首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the transmethylation reactions use the same methyl donor, S-adenosylmethionine (SAM), that is synthesised from methionine and ATP by methionine adenosyltransferase (MAT). In mammals, two MAT enzymes have been detected, one ubiquitous and another liver specific. The liver enzyme exists in two oligomeric forms, a tetramer (MAT I) and a dimer (MAT III), MAT I being the one that shows a higher level of affinity for methionine but a lower SAM synthesis capacity. We have solved the crystal structure of rat liver MAT I at 2.7 A resolution, complexed with a methionine analogue: l-2-amino-4-methoxy-cis-but-3-enoic acid (l-cisAMB). The enzyme consists of four identical subunits arranged in two tight dimers that are related by crystallographic 2-fold symmetry. The crystal structure shows the positions of the relevant cysteine residues in the chain, and that Cys35 and Cys61 are perfectly oriented for forming a disulphide link. This result leads us to propose a hypothesis to explain the control of MAT I/III exchange and hence, the effects observed on activity. We have identified the methionine-binding site into the active-site cavity, for the first time. The l-cisAMB inhibitor is stacked against Phe251 aromatic ring in a rather planar conformation, and its carboxylate group coordinates a Mg(2+), which, in turn, is linked to Asp180. The essential role of the involved residues in MAT activity has been confirmed by site-directed mutagenesis. Phe251 is exposed to solvent and is located in the beginning of the flexible loop Phe251-Ala260 that is connecting the N-terminal domain to the central domain. We postulate that a conformational change may take place during the enzymatic reaction and this is possibly the reason of the unusual two-step mechanism involving tripolyphosphate hydrolysis. Other important mechanistic implications are discussed on the light of the results. Moreover, the critical role that certain residues identified in this study may have in methionine recognition opens further possibilities for rational drug design.  相似文献   

2.
S-Adenosylmethionine synthetase (MAT) catalyzes formation of S-adenosylmethionine (SAM) from ATP and l-methionine (Met) and hydrolysis of tripolyphosphate to PP(i) and P(i). Escherichia coli MAT (eMAT) has been crystallized with the ATP analogue AMPPNP and Met, and the crystal structure has been determined at 2.5 A resolution. eMAT is a dimer of dimers and has a 222 symmetry. Each active site contains the products SAM and PPNP. A modeling study indicates that the substrates (AMPPNP and Met) can bind at the same sites as the products, and only a small conformation change of the ribose ring is needed for conversion of the substrates to the products. On the basis of the ternary complex structure and a modeling study, a novel catalytic mechanism of SAM formation is proposed. In the mechanism, neutral His14 acts as an acid to cleave the C5'-O5' bond of ATP while simultaneously a change in the ribose ring conformation from C4'-exo to C3'-endo occurs, and the S of Met makes a nucleophilic attack on the C5' to form SAM. All essential amino acid residues for substrate binding found in eMAT are conserved in the rat liver enzyme, indicating that the bacterial and mammalian enzymes have the same catalytic mechanism. However, a catalytic mechanism proposed recently by González et al. based on the structures of three ternary complexes of rat liver MAT [González, B., Pajares, M. A., Hermoso, J. A., Guillerm, D., Guillerm, G., and Sanz-Aparicio. J. (2003) J. Mol. Biol. 331, 407] is substantially different from our mechanism.  相似文献   

3.
L-dopa, the major treatment for Parkinson's disease (PD), depletes S-adenosyl-L-methionine (SAM). Since SAM causes PD-like symptoms in rodents, the decreased efficacy of chronic L-dopa administered to PD patients may result from a rebound increase in SAM via methionine adenosyl transferase (MAT), which produces SAM from methionine and ATP. This was tested by administering intraperitoneally saline, or L-dopa to mice and assaying for brain MAT activity. As compared to controls, L-dopa (100 mg/kg) treatments of 1 and 2 times per day for 4 days did not significantly increase MAT activity. However, treatments of 1 and 2 times per day for 4 and 8 days did significantly increase the activity of MAT by 21.38% and 28.37%, respectively. These results show that short interval, chronic L-dopa treatments significantly increases MAT activity, which increases the production of SAM. SAM may physiologically antagonize the effects of L-dopa and biochemically decrease the concentrations of L-dopa and dopamine. Thus, an increase in MAT may be related to the decreased efficacy of chronic L-dopa therapy in PD.  相似文献   

4.
Structural and phylogenetic relationships among Bacteria and Eukaryota were analyzed by examining 292 methionine adenosyltransferase (MAT) amino acid sequences with respect to the crystal structure of this enzyme established for Escherichia coli and rat liver. Approximately 30% of MAT residues were found to be identical in all species. Five highly conserved amino acid sequence blocks did not vary in the MAT family. We detected specific structural features that correlated with sequence signatures for several clades, allowing taxonomical identification by sequence analysis. In addition, the number of amino acid residues in the loop connecting beta-strands A2 and A3 served to clearly distinguish sequences between eukaryotes and eubacteria. The molecular phylogeny of MAT genes in eukaryotes can be explained in terms of functional diversification coupled to gene duplication or alternative splicing and adaptation through strong structural constraints. Sequence analyses and intron/exon junction positions among nematodes, arthropods and vertebrates support the traditional Coelomata hypothesis. In vertebrates, the liver MAT I isoenzyme has gradually adapted its sequence towards one providing a more specific liver function. MAT phylogeny also served to cluster the major bacterial groups, demonstrating the superior phylogenetic performance of this ubiquitous, housekeeping gene in reconstructing the evolutionary history of distant relatives.  相似文献   

5.
Abstract: The distribution of methionine adenosyltransferase (MAT) in the CNS of the rat was studied by use of a rapid, sensitive and specific radiochemical method. The S -adenosyl-[methyl-14C] l -methionine ([14C]SAM) generated by adenosyl transfer from ATP to [methyl-14C] l -methionine is quantitated by use of a SAM-consuming transmethylation reaction. Catechol O -methyltransferase (COMT), prepared from rat liver, transfers the methyl-14C group of SAM to 3,4-dihydroxybenzoic acid. The 14C-labelled methylation products, vanillic acid and isovanillic acid, are separated from unreacted methionine by solvent extraction and quantitated by liquid scintillation counting. Compared to other methods of MAT determination, which include separation of generated SAM from methionine by ion-exchange chromatography, the assay described exhibited the same high degree of specificity and sensitivity but proved to be less time consuming. MAT activity was found to be uniformly distributed between various brain regions and the pituitary gland of adult male rats. In the pineal gland the enzyme activity is about tenfold higher.  相似文献   

6.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (AdoMet), the main alkylating agent in living cells. Additionally, in the liver, MAT is also responsible for up to 50% of methionine catabolism. Humans with mutations in the gene MAT1A, the gene that encodes the catalytic subunit of MAT I and III, have decreased MAT activity in liver, which results in a persistent hypermethioninemia without homocystinuria. The hypermethioninemic phenotype associated with these mutations is inherited as an autosomal recessive trait. The only exception is the dominant mild hypermethioninemia associated with a G-A transition at nucleotide 791 of exon VII. This change yields a MAT1A-encoded subunit in which arginine 264 is replaced by histidine. Our results indicate that in the homologous rat enzyme, replacement of the equivalent arginine 265 by histidine (R265H) results in a monomeric MAT with only 0.37% of the AdoMet synthetic activity. However the tripolyphosphatase activity is similar to that found in the wild type (WT) MAT and is inhibited by PP(i). Our in vivo studies demonstrate that the R265H MAT I/III mutant associates with the WT subunit resulting in a dimeric R265H-WT MAT unable to synthesize AdoMet. Tripolyphosphatase activity is maintained in the hybrid MAT, but is not stimulated by methionine and ATP, indicating a deficient binding of the substrates. Our data indicate that the active site for tripolyphosphatase activity is functionally active in the monomeric R265H MAT I/III mutant. Moreover, our results provide a molecular mechanism that might explain the dominant inheritance of the hypermethioninemia associated with the R264H mutation of human MAT I/III.  相似文献   

7.
Methylation of flavivirus RNA is vital for its stability and translation in the infected host cell. This methylation is mediated by the flavivirus methyltransferase (MTase), which methylates the N7 and 2′‐O positions of the viral RNA cap by using S‐adenosyl‐l ‐methionine (SAM) as a methyl donor. In this report, we demonstrate that SAM, in contrast to the reaction by‐product S‐adenosyl‐l ‐homocysteine, which was assumed previously, is copurified with the Dengue (DNV) and West Nile virus MTases produced in Escherichia coli (E. coli). This endogenous SAM can be removed by denaturation and refolding of the MTase protein. The refolded MTase of DNV serotype 3 (DNV3) displays methylation activity comparable to native enzyme, and its crystal structure at 2.1 Å is almost identical to that of native MTase. We characterized the binding of Sinefungin (SIN), a previously described SAM‐analog inhibitor of MTase function, to the native and refolded DNV3 MTase by isothermal titration calorimetry, and found that SIN binds to refolded MTase with more than 16 times the affinity of SIN binding to the MTase purified natively. Moreover, we show that SAM is also copurified with other flavivirus MTases, indicating that purification by refolding may be a generally applicable tool for studying flavivirus MTase inhibition.  相似文献   

8.
肝细胞癌是一种死亡率极高的癌症,大多数病人发现时已属晚期.甲硫氨酸腺苷转移酶(MAT)是细胞生命活动的关键酶,可以通过催化甲酼氨酸和三磷酸腺苷(ATP)结合,促进生物甲基供体S-腺苷甲酼氨酸(SAMe)的生物合成.正常肝细胞中MAT1A与MAT2A存在动态平衡,共同维持细胞内SAMe稳态;肝细胞癌中MAT1A转变成MAT2A,会使SAMe生物合成减少,为癌细胞生长提供有利条件,故MAT1A表达降低而MAT2A增高.因此,促进MAT2A向MAT1A转化,进而提高MAT1A/MAT2A的比值可能成为治疗肝细胞癌的关键靶点之一.本文就MAT1A/MAT2A平衡在肝细胞癌中的重要作用作一综述,旨在为寻找肝细胞癌防治靶点提供新的思路.  相似文献   

9.
Wang S  Eisenberg D 《Biochemistry》2006,45(6):1554-1561
Pantothenate synthetase (PS) from Mycobacterium tuberculosis represents a potential target for antituberculosis drugs. PS catalyzes the ATP-dependent condensation of pantoate and beta-alanine to form pantothenate. Previously, we determined the crystal structure of PS from M. tuberculosis and its complexes with AMPCPP, pantoate, and pantoyl adenylate. Here, we describe the crystal structure of this enzyme complexed with AMP and its last substrate, beta-alanine, and show that the phosphate group of AMP serves as an anchor for the binding of beta-alanine. This structure confirms that binding of beta-alanine in the active site cavity can occur only after formation of the pantoyl adenylate intermediate. A new crystal form was also obtained; it displays the flexible wall of the active site cavity in a conformation incapable of binding pantoate. Soaking of this crystal form with ATP and pantoate gives a fully occupied complex of PS with ATP. Crystal structures of these complexes with substrates, the reaction intermediate, and the reaction product AMP provide a step-by-step view of the PS-catalyzed reaction. A detailed reaction mechanism and its implications for inhibitor design are discussed.  相似文献   

10.
甲硫氨酸(methionine)作为人体必需氨基酸,生理功能多样,在肿瘤代谢重编程过程中具有重要意义。研究发现,多种肿瘤细胞对外源性甲硫氨酸存在依赖性,该效应被称为Hoffman效应。在人体内,甲硫氨酸经甲硫氨酸循环代谢,参与一碳单位代谢、叶酸循环,以及多胺、谷胱甘肽、半胱氨酸和核苷酸等多种物质的合成。肿瘤中常出现甲硫氨酸代谢的改变,并伴随甲硫氨酸代谢相关酶基因表达的异常,其中以甲硫氨酸腺苷转移酶(methionine adenosyltransferase, MAT)相关基因表达改变及甲硫腺苷磷酸化酶(methylthioadenosine phosphorylase,MTAP)基因的缺失最为常见,二者可分别引起甲硫氨酸循环及甲硫氨酸补救合成途径的异常,进而导致甲基供体S-腺苷甲硫氨酸(S-adenosylmethionine, SAM)的生成减少和甲硫腺苷(methylthioadenosine, MTA)的堆积,其与肿瘤的发生、发展和转移等活动密切相关。由甲硫氨酸的代谢改变和代谢酶的基因表达异常,分别衍生出2种不同的治疗策略,即甲硫氨酸限制疗法和靶向治疗。本文将从甲硫氨酸代谢出发,阐述肿瘤中甲硫氨酸依懒性、肿瘤细胞MAT和MTAP相关基因的表达调控,并概述甲硫氨酸相关肿瘤治疗方案的新进展与新问题,为肿瘤治疗方案的进一步探索提供新思路。  相似文献   

11.
Mammalian acylaminoacyl peptidase, a member of the prolyl oligopeptidase family of serine peptidases, is an exopeptidase, which removes acylated amino acid residues from the N terminus of oligopeptides. We have investigated the kinetics and inhibitor binding of the orthologous acylaminoacyl peptidase from the thermophile Aeropyrum pernix K1 (ApAAP). Complex pH-rate profiles were found with charged substrates, indicating a strong electrostatic effect in the surroundings of the active site. Unexpectedly, we have found that oligopeptides can be hydrolysed beyond the N-terminal peptide bond, demonstrating that ApAAP exhibits endopeptidase activity. It was thought that the enzyme is specific for hydrophobic amino acids, in particular phenylalanine, in accord with the non-polar S1 subsite of ApAAP. However, cleavage after an Ala residue contradicted this notion and demonstrated that P1 residues of different nature may bind to the S1 subsite depending on the remaining peptide residues. The crystal structures of the complexes formed between the enzyme and product-like inhibitors identified the oxyanion-binding site unambiguously and demonstrated that the phenylalanine ring of the P1 peptide residue assumes a position different from that established in a previous study, using 4-nitrophenylphosphate. We have found that the substrate-binding site extends beyond the S2 subsite, being capable of binding peptides with a longer N terminus. The S2 subsite displays a non-polar character, which is unique among the enzymes of this family. The S3 site was identified as a hydrophobic region that does not form hydrogen bonds with the inhibitor P3 residue. The enzyme-inhibitor complexes revealed that, upon ligand-binding, the S1 subsite undergoes significant conformational changes, demonstrating the plasticity of the specificity site.  相似文献   

12.
S-Adenosylmethionine (AdoMet) is the most widely used alkyl group donor in biological systems. The formation of AdoMet from ATP and L-methionine is catalyzed by S-adenosylmethionine synthetase (AdoMet synthetase). Elucidation of the conformations of enzyme-bound substrates, product, and inhibitors is important for the understanding of the catalytic mechanism of the enzyme and the design of new inhibitors. To obtain structural data for enzyme-bound substrates and product, we have used two-dimensional transferred nuclear Overhauser effect spectroscopy to determine the conformation of enzyme-bound AdoMet and 5'-adenylyl imidodiphosphate (AMPPNP). AMPPNP, an analogue of ATP, is resistant to the ATP hydrolysis activity of AdoMet synthetase because of the presence of a nonhydrolyzable NH-link between the beta- and gamma-phosphates but is a substrate for AdoMet formation during which tripolyphosphate is produced. AdoMet and AMPPNP both bind in an anti conformation about the glycosidic bond. The ribose rings are in C3'-exo and C4'-exo conformations in AdoMet and AMPPNP, respectively. The differences in ribose ring conformations presumably reflect the different steric requirements of the C5' substituents in AMPPNP and AdoMet. The NMR-determined conformations of AdoMet and AMPPNP were docked into the E. coli AdoMet synthetase active site taken from the enzyme.ADP. Pi crystal structure. Since there are no nonexchangeable protons either in the carboxy-terminal end of the methionine segment of AdoMet or in the tripolyphosphate segment of AMPPNP, these portions of the molecules were modeled into the enzyme active site. The interactions of AdoMet and AMPPNP with the enzyme predict the location of the methionine binding site and suggest how the positive charge formed on the sulfur during AdoMet synthesis is stabilized.  相似文献   

13.
Farrar CE  Siu KK  Howell PL  Jarrett JT 《Biochemistry》2010,49(46):9985-9996
Biotin synthase (BS) is a member of the "SAM radical" superfamily of enzymes, which catalyze reactions in which the reversible or irreversible oxidation of various substrates is coupled to the reduction of the S-adenosyl-l-methionine (AdoMet) sulfonium to generate methionine and 5'-deoxyadenosine (dAH). Prior studies have demonstrated that these products are modest inhibitors of BS and other members of this enzyme family. In addition, the in vivo catalytic activity of Escherichia coli BS requires expression of 5'-methylthioadenosine/S-adenosyl-l-homocysteine nucleosidase, which hydrolyzes 5'-methylthioadenosine (MTA), S-adenosyl-l-homocysteine (AdoHcy), and dAH. In the present work, we confirm that dAH is a modest inhibitor of BS (K(i) = 20 μM) and show that cooperative binding of dAH with excess methionine results in a 3-fold enhancement of this inhibition. However, with regard to the other substrates of MTA/AdoHcy nucleosidase, we demonstrate that AdoHcy is a potent inhibitor of BS (K(i) ≤ 650 nM) while MTA is not an inhibitor. Inhibition by both dAH and AdoHcy likely accounts for the in vivo requirement for MTA/AdoHcy nucleosidase and may help to explain some of the experimental disparities between various laboratories studying BS. In addition, we examine possible inhibition by other AdoMet-related biomolecules present as common contaminants in commercial AdoMet preparations and/or generated during an assay, as well as by sinefungin, a natural product that is a known inhibitor of several AdoMet-dependent enzymes. Finally, we examine the catalytic activity of BS with highly purified AdoMet in the presence of MTAN to relieve product inhibition and present evidence suggesting that the enzyme is half-site active and capable of undergoing multiple turnovers in vitro.  相似文献   

14.
The diverse reactions catalyzed by the radical-SAM superfamily of enzymes are thought to proceed via a set of common mechanistic steps, key among which is the reductive cleavage of S-adenosyl-L-methionine (SAM) by a reduced [4Fe-4S] cluster to generate an intermediate deoxyadenosyl radical. A number of spectroscopic studies have provided evidence that SAM interacts directly with the [4Fe-4S] clusters in several of the radical-SAM enzymes; however, the molecular mechanism for the reductive cleavage has yet to be elucidated. Selenium X-ray absorption spectroscopy (Se-XAS) was used previously to provide evidence for a close interaction between the Se atom of selenomethionine (a cleavage product of Se-SAM) and an Fe atom of the [4Fe-4S] cluster of lysine-2,3-aminomutase (KAM). Here, we utilize the same approach to investigate the possibility of a similar interaction in pyruvate formate-lyase activating enzyme (PFL-AE) and biotin synthase (BioB), two additional members of the radical-SAM superfamily. The results show that the latter two enzymes do not exhibit the same Fe-Se interaction as was observed in KAM, indicating that the methionine product of reductive cleavage of SAM does not occupy a well-defined site close to the cluster in PFL-AE and BioB. These results are interpreted in terms of the differences among these enzymes in their use of SAM as either a cofactor or a substrate.  相似文献   

15.
Radical SAM enzymes have only recently been recognized as an ancient family sharing an unusual radical-based reaction mechanism. This late appreciation is due to the extreme oxygen sensitivity of most radical SAM enzymes, making their characterization particularly arduous. Nevertheless, realization that the novel apposition of the established cofactors S-adenosylmethionine and [4Fe-4S] cluster creates an explosive source of catalytic radicals, the appreciation of the sheer size of this previously neglected family, and the rapid succession of three successfully solved crystal structures within a year have ensured that this family has belatedly been noted. In this review, we report the characterization of two enzymes: the established radical SAM enzyme, HemN or oxygen-independent coproporphyrinogen III oxidase from Escherichia coli, and littorine mutase, a presumed radical SAM enzyme, responsible for the conversion of littorine to hyoscyamine in plants. The enzymes are compared to other radical SAM enzymes and in particular the three reported crystal structures from this family, HemN, biotin synthase and MoaA, are discussed.  相似文献   

16.
The bacterial periplasmic methionine‐binding protein MetQ is involved in the import of methionine by the cognate MetNI methionine ATP binding cassette (ABC) transporter. The MetNIQ system is one of the few members of the ABC importer family that has been structurally characterized in multiple conformational states. Critical missing elements in the structural analysis of MetNIQ are the structure of the substrate‐free form of MetQ, and detailing how MetQ binds multiple methionine derivatives, including both l ‐ and d ‐methionine isomers. In this study, we report the structures of the Neisseria meningitides MetQ in substrate‐free form and in complexes with l ‐methionine and with d ‐methionine, along with the associated binding constants determined by isothermal titration calorimetry. Structures of the substrate‐free (N238A) and substrate‐bound N. meningitides MetQ are related by a “Venus‐fly trap” hinge‐type movement of the two domains accompanying methionine binding and dissociation. l ‐ and d ‐methionine bind to the same site on MetQ, and this study emphasizes the important role of asparagine 238 in ligand binding and affinity. A thermodynamic analysis demonstrates that ligand‐free MetQ associates with the ATP‐bound form of MetNI ~40 times more tightly than does liganded MetQ, consistent with the necessity of dissociating methionine from MetQ for transport to occur.  相似文献   

17.
Identification of the ATP-binding domain of vaccinia virus thymidine kinase   总被引:5,自引:0,他引:5  
Although small in size (20 kDa), the vaccinia virus (VV) thymidine kinase protein (EC 2.7.1.21 TK) is a relatively complex enzyme which must contain domains involved in binding both substrates (ATP and thymidine) and a feedback inhibitor (dTTP), as well as sequences directing the association of individual protein monomers into a functional tetrameric enzyme. Alignment of predicted amino acid sequences of the thymidine kinase genes from a variety of sources was used to identify highly conserved regions as a first step toward locating potential regions housing essential domains. A conserved domain (domain I) near the amino terminus of VV TK protein had characteristics consistent with a nucleotide-binding site. Analysis of the nucleotide substrate specificity of VV TK indicated that ATP acts as the major phosphate donor for thymidine phosphorylation while GTP, CTP, and UTP were inefficient substrates. Site-directed mutagenesis was performed on domain I to generate 11 mutant enzymes. Comparison of the wild-type and mutant proteins with regard to enzyme activity revealed that two of the mutant enzymes, T18 and S19, exhibited enhanced enzyme activity (3.73-fold and 1.35-fold, respectively) relative to the control. The other mutations introduced led to greatly reduced levels of enzyme activity which correlated with a reduced or altered ability of the mutant enzymes to bind ATP as determined by ATP-agarose affinity chromatography. Wild-type VV TK bound to an ATP affinity column could also be eluted with dTTP. Glycerol gradient separation of wild-type TK in the presence or absence of dTTP indicated that dissociation of the tetrameric complex was not the means by which enzymatic inhibition was achieved. Taken together, these results suggest that (i) domain I (amino acids 11-22) of the VV TK corresponds to the ATP-binding site, and (ii) that dTTP is able to interfere with ATP binding, either directly or indirectly, and thereby inhibit enzymatic activity without dissociating the native enzyme.  相似文献   

18.
Homomers are prevalent in bacterial proteomes, particularly among core metabolic enzymes. Homomerization is often key to function and regulation, and interfaces that facilitate the formation of homomeric enzymes are subject to intense evolutionary change. However, our understanding of the molecular mechanisms that drive evolutionary variation in homomeric complexes is still lacking. How is the diversification of protein interfaces linked to variation in functional regulation and structural integrity of homomeric complexes? To address this question, we studied quaternary structure evolution of bacterial methionine S‐adenosyltransferases (MATs)—dihedral homotetramers formed along a large and conserved dimeric interface harboring two active sites, and a small, recently evolved, interdimeric interface. Here, we show that diversity in the physicochemical properties of small interfaces is directly linked to variability in the kinetic stability of MAT quaternary complexes and in modes of their functional regulation. Specifically, hydrophobic interactions within the small interface of Escherichia coli MAT render the functional homotetramer kinetically stable yet impose severe aggregation constraints on complex assembly. These constraints are alleviated by electrostatic interactions that accelerate dimer‐dimer assembly. In contrast, Neisseria gonorrhoeae MAT adopts a nonfunctional dimeric state due to the low hydrophobicity of its small interface and the high flexibility of its active site loops, which perturbs small interface integrity. Remarkably, in the presence of methionine and ATP, N. gonorrhoeae MAT undergoes substrate‐induced assembly into a functional tetrameric state. We suggest that evolution acts on the interdimeric interfaces of MATs to tailor the regulation of their activity and stability to unique organismal needs.  相似文献   

19.
Threonine synthase (TS) is a PLP-dependent enzyme that catalyzes the last reaction in the synthesis of threonine from aspartate. In plants, the methionine pathway shares the same substrate, O-phospho-L-homoserine (OPH), and TS is activated by S-adenosyl-methionine (SAM), a downstream product of methionine synthesis. This positive allosteric effect triggered by the product of another pathway is specific to plants. The crystal structure of Arabidopsis thaliana apo threonine synthase was solved at 2.25 A resolution from triclinic crystals using MAD data from the selenomethionated protein. The structure reveals a four-domain dimer with a two-stranded beta-sheet arm protruding from one monomer onto the other. This domain swap could form a lever through which the allosteric effect is transmitted. The N-terminal domain (domain 1) has a unique fold and is partially disordered, whereas the structural core (domains 2 and 3) shares the functional domain of PLP enzymes of the same family. It also has similarities with SAM-dependent methyltransferases. Structure comparisons allowed us to propose potential sites for pyridoxal-phosphate and SAM binding on TS; they are close to regions that are disordered in the absence of these molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号