首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Terminal deficiencies at the tip of the X chromosome can be induced at a high frequency (0.2-0.3%) by irradiating Drosophila females carrying a homozygous mutator (mu-2) with low doses of X-rays. These terminal deficiencies are unstable, since over a period of 3 1/2 years DNA sequences were lost from their distal ends at a rate of 75 bp per generation, presumably due to the absence of a complete wild-type telomeric structure. Breakpoints of these deletions in the 5' upstream regulatory region of the yellow gene, giving rise to a mosaic cuticle pigmentation pattern typical of the y2 type, were used to define the location of tissue-specific cis-acting regulatory elements that are required for body, wing or bristle pigmentation.  相似文献   

2.
Pair-rule genes serve two important functions during Drosophila development: they first initiate periodic patterns, and subsequently interact with each other to refine these patterns to the precision required for definition of segmental compartments. Previously, we described a pair-rule input region of the runt gene. Here we further characterize this region through the use of reporter gene constructs and by comparison with corresponding sequences from Drosophila virilis. We find that many but not all regulatory properties of this '7-stripe region' are functionally conserved. Moreover, the similarity between these homologous sequences is surprisingly low. When compared to similar data for gap gene input element, our data suggest that pair-rule target sequences are less constrained during evolution, and that functional elements mediating pair-rule interactions can be dispersed over many kilobases.  相似文献   

3.
Comparisons of polymorphism patterns between distantly related species are essential in order to determine their generality. However, most work on the genus Drosophila has been done only with species of the subgenus Sophophora. In the present work, we have sequenced one intron and surrounding coding sequences of 6 X-linked genes (chorion protein s36, elav, fused, runt, suppressor of sable and zeste) from 21 strains of wild-type Drosophila virilis (subgenus Drosophila). From these data, we have estimated the average level of DNA polymorphism, inferred the effective population size and population structure of this species, and compared the results with those obtained for other Drosophila species. There is no reduction in variation at two loci close to the centromeric heterochromatin, in contrast to Drosophila melanogaster.  相似文献   

4.
5.
Male meiosis in D. melanogaster cytologically follows the usual pattern, whereas in D. melanogaster and in D. virilis oocytes the chromosomes clump into a karyosphere at early meiotic prophase and remain so up to metaphase I.Male meiosis in D. virilis spermatocytes has an intermediate character: a part of the chromatin clumps together in a karyosphere at early prophase, whereas the other part of the chromatin remains diffuse all through prophase. At the end of prophase, the diffuse chromatin becomes integrated into the karyosphere before metaphase I. During the meiotic divisions the chromosomes have the same clumped aspect as those in Drosophila oocytes and thus differ strikingly from the dividing chromosomes in D. melanogaster spermatocytes.In D. virilis spermatocytes the nucleolus exhibits changes during the meiotic prophase that may be related to synthetical activities. The DNA specific staining with the fluorochrome DAPI reveals the existence of extrachromosomal DNA in the later prophase. Other striking differences in meiotic events between the two Drosophila species concern the centrioles and spermiogenesis.  相似文献   

6.
M Treier  C Pfeifle    D Tautz 《The EMBO journal》1989,8(5):1517-1525
We have cloned and sequenced a large portion of the hunchback (hb) locus from Drosophila virilis. Comparison with the Drosophila melanogaster hb sequence shows multiple strong homologies in the upstream and downstream regions of the gene, including most of the known functional parts. The coding sequence is highly conserved within the presumptive DNA-binding finger regions, but more diverged outside of them. The regions of high divergence are correlated with regions which are rich in short direct repeats (regions of high 'cryptic simplicity'), suggesting a significant influence of slippage-like mechanisms in the evolutionary divergence of the two genes. Staining of early D.virilis embryos with an hb antibody reveals conserved and divergent features of the spatial expression pattern at blastoderm stage. It appears that the basic expression pattern, which serves as the gap gene function of hb, is conserved, while certain secondary expression patterns, which have separate functions for the segmentation process, are partly diverged. Thus, both slippage driven mutations in the coding region, which are likely to occur at higher rates than point mutations and the evolutionary divergence of secondary expression patterns may contribute to the evolution of regulatory genes.  相似文献   

7.
8.
Jae Hoon Bahn  Gyunghee Lee    Jae H. Park 《Genetics》2009,181(3):965-975
PAR proteins (partitioning defective) are major regulators of cell polarity and asymmetric cell division. One of the par genes, par-1, encodes a Ser/Thr kinase that is conserved from yeast to mammals. In Caenorhabditis elegans, par-1 governs asymmetric cell division by ensuring the polar distribution of cell fate determinants. However the precise mechanisms by which PAR-1 regulates asymmetric cell division in C. elegans remain to be elucidated. We performed a genomewide RNAi screen and identified six genes that specifically suppress the embryonic lethal phenotype associated with mutations in par-1. One of these suppressors is mpk-1, the C. elegans homolog of the conserved mitogen activated protein (MAP) kinase ERK. Loss of function of mpk-1 restored embryonic viability, asynchronous cell divisions, the asymmetric distribution of cell fate specification markers, and the distribution of PAR-1 protein in par-1 mutant embryos, indicating that this genetic interaction is functionally relevant for embryonic development. Furthermore, disrupting the function of other components of the MAPK signaling pathway resulted in suppression of par-1 embryonic lethality. Our data therefore indicates that MAP kinase signaling antagonizes PAR-1 signaling during early C. elegans embryonic polarization.ASYMMETRIC cell division, a process in which a mother cell divides in two different daughter cells, is a fundamental mechanism to achieve cell diversity during development. We use the early embryo of Caenorhabditis elegans as a model system to study asymmetric cell division. The C. elegans one-cell embryo divides asymmetrically along its anteroposterior axis, generating two cells of different sizes and fates: the larger anterior daughter cell will generate somatic tissues while the smaller posterior daughter cell will generate the germline (Sulston et al. 1983).A group of proteins called PAR proteins (partitioning defective) is required for asymmetric cell division in C. elegans (Kemphues et al. 1988). Depletion of any of the seven par genes (par-1 to -6 and pkc-3) leads to defects in asymmetric cell division and embryonic lethality (Kemphues et al. 1988; Kirby et al. 1990; Tabuse et al. 1998; Hung and Kemphues 1999; Hao et al. 2006). PAR-3 and PAR-6 are conserved proteins that contain PDZ-domains and form a complex with PKC-3 (Etemad-Moghadam et al. 1995; Izumi et al. 1998; Tabuse et al. 1998; Hung and Kemphues 1999). This complex becomes restricted to the anterior cortex of the embryo in response to spatially defined actomyosin contractions occurring in the embryo upon fertilization (Goldstein and Hird 1996; Munro et al. 2004). The posterior cortex of the embryo that becomes devoid of the anterior PAR proteins is occupied by the RING protein PAR-2 and the Ser/Thr kinase PAR-1 (Guo and Kemphues 1995; Boyd et al. 1996; Cuenca et al. 2003). Once polarized, the anterior and posterior PAR proteins mutually exclude each other from their respective cortices (Etemad-Moghadam et al. 1995; Boyd et al. 1996; Cuenca et al. 2003; Hao et al. 2006). Loss of function of the gene par-1, as opposed to loss of most other par genes, results in embryos that exhibit only subtle effects on the polarized cortical domains occupied by the other PAR proteins (Cuenca et al. 2003). However defects in this gene are associated with a more symmetric division in size, an aberrant distribution of cell fate specification markers, altered cell fates of the daughter cells of the embryo, and ultimately embryonic lethality (Kemphues et al. 1988; Guo and Kemphues 1995).PAR-1 controls asymmetric cell division and cell fate specification by regulating the localization of the two highly similar CCCH-type zinc-finger proteins MEX-5 and MEX-6 (referred to as MEX-5/6). MEX-5 and MEX-6 are 70% identical in their amino acid sequence and fulfill partially redundant functions in the embryo (Schubert et al. 2000). In wild-type animals, endogenous MEX-5 and GFP fusions of MEX-6 localize primarily to the anterior of the embryo while both proteins are evenly distributed in par-1 mutant embryos (Schubert et al. 2000; Cuenca et al. 2003). This suggests that in wild-type animals, PAR-1 acts in part by restricting MEX-5 and MEX-6 to the anterior of the embryo. The precise mechanism of this regulation is not known, but an elegant study performed for MEX-5 indicates that differential protein mobility in the anterior and posterior cytoplasm of the one-cell embryo contributes to this asymmetry (Tenlen et al. 2008). While increased mobility in the posterior of the one-cell embryo correlates with a par-1- and par-4-dependent phosphorylation on MEX-5, the kinase directly phosphorylating MEX-5 remains to be identified (Tenlen et al. 2008).Some of the phenotypes associated with loss of par-1 function are dependent on the function of mex-5 and mex-6. First, loss of function of par-1 leads to a decreased stability and aberrant localization of the posterior cell fate specification marker PIE-1, a protein that is usually inherited by the posterior daughter cell in wild-type animals and ensures the correct specification of the germline (Mello et al. 1996; Seydoux et al. 1996). This decreased stability is dependent on mex-5/6 function as PIE-1 levels are restored, albeit with symmetrical distribution, in mex-6(RNAi); mex-5(RNAi); par-1(b274) embryos (Schubert et al. 2000; Cuenca et al. 2003; Derenzo et al. 2003). Second, embryos lacking par-1 function exhibit decreased amounts of P granules in the one-cell embryo, while these markers are present in mex-6(pk440); mex-5(zu199); par-1(RNAi) embryos of comparable age (Cheeks et al. 2004). Third, in par-1(RNAi) one-cell embryos the posterior cortical domain occupied by the polarity protein PAR-2 is extended anteriorly, when compared to wild-type embryos (Cuenca et al. 2003). This anterior extension is rescued in embryos deficient for both par-1 and mex-5/6 (Cuenca et al. 2003). Taken together, these results indicate that par-1 acts in the embryo—at least in part—by regulating the localization and/or activity of the proteins MEX-5 and MEX-6. However, it remains unclear whether other proteins can modulate PAR-1 function to affect MEX-5/6 activity.To gain insight into the mechanisms of par-1 function in the embryo, we sought to identify genes that act together with par-1 during embryonic development. We performed an RNAi-based screen for genetic interactors of the temperature-sensitive allele par-1(zu310), using the embryonic lethal phenotype of this mutant as a readout. This method has proven successful in previous screens to identify genes involved in early embryonic processes (Labbé et al. 2006; O''Rourke et al. 2007). We were able to identify six genes that, upon disruption of their function, suppress the embryonic lethal phenotype of par-1 mutant embryos. One of these genes is mpk-1, the C. elegans homolog of the highly conserved MAP kinase ERK. Closer analysis subsequently showed that reduction of function of mpk-1 not only increases viability of par-1 mutant embryos, but also reverts several polarity phenotypes associated with loss of function of par-1. Our data indicate that mpk-1 antagonizes par-1 activity to regulate polarization and asymmetric cell divisions in the early embryo.  相似文献   

9.
10.
We describe the isolation of a cloned DNA segment carrying unique sequences from the white locus of Drosophila melanogaster. Sequences within the cloned segment are shown to hybridize in situ to the white locus region on the polytene chromosomes of both wild-type strains and strains carrying chromosomal rearrangements whose breakpoints bracket the white locus. We further show that two small deficiency mutations, deleting white locus genetic elements but not those of complementation groups contiguous to white, delete the genomic sequences corresponding to a portion of the cloned segment. The strategy we have employed to isolate this cloned segment exploits the existence of an allele at the white locus containing a copy of a previously cloned transposable, reiterated DNA sequence element. We describe a simple, rapid method for retrieving cloned segments carrying a copy of the transposable element together with contiguous sequences corresponding to this allele. The strategy described is potentially general and we discuss its application to the cloning of the DNA sequences of other genes in Drosophila, including those identified only by genetic analysis and for which no RNA product is known.  相似文献   

11.
DNA sequences within heterochromatin are often selectively underrepresented during development of polyploid chromosomes, and DNA molecules of altered structure are predicted to form as a consequence of the underrepresentation process. We have identified heterochromatic DNAs of altered structure within sequences that are underrepresented in polyploid cells of Drosophila melanogaster. Specifically, restriction fragments that extend into centric heterochromatin of the minichromosome Dp(1;f)1187 are shortened in polyploid cells of both the ovary and salivary gland but not in the predominantly diploid cells of the embryo or larval imaginal discs and brains. Shortened DNA molecules were also identified within heterochromatic sequences of chromosome III. These results suggest that the structure of heterochromatic DNA is altered as a general consequence of polyploid chromosome formation and that the shortened molecules identified form as a consequence of heterochromatic underrepresentation. Finally, alteration of heterochromatic DNA structure on Dp(1;f)1187 was not correlated with changes in the variegated expression of the yellow gene located on the minichromosome.  相似文献   

12.
Isolation of repetitive DNA sequences from human chromosome 21.   总被引:4,自引:2,他引:2  
We have developed a method for the isolation of phage from the human genomic library that carry repetitive DNA sequences highly represented on specific human chromosomes. We have used this technique to select recombinants carrying inserts concentrated on chromosome 21. Five clones, representing two families of sequences, have been characterized. Members of each family show cross-homology, but the two families show no homology with each other. In all but one case, the clones do not contain members of the human Alu repeat family. Single chromosome-concentrated repetitive sequences should prove to be useful in studies of the origin, evolution, and function of repetitive DNA and in regional chromosome mapping.  相似文献   

13.
The structural analysis of a yeast artificial chromosome clone from Drosophila melanogaster enriched in dodecasatellite sequences has led us to find a new retrotransposon that we have called Circe. Moreover, this retrotransposon has allowed the isolation of a contig encompassing ∼200 kb near the centromere of the Y chromosome, providing an entry point into a region from which very little sequence information has been obtained to date. The molecular characterization of the contig has shown the presence of HeT-A telomeric retrotransposons close to the centromere of the Y chromosome, suggesting a telocentric origin for this submetacentric chromosome. Received: 19 November 1996 / Accepted: 30 May 1997  相似文献   

14.
J I Mullins  M Blumenfeld 《Cell》1979,17(3):615-621
In this study, we isolated and characterized a previously undetected cryptic satellite DNA comprising 0.1% of the total nuclear genome of D. virilis. This satellite is hidden from detection in neutral CsCl by satellite I and is therefore designated cryptic satellite I or Ic. Sequence analysis reveals that Ic is the repeating heptanucleotide [poly d(AATATAG): d(CTATATT)]. It is more closely related to the three simple sequence satellite DNAs of D. melanogaster, a distantly related species, than it is to any of the major D. virilis satellite DNA sequences. Ic may therefore be a link between the simple sequence satellites of D. virilis and D. melanogaster. As an extension of this theory, we have constructed a "family tree" linking the satellites of D. virilis and D. melanogaster by a series of "simple" operations. Only one intermediate required by this evolutionary scheme has not yet been identified.  相似文献   

15.
The Y chromosome and sperm length in D. melanogaster   总被引:1,自引:0,他引:1  
Contrary to earlier reports, the sperm length of D. melanogaster males with two Y chromosomes is the same as in males with one Y chromosome.  相似文献   

16.
In males of the mealy bug Planococcus citri, Nur (1966) counted five heterochromatic (H) and about 5, 10, 20, 40, or 80 euchromatic (E) chromosomes in testis sheath nuclei which were undergoing endomitosis. He suggested that the H chromosomes were not replicating and that the nuclei were becoming polyploid as a result of successive cycles of replication of only the E chromosomes. This hypothesis was tested using autoradiography with H3-thymidine to detect DNA synthesis and microspectrophotometric measurements of the Feulgen reaction in nuclei to detect quantitative changes in DNA. — The integrated absorbance of the whole nucleus and of the isolated clump of heterochromatic chromosomes (H body) in polyploid testis sheath nuclei were measured using the mechanical scanner of the CYDAC system. The absorbance of the H body was similar in all testis sheath nuclei examined and was not significantly different from the absorbance of a haploid set of H chromosomes measured after meiosis. The absorbance of the euchromatic component varied in different sheath nuclei, the values closely corresponding to the terms of the series 2c, 4c, 8c. This series is expected if the DNA in the E chromosomes is exactly doubled at each cycle of replication. — Autoradiographs showed that most labeled sheath nuclei had silver grains localized exclusively over euchromatin. With one exception, the remainder of the labeled nuclei had silver grains over both euchromatin and the H body. The observation that euchromatin was much more heavily labeled than the H body and that labeled H bodies occurred at a low frequency and only in the presence of labeled euchromatin suggests that the H body did not incorporate the label and that the silver grains over the H body were the result of -particles which originated in proximal euchromatin.  相似文献   

17.
To determine whether the distinctive features of Caenorhabditis elegans chromosomal organization are shared with the C. briggsae genome, we constructed a single nucleotide polymorphism–based genetic map to order and orient the whole genome shotgun assembly along the six C. briggsae chromosomes. Although these species are of the same genus, their most recent common ancestor existed 80–110 million years ago, and thus they are more evolutionarily distant than, for example, human and mouse. We found that, like C. elegans chromosomes, C. briggsae chromosomes exhibit high levels of recombination on the arms along with higher repeat density, a higher fraction of intronic sequence, and a lower fraction of exonic sequence compared with chromosome centers. Despite extensive intrachromosomal rearrangements, 1:1 orthologs tend to remain in the same region of the chromosome, and colinear blocks of orthologs tend to be longer in chromosome centers compared with arms. More strikingly, the two species show an almost complete conservation of synteny, with 1:1 orthologs present on a single chromosome in one species also found on a single chromosome in the other. The conservation of both chromosomal organization and synteny between these two distantly related species suggests roles for chromosome organization in the fitness of an organism that are only poorly understood presently.  相似文献   

18.
Extracts of Drosophila embryos contain an enzymatic activity that converts circular DNAs into huge networks of catenated rings in an ATP-dependent fashion. The catenation activity is resolved into two protein components during purification. One component is a novel DNA topoisomerase that requires the presence of ATP in order to relax supercoiled DNA. We have shown that the ATP-dependent DNA topoisomerase relaxes DNA by a mechanism distinct from that of nicking-closing enzymes. The Drosophila ATP-dependent topoisomerase allows one segment of a circular DNA to pass through transient breaks in both strands at another site on the DNA circle without any relative rotation between the ends at the transient break. This mechanism can convert negative supertwists to positive twists and vice versa until a relaxed equilibrium state is reached. The formation of catenated rings is mediated by an analogous bimolecular reaction which can occur between two nonhomologous DNA circles. The catenation reaction is fully reversible: in the presence of the second protein component, circular DNA is converted quantitatively into catenated forms; in its absence, the ATP-dependent topoisomerase resolves catenated networks back into monomer circles. The Drosophila ATP-dependent topoisomerase appears to be closely related to E. coli DNA gyrase in that both use a similar mechanism to change the topology of DNA, both require ATP and both are inhibited by the antibiotic novobiocin. The presence of an enzyme that allows one DNA helix to pass freely through another could not only be useful in relaxation of topological constraints, but also may be involved in the folding and unfolding of eucaryotic chromosomes.  相似文献   

19.
Cloned DNA from the larval serum protein one (LSP-1) genes was hybridized to polytene chromosomes of D. melanogaster. The ratio of grains deposited over any two of the three LSP-1 genes with any one LSP-1 subunit probe was constant. Varying the gene dose of any one LSP-1 subunit relative to the others by up to six fold gave a linear relationship of grain ratios to gene ratios. We show that these constant ratios closely reflect the extent of sequence homology between the genes as determined by heteroduplex mapping (Smith et al., 1981) and thermal denaturation studies. The results obtained demonstrate that the LSP-1 subunit genes are present in equal copies in the genome.  相似文献   

20.
In polytene chromosomes of D. melanogaster the heterochromatic pericentric regions are underreplicated (underrepresented). In this report, we analyze the effects of eu-heterochromatic rearrangements involving a cluster of the X-linked heterochromatic (Xh) Stellate repeats on the representation of these sequences in salivary gland polytene chromosomes. The discontinuous heterochromatic Stellate cluster contains specific restriction fragments that were mapped along the distal region of Xh. We found that transposition of a fragment of the Stellate cluster into euchromatin resulted in its replication in polytene chromosomes. Interestingly, only the Stellate repeats that remain within the pericentric Xh and are close to a new eu-heterochromatic boundary were replicated, strongly suggesting the existence of a spreading effect exerted by the adjacent euchromatin. Internal rearrangements of the distal Xh did not affect Stellate polytenization. We also demonstrated trans effects exerted by heterochromatic blocks on the replication of the rearranged heterochromatin; replication of transposed Stellate sequences was suppressed by a deletion of Xh and restored by addition of Y heterochromatin. This phenomenon is discussed in light of a possible role of heterochromatic proteins in the process of heterochromatin underrepresentation in polytene chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号