the development of a rudimentary structure-activity correlation of insulin mimetic ability.Abbreviations phen 1,10-phenanthroline - 4,7-Me2phen 4,7-dimethyl-1,10-phenanthroline - 3,4,7,8-Me4phen 3,4,7,8-tetramethyl-1,10-phenanthroline - 5-CH3phen 5-methyl-1,10-phenanthroline - 5-NO2phen 5-nitro-1,10-phenanthroline - 5-NH2phen 5-amino-1,10-phenanthroline - bipy 2,2-bipyridine - bipyH 2,2-bipyridinium - 4,4-Me2bipy 4,4-dimethyl-2,2-bipyridine - bipy-4,4-(COO)2 2,2-bipyridine-4,4-dicarboxylato - pic pyridine-2-carboxylato - 3-OHpic 3-hydroxypyridine-2-carboxylato - 3-acetpic 3-acetatoxypyridine-2-carboxylato - m,n-pdc pyridine-m,n-dicarboxylato - ox oxalato - pzc pyrazine-2-carboxylato - 3-NH2pzc 3-aminopyrazine-2-carboxylato - 4OH-2,6pdc 4-hydroxy-2,6-pyridinedicarboxylato - IDA iminodiacetato - cit citrato - EDTA ethylenediaminetetraacetato - HEDTA ethylene-diaminetetraacetic acid - isoquin isoquinoline-2-carboxylato - quin quinolato - NTA nitrilotriacetato - glyH glycine - cystH cysteine - nicH nicotinic acid - Hheida N-(2-hydroxyethyl)iminodiacetato  相似文献   

2.
W. G. Hei  H. Senger 《Planta》1986,167(2):233-239
The phosphorylation of thylakoid proteins, which comprise apoproteins of the light-harvesting chlorophyll a/b-protein complex (LHCP), was investigated in vivo and in vitro during the development of Scenedesmus obliquus in synchronous cultures. The in-vitro and in-vivo protein phosphorylation exhibited a maximum activity in cells with maximum photosynthetic capacity (8th hour) and miximum activity in cells with minimum photosynthetic capacity (16th hour). The major phosphorylated polypeptides in vivo were the 24/25-kDa and 28–30-kDa apoprotein of the LHCP, a protein of about 32 kDa, and some smaller polypeptides within the range 10 to 20 kDa. In vitro, the main phosphoproteins were the 28–30-kDa apoprotein and the protein characterized by an apparent molecular weight of 32 kDa. Pulse-chase experiments in vivo established that the latter had the fastest radioactivity turnover of the thylakoidal phosphoproteins.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHCP light-harvesting chlorophyll a/b-protein complex - PSII photosystem II Dedicated to Prof. Erwin Bünning on the occasion of his 80th birthday  相似文献   

3.
Most proteins located in chloroplasts are encoded by nuclear genes, synthesized in the cytoplasm, and transported into the organelle. The study of protein uptake by chloroplasts has greatly expanded over the past few years. The increased activity in this field is due, in part, to the application of recombinant DNA methodology to the analysis of protein translocation. Added interest has also been gained by the realization that the transport mechanisms that mediate protein uptake by chloroplasts, mitochondria and the endoplasmic reticulum display certain characteristics in common. These include amino terminal sequences that target proteins to particular organelles, a transport process that is mechanistically independent from the events of translation, and an ATP-requiring transport step that is thought to involve partial unfolding of the protein to be translocated. In this review we examine recent studies on the binding of precursors to the chloroplast surface, the energy-dependent uptake of proteins into the stroma, and the targeting of proteins to the thylakoid lumen. These aspects of protein transport into chloroplasts are discussed in the context of recent studies on protein uptake by mitochondria.Abbrevlations CAT chloramphenicol acetyl transferase - CCCP carbonylcyanide m-chlorophenylhydrazone - DHFR dihydrofolate reductase - EPSP 5-enol-pyruvylshikimate-3-phosphate - ER endoplasmic reticulum - LHCP light harvesting chlorophyll a/b apoprotein - NPT neomycin phosphotransferase - oATP adenosine-2,3-dialdehyde-5-triphosphate - P-inorganic phosphate Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SSU small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase - SRP signal recognition particle  相似文献   

4.
K. Humbeck  B. Hoffmann  H. Senger 《Planta》1988,173(2):205-212
The photosynthetic apparatus of the unicellular green alga Scenedesmus obliquus adapts to different levels and qualities of light as documented by the fluence-rate curves of photosynthetic oxygen evolution. Cultures adapted to low fluence rates of white light (5W·m-2) have more chlorophyll (Chl) per cell mass, a higher chlorophyll to carotenoid ratio and a doubling of the chlorophyll to cytochrome f ratio compared with cells adapted to high fluence rates of white light (20W·m-2). Only small differences can be observed in the halfrise time of fluorescence induction, the electrophoretic profile of the pigment-protein complexes and the Chl a/Chl b-ratio. Scenedesmus cells adapted to blue light of high spectral purity demonstrate, in comparison with those adapted to red light, a higher chlorophyll content, a higher ratio of chlorophyll to carotenoid and a much higher ratio of chlorophyll to cytochrome f. Regarding these parameters and the fluence-rate curves of photosynthesis, the blue light causes the same effects as low levels of white light. In contrast, the action of red light resembles rather that of high levels of white light. Blue-light-adapted Scenedesmus cells have a smaller Chl a to Chl b ratio, a faster half-rise time of fluorescence induction and more chlorophyll in the light-harvesting system than red-light-adapted cells, as shown in the electrophoretic profile of the pigment-protein complexes. Based on these results we propose a model for the adaptation of the photosynthetic apparatus of Scenedesmus to different levels and qualities of light. In this model low as compared with high levels of white light result in an increase in the number of photosystems per electron-transport chain, but not in an increase in the size of these photosystems. The same result is obtained by adaptation to blue light. The lack of sufficient Chl b formation in red-light-adapted cells results in a decrease in the light harvesting chlorophyll-protein complexes and a photosynthetic response like that found in cells adapted to high light levels. The findings reported here confirm our earlier results in comparing blue-and red-light adaptation of the photosynthetic apparatus with adaptation to low and high levels of white light, respectively.Abbreviations Chl chlorophyll - CP chlorophyll-protein complex - DCMU 3-(3,4-dichlorophenyl)-1,1 dimethyl-urea - LHCP light harvesting chlorophyll-protein complex - LiDS lithium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - PS photosystem  相似文献   

5.
Low temperature sodium dodecyl sulfate polyacrylamide gel electrophoresis following mild solubilization of Euglena thylakoid components allowed to resolve, in addition to the main CP1, CPa and LHCP chlorophyll-protein complexes, the additional CP1a and LHCP green bands. A carotenoid enriched band CPc can be separated from CPa using high acrylamide concentration. Pigment and polypeptide composition of these complexes were analyzed by absorption and fluorescence measurements and two dimensional gel electrophoresis. Spectral properties of CP1 and CP1a indicate an heterogenous organization of chlorophyll and the presence of significant amount of chlorophyll b in these complexes. They both contain a major 68 kilodalton polypeptide associated with three minor low molecular weight polypeptides in CP1a. CPa and CPc exhibit a characteristic fluorescence emission at 687 nm and they each contain one polypeptide of 54 and 41 Kda respectively. LHCP and LHCP are less abundant than in higher plant thylakoids and they contain a lower proportion of chl b (chl a: chl b=3). They include two polypeptides of 26 and 29 Kda.Abbreviations chl chlorophyll - SDS Sodium Dodecyl Sulfate - EDTA Ethylene Diamine Tetraacetic Acid - DTT Dithiothreitol  相似文献   

6.
Effects of metal chelators, 2,2-bipyridine, 8-hydroxyquinoline and 1,10-phenenthroline, on the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene in detached leaves of light-grown rice (Oryza sativa) seedlings and detached shoots of etiolated rice seedlings were investigated. Metal chelators strongly inhibited the in vivo ACC oxidase activity in detached leaves and detached etiolated shoots. This inhibition could be partially recovered by Fe2+. Our results support the notion that Fe2+ is an essential cofactor for the conversion of ACC to ethylene in vivo.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - BP 2,2-bypyridine - HQ 8-hydroxylquinoline - MJ methyl jasmonate - PA 1,10-phenanthroline - Put putrescine  相似文献   

7.
Toneva  V.  Gechev  T.  Minkov  I. 《Photosynthetica》2001,39(4):597-601
The photodynamic damage of the sensitive plants wheat and mustard, treated with chlorophyll (Chl) precursors 5-aminolevulinic acid (ALA) and glutamic acid (Glu) and with 1,10-phenanthroline (Phen), was caused by tetrapyrroles, which accumulated after 17 h in the dark period, followed by 12 h of irradiation with white light. The effect of accumulated Chl in mustard plants was accompanied by changes in the amounts of the Chls and carotenoids and by dehydration of the tissues, partial chlorosis, and necrosis. The molecular nature of the specific photodynamic sensitivity of the mustard and wheat plants under the influence of Phen and Chl precursors was important: accumulation of tetrapyrroles was a necessary, but not only reason for photodynamic damage of the plants. The degree of leaf damage was related to the amount and chemical nature of accumulated tetrapyrroles and to the greening group to which the investigated plant belongs.  相似文献   

8.
Calcium transport has been studied using purified endomembrane vesicles from dark-grown roots of Pisum sativum L. Membranes from a mixed microsomal (non-mitochondrial) fraction showed ATP-dependent calcium uptake which was released by the ionophore A 23187, had a pH optimum of 7.2 and required Mg2+ for uptake. Membranes were further purified using a rapid sucrosedensity-gradient technique yielding vesicles suitable for transport studies, and were identified using marker enzymes. Uptake by plasma membrane, tonoplast, endoplasmic reticulum and Golgi apparatus was indicated. Uptake by membranes of low density (predominantly tonoplast) had a pH optimum of 7.2–7.4 and nucleotide specificity ATP> guanosine 5-triphosphate>inosine 5-triphosphate>ADP>, while that by high-density membranes had a pH optimum of 7.5–7.9 and less specificity for ATP. The importance of regulating sucrose concentrations in calcium transport studies was demonstrated.Abbreviations ER endoplasmic reticulum - GTP guanosine 5-triphosphate - IDPase inosine diphosphatase - IIP inosine 5-triphosphate  相似文献   

9.
Summary The filamentous brown algaHincksia hincksiae can be infected by a large icosahedral double-stranded DNA virus (HincV-1). The virus shows extended latency and is replicated only in cells homologous to sporangia. Virus formation was studied by transmission electron microscopy, DAPI staining, and -tubulin immunofluorescence. Inhibition of cytokineses results in multinucleate cells, which are the first indication of virus replication in productive cells; the microtubular cytoskeleton does not seem to be affected by the virus. Replication of viral DNA begins in the nuclei, which increase in size and eventually disintegrate. Virus assembly takes place in a mixed nucleo-/cytoplasm. Capsids bud from cisternae, which are interpreted as modified endoplasmic reticulum aggregated to virus assembly centres. The internal membranous component of the virus is thus derived from the endoplasmic reticulum. The particles are empty (electron translucent) when assembled, and the nucleoprotein core seems to be packaged subsequently through an opening in the capsid. A number of fine structural features not previously reported from brown algae and related to virus formation are described. Our results on Hincksia hincksiae virus are compared with observations made on various other icosahedral DNA viruses infecting eukaryotic algae and animals.Abbreviations ASFV African swine fever virus - BSA bovine serum albumin - DAPI 4,6-diamidino-phenylindole - dsDNA double-stranded DNA - EGTA ethyleneglycol-bis-(b-amino-ethyl ether)-N,N-tetraacetic acid - ER endoplasmic reticulum - FV-3 frog virus 3 - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - HincV-1 Hincksia hincksiae virus type 1 - PBCV-1 Paramecium bursaria Chlorella virus 1 - PBS phosphate-buffered saline - rER rough endoplasmic reticulum - TBS Tris-buffered saline Tris tris-(hydroxymethyl)-aminomethane - VAC virus assembly centre - VLP virus-like particle - VPC virus-producing cell  相似文献   

10.
State 1/State 2 changes in higher plants and algae   总被引:3,自引:0,他引:3  
Current ideas regarding the molecular basis of State 1/State 2 transitions in higher plants and green algae are mainly centered around the view that excitation energy distribution is controlled by phosphorylation of the light-harvesting complex of photosystem II (LHC-II). The evidence supporting this view is examined and the relationship of the transitions occurring in these systems to the corresponding transitions seen in red and blue-green algae is explored.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - Chl a chlorophyll a - Chl b chlorophyll b - DAD diaminodurene - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD N,N-dicyclohexyl carbodiimide - DCMU 3-(3,4-dichlorophenyl)-l,l-dimethylurea (also called diuron) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - FSBA 5-fluorosulphonylbenzoyl adenosine - kDa kilodalton - LHC-II light-harvesting Chl a/Chl b protein - PMS phenazine methosulfate - PS I photosystem I - PS II photosystem II - SDS sodium dodecyl sulfate - TPTC triphenyl tin chloride This paper follows our new instructions for citation of references—authors are requested to follow Photosynth Res 10: 519–526 (1986)—editors.  相似文献   

11.
Summary The ultrastructure of the cytoskeleton inNicotiana alata pollen tubes grownin vitro has been examined after rapid freeze fixation and freeze substitution (RF-FS). Whereas cytoplasmic microtubules (MTs) and especially microfilaments (MFs) are infrequently observed after conventional chemical fixation, they occur in all samples prepared by RF-FS. Cortical MTs are oriented parallel to the long axis of the pollen tube and usually appear evenly spaced around the circumference of the cell. They are always observed with other components in a structural complex that includes the following: 1. a system of MFs, in which individual elements are aligned along the sides of the MTs and crossbridged to them; 2. a system of cooriented tubular endoplasmic reticulum (ER) lying beneath the MTs, and 3. the plasma membrane (PM) to which the MTs appear to be extensively linked. The cortical cytoskeleton is thus structurally complex, and contains elements such as MFs and ER that must be considered together with the MTs in any attempt to elucidate cytoskeletal function. MTs are also observed within the vegetative cytoplasm either singly or in small groups. Observations reveal that some of these may be closely associated with the envelope of the vegetative nucleus. MTs of the generative cell, in contrast to those of the vegetative cytoplasm, occur tightly clustered in bundles and show extensive cross-bridging. These bundles, especially in the distal tail of the generative cell, are markedly undulated. MFs are observed commonly in the cytoplasm of the vegetative cell. They occur in bundles oriented predominantly parallel to the pollen tube axis. Although proof is not provided, we suggest that they are composed of actin and are responsible for generating the vigorous cytoplasmic streaming characteristic of living pollen tubes.Abbreviations EGTA ethylene glycol bis-(-aminoethyl ether), N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - MF microfilament - MT microtubule - PEG polyethylene glycol - PM plasma membrane - RF-FS rapid freeze fixation-freeze substitution  相似文献   

12.
Measurements of electron transport activity point to the occurrence of major changes in the organisation of the photosynthetic apparatus of heat-stressed chloroplasts. One of the consequences of these changes is shown to be a greatly increased susceptibility of chlorophyll to photobleaching. Despite the fact that the threshold temperature for this photobleaching coincides closely with that for the inhibition of PSII activity, the bleached components were found to be specifically associated with PSI. This increased susceptibility of PSI pigments to photobleaching is shown to be a direct consequence of an interruption of the flow of reductants from PSII to PSI that would normally protect PSI from photooxidation.Abbreviations PSI photosystem I - PSII photosystem II - chl a chlorophyll a - chl b chlorophyll b - LHCP chlorophyll a/b light-harvesting protein - CP1 P700-chlorophyll a protein - DCMU 3-(34 dichlorophenyl)-11-dimethylurea - DCPIP dichlorophenolindophenol - Fecy potassium ferricyanide - MV methyl viologen Biochemistry Department, King's College (KQC), University of London  相似文献   

13.
Summary InEscherichia coli, the superoxide dismutase genes (sodA andsodB) sense the availability of Fe through the action of thefur locus [E. C. Niederhoffer, C. M. Naranjo, K. L. Bradley, J. A. Fee (1990) Control ofEscherichia coli superoxide dismutases (sodA andsodB) genes by the ferric uptake regulation (fur) locus,J. Bacteriol. 172, 1930–1938]. Previous work from other laboratories has shown that a variety of metal chelators and of redox-active aromatic compounds can dramatically induce expression ofsodA. Here we show that non-redox-active, non-metal-chelating aromatic compounds also enhance expression of a chromosomalsodA gene fusion and that these effects are strongly modulated by the Fur phenotype (Fur±) and by the availability of iron in the culture medium. The compounds studied were ethidium bromide, hemin, 2,2-bipyridine, 1,10-phenantroline, 4,7-phenantroline, rhodamine B1, rhodamine 6G, and, for comparison to previous studies, Paraquat.Abbreviations DTPA diethylenetriaminepentaacetic acid - Paraquat N,N-dimethyl-1,1-bipyridene - bpy 2,2-bipyridine - phen 1,10-phenanthroline - 4,7-phen 4,7-phenanthroline  相似文献   

14.
Light transiently depolarizes the membrane of growing leaf cells. The ionic basis for changes in cell membrane electrical potentials in response to light has been determined separately for growing epidermal and mesophyll cells of the argenteum mutant of pea (Pisum sativum L.). In mesophyll cells light induces a large, transient depolarization that depends on the external Cl concentration, is unaffected by changes in the external Ca2+ or K+ concentration, is stimulated by K+-channel blockers tetraethylammonium (TEA+) and Ba2+, and is inhibited by 3-(3-4-dichlorophenyl)-1,1-dimethylurea (DCMU). In isolated epidermal tissue, light induces a small, transient depolarization followed by a hyperpolarization of the membrane potential. The depolarization is enhanced by increasing the external Ca2+ concentration and by addition of Ba2+, and is not sensitive to DCMU. Epidermal cells in contact with mesophyll display a depolarization resembling the response of the underlying mesophyll cells. The light-induced depolarization in mesophyll cells seems to be mediated by an increased efflux of Cl while the membrane-potential changes in epidermal strips reflect changes in the fluxes of Ca2+ and in the activity of the proton-pumping ATPase.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - CCCP carbonylcyanide m-chlorophenylhydrazone - DCMU 3-(3-4-dichlorophenyl)-1,1-dimethylurea - LID e light-induced depolarization in epidermal cells - LID m light-induced depolarization in mesophyll cells - LIH light-induced hyperpolarization - TEA+ tetraethylammonium Ecotrans paper #43. This research was supported by National Science Foundation grants DCB-8903744 and MCB-9220110 to E.V.  相似文献   

15.
E. Rhiel  K. Krupinska  W. Wehrmeyer 《Planta》1986,169(3):361-369
Nitrogen deficiency affects both photosystems and the antennae pigment systems in the photosynthetic apparatus of the marine alga, Cryptomonas maculata. Under increasing energy fluence rates, O2 evolution in nitrogen-deficient (-N) cell suspensions never reached a positive value; in control cultures (+N), O2 evolution increased and was saturated at about 6.4 W·m-2 with about 100 mol O2·mg chlorophyll-1·h-1. During fluorescence-induction experiments at room temperature, Fo and Fmax were significantly increased in-N cells whereas the Fvar/Fmax ratio decreased from 0.6 to 0.1. These observations can be correlated with a significantly decreased population of 12.5-nm-size particles in the exoplasmic-fracture (EF) faces of freeze-cleaved thylakoid membranes in-N cells (Rhiel et al., 1985, Protoplasma 129, 62–73). The EF particles are suggested to represent photosystem II associated with chlorophyll a/c-protein complexes (LHCP). The banding pattern of isolated and Triton X-100-solubilized thylakoid membranes of both +N and-N cells in sucrose gradients showed that the LHCP is still present in-N cells. The same applies to sodium dodecyl sulfate-polyacrylamide gel electrophoresis of these membrane fractions. The reduced number of the 12.5-nm particles in the EF faces of-N cells may be a result of decoupling of the LHCP constituents of the photosystem-II complex rather than their degradation. This is supported by high values for the initial fluorescence Fo in fluorescence-induction experiments and, in part, is indicated by the shift of the maximal fluorescence emission from 693 nm in +N to 684 nm in-N cells. The lack of the CP1 band in the gels of sodium dodecyl sulfate-solubilized thylakoid membranes from-N cells after electrophoresis demonstrates that photosystem I is also severely affected.Abbreviations Chl chlorophyll - CP1 chlorophyll-protein complex of PSI - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - LHCP light-harvesting chlorophyll a/c protein complex - +N/-N control/nitrogen-deficient cell suspension cultures - PSI (II) photosystem I (II) - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol Dedicated to Prof. Wilhelm Nultsch on the occasion of his 60th birthday  相似文献   

16.
The possible mediatory role of transition metals in methyl jasmonate- (MJ-)induced senescence of rice leaves was investigated. Metal chelators(2,2-bipyridine, 8-hydroxylquinoline and 1,10-phenanthroline) reducedMJ-promoted senescence of rice leaves. The reduction of MJ-promoted senescenceby 2,2-bipyridine(BP) is closely associated with the decrease in lipidperoxidation and increase in activity of superoxide dismutase (SOD). Our resultssuggest that iron or copper plays a major role in MJ-promoted senescence ofdetached rice leaves. BP-reduced senescence of detached rice leaves induced byMJ was reversed by adding Fe2+ or Cu2+, but notby Mn2+ or Mg2+. Reduction of MJ-promotedsenescence of detached rice leaves by BP is most likely mediated throughchelation of iron or copper and an increase in SOD activity.  相似文献   

17.
The ATP-induced quenching of chlorophyll fluorescence in chloroplasts of higher plants is shown to be inhibited when the mobility of the protein complexes into the thylakoid membranes is reduced. Its occurrence also requires the presence of LHC complexes and the ability of the membranes to unstack.These observations, in addition to a slight increase of charge density of the surface-as indicated by 9-aminoacridine fluorescence and high salt-induced chlorophyll fluorescence studies-and partial unstacking of the membranes-as monitored by digitonin method and 540 nm light scattering changes-after phosphorylation, suggest that the ATP-induced quenching of chlorophyll fluorescence could reflect some lateral redistribution of membrane proteins in the lipid matrix of the thylakoids.Abbreviations ATP adenosine triphosphate - 9-AA 9-aminoacridine - Chl chlorophyll - EDTA ethylenediaminetetraacetate - GDA glutaraldehyde - Hepes N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid - LHC light-harvesting chlorophyll a/b complex PS photosystem  相似文献   

18.
The first step in the gravitropic reaction chain, i.e. perception, is known to occur in the statenchyma of the root cap. Because of the importance of the root tip in graviperception, a procedure has been developed to isolate root tips from garden cress (Lepidium sativum L.). The root tip fraction contains the tissues of the root cap plus the lower half of the meristem zone, but is clearly separated from the tissues of the elongation zone, the zone of gravitropic response. Membranes from the root tip and root base fractions have been centrifuged on sucrose density gradients and the marker enzyme profiles analyzed. These results show that the marker enzyme profiles for vacuoles, dictyosomes, mitochondria, and plasma membranes are similar in the root tip or root base fractions. The endoplasmic reticulum (ER) has a shoulder of cytochrome c reductase activity at a density of 1.16 g cm-3 which is distinct from the other enzyme activities and is only observed in root tip preparations. The specific enzyme activity for ER, cytochrome c reductase, was enriched in root tip membranes 1.7 fold. This latter increase is interpreted as at least in part an increased ER content in the root tip.Abbreviations ASG 6-acyl-steryl glucoside - ER endoplasmic reticulum - IDP inosine-5-diphosphate - INT 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride - PM plasma membrane - SG steryl glucoside  相似文献   

19.
Iino  Moritoshi  Hashimoto  Tohru  Heber  Ulrich 《Planta》1978,138(2):167-172
Effects of batatasins I, III and V, phenolic growth inhibitors occuring in dormant bulbils of Dioscorea batatas Decne., on photosynthetic reactions of chloroplasts from spinach (Spinacia oleracea L.) and on respiration of mitochondria from potatoes (Solanum tuberosum L.) were investigated. In chloroplasts, the batatasins effectively inhibited CO2-dependent oxygen evolution and electron flow from water to acceptors such as dichlorophenolindophenol, ferricyanide and methylviologen. Photosystem-I dependent electron transport from ascorbate to oxygen was stimulated. The proton conductivity of thylakoid membranes was increased and phosphorylation was uncoupled from electron transport. Inhibition of electron transport with water as electron donor appeared to precede uncoupling. In mitochondrial, batatasin I did not much inhibit succinate-dependent O2 uptake in the absence of ADP, but caused strong inhibition in the presence of ADP. Batatasins III and V inhibited oxygen uptake irrespective of the presence or absence of ADP. Inhibition of chloroplast and mitochondrial reactions by batatasins was shown to be reversible.Abbrevations B-I batatasin I, 6-hydroxy-2,4,7-trimethoxyphenanthrene - B-III batatasin III, 3,3-dihydroxy-5-methoxybibenzyl - B-V batatasin V, 2-hydroxy-3,4,5-trimethoxybibenzyl - Chl chlorophyll - MV methylviologen - DCPIP 2,6-dichlorophenol-indophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PVP polyvinylpyrrolidone  相似文献   

20.
Low temperature (77 K) linear dichroism spectroscopy was used to characterize pigment orientation changes accompanying the light state transition in the cyanobacterium, Synechococcus sp. PCC 6301 and those accompanying chromatic acclimation in Porphyridium cruentum in samples stabilized by glutaraldehyde fixation. In light state 2 compared to light state 1 intact cells of Synechococcus showed an increased alignment of allophycocyanin parallel to the cells' long axis whereas the phycobilisomethylakoid membrane fragments exhibited an increased allophycocyanin alignment parallel to the membrane plane. The phycobilisome-thylakoid membrane fragments showed less alignment of a short wave-length chlorophyll a (Chl a) Qy transition dipole parallel to the membrane plane in state 2 relative to state 1.To aid identification of the observed Chl a orientation changes in Synechococcus, linear dichroism spectra were obtained from phycobilisome-thylakoid membrane fragments isolated from red light-grown (increased number of PS II centres) and green light-grown (increased number of PS I centres) cells of the red alga Porphyridium cruentum. An increased contribution of short wavelength Chl a Qy transition dipoles parallel to the long axis of the membrane plane was directly correlated with increased levels of PS II centres in red light-grown P. cruentum.Our results indicate that the transition to state 2 in cyanobacteria is accompanied by an increase in the orientation of allophycocyanin and a decrease in the orientation of Chl a associated with PS II with respect to the thylakoid membrane plane.Abbreviations APC - allophycocyanin - Chl a - chlorophyll a - DCMU - 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LD - linear dichroism - LD/A - linear dichroism divided by absorbance - LHC - light-harvesting complex - PBS - phycobilisome - PC - phycocyanin - PS - Photosystem  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号