首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Birnbaum  W Lierse 《Acta anatomica》1992,145(4):354-363
The ligamentum coracohumerale, as the anterior limit of the bursa subacromialis, runs into the shoulder joint capsule, connecting--broadly based--above the sulcus intertubercularis. It does not, however, originate--as described previously--from the base of the processus coracoideus (viewed frontally), but rather medially from the base, i.e. on the side of the fossa supraspinatus. The sliding mechanism starting at 50 degrees affects the parietal sheet of the bursa subacromialis, whereby the laterally situated section slides under the medially situated section. With an abduction of up to 50 degrees, the lateral section congests in front of the corner of the acromion, sliding from there under the acromion, so that the--hitherto--medial section is located above the section now sliding away beneath it. This sliding mechanism continues on up to 100 degrees. At this point the parietal sheet of the bursa subacromialis lies as follows: The section that had been situated laterally at the beginning of the sliding mechanism now lies caudally to the section that had lain medially at the outset. The bursa subacromialis does not slide fully into the fossa supraspinatus, as in all of the cases observed, it is firmly connected, together with the fascia subdeltoidea, to the corner of the acromion. The visceral sheet does not change in the course of the sliding mechanism as described, as it is connected to the fascia of the supraspinatus muscle--with the exception of a medial stretch of 16 mm. A further finding deals with the course of the muscles of the caput breve of the biceps brachii. Individual muscle fibre components do not connect to the processus coracoideus, but rather run before the tip of the processus coracoideus into the ligamentum coracoacromiale, radiating not only into the ligamentum coracoacromiale, but also--certain components--into the shoulder joint capsule. Through this, the 'aponeurosis tendinis brachii' forms a tendon roof in front of the processus coracoideus that extends to the structures running along the head of the humerus. The muscle fibre components of the caput breve of the m. biceps brachii radiating into the shoulder joint capsule, together with the muscles of the rotator cuff and the ligamentum coracohumerale, keep the shoulder joint capsule tense, thus preventing constriction symptoms.  相似文献   

2.
Control of movement in the avian shoulder joint is fundamental to understanding the avian wingstroke. The acrocoracohumeral ligament (AHL) is thought to play a key role in stabilizing the glenoid and balancing the pectoralis in gliding flight. If the AHL has to be taut to balance the pectoralis, then it must constrain glenohumeral motion during flapping flight as well. However, birds vary wing kinematics depending on flight speed and behavior. How can a passive ligament accommodate such varying joint movements? Herein, mechanical testing and 3-D modeling are used to link the mechanical properties and morphology of the AHL to its functional role during flapping flight. The bone-ligament-bone complex of the pigeon (Columba livia) fails at a tensile loading of 141 ± 18 N (± s .D., n = 10) or 39 times body weight, which corresponds to a failure stress of 51 MPa, well above expected loads during flight. Simulated AHL length changes, comparisons to glenohumeral kinematics from the literature, and manipulations of partially dissected pigeon specimens all support the hypothesis that the AHL remains taut through downstroke and most of upstroke while becoming slack during the downstroke/upstroke transition. The digital AHL model provides a mechanism for explaining how the AHL can stabilize the shoulder joint under a broad array of humeral paths by constraining the coordination of glenohumeral degrees of freedom.  相似文献   

3.
Measurement of the length and width of the ligament of the head of femur (ligamentum teres) in 140 normal human fetuses between 12 weeks and term provides limits for growth changes in this structure. These observations provide no morphological evidence of a significant difference between males and females, or between the right and left sides, to explain the female and left hip preponderance reported in congenital hip disease. The ligament is shown to be variable in length, width, and shape, and it is not a distinctly linear structure through linearity may increase with age. Tests of femoral head mobility support the opinion that this ligament must play a role in fetal and neonatal hip joint stability. Weak correlation only was demonstrated between the ligament variables and acetabular depth, which suggests that ligament shape and socket shape are not closely related. Comparison of measurements from normal and 12 dysplastic or subluxated joints provides no evidence to support previous observations that this structure is unusually long in abnormal hip joints which are not frankly dislocated.  相似文献   

4.
Numerous supporting structures assist in the retention of the femoral head within the acetabulum of the normal hip joint including the capsule, labrum, and ligament of the femoral head (LHF). During total hip arthroplasty (THA), the LHF is often disrupted or degenerative and is surgically removed. In addition, a portion of the remaining supporting structures is transected or resected to facilitate surgical exposure. The present study analyzes the effects of LHF absence and surgical dissection in THA patients. Twenty subjects (5 normal hip joints, 10 nonconstrained THA, and 5 constrained THA) were evaluated using fluoroscopy while performing active hip abduction. All THA subjects were considered clinically successful. Fluoroscopic videos of the normal hips were analyzed using digitization, while those with THA were assessed using a computerized interactive model-fitting technique. The distance between the femoral head and acetabulum was measured to determine if femoral head separation occurred. Error analysis revealed measurements to be accurate within 0.75mm. No separation was observed in normal hips or those subjects implanted with constrained THA, while all 10 (100%) with unconstrained THA demonstrated femoral head separation, averaging 3.3mm (range 1.9-5.2mm). This study has shown that separation of the prosthetic femoral head from the acetabular component can occur. The normal hip joint has surrounding capsuloligamentous structures and a ligament attaching the femoral head to the acetabulum. We hypothesize that these soft tissue supports create a passive, resistant force at the hip, preventing femoral head separation. The absence of these supporting structures after THA may allow increased hip joint forces, which may play a role in premature polyethylene wear or prosthetic loosening.  相似文献   

5.
Ligament-bone interaction in a three-dimensional model of the knee   总被引:1,自引:0,他引:1  
In mathematical knee-joint models, the ligaments are usually represented by straight-line elements, connecting the insertions of the femur and tibia. Such a model may not be valid if a ligament is bent in its course over bony-surfaces, particularly not if the resulting redirection of the ligament force has a considerable effect on the laxity or motion characteristics of the knee-joint model. In the present study, a model for wrapping of a ligament around bone was incorporated in a three-dimensional mathematical model of the human knee. The bony edge was described by a curved line on which the contact point of the line element representing a ligament bundle was located. Frictionless contact between the ligament bundle and the bone was assumed. This model was applied to the medial collateral ligament (MCL) interacting with the bony edge of the tibia. It was found that, in comparison with the original model without bony interactions, the bony edge redirected the ligament force of the MCL in such a way that it counterbalanced valgus moments on the tibia more effectively. The effect of the bony interaction with the MCL on the internal-external rotation laxity, however, was negligible.  相似文献   

6.
Injuries to the lateral collateral ligaments of the ankle joint are among the most frequently occurring injuries at the lower limb. The present study was conducted for the purpose of establishing the basis for the development of a quantitative diagnostic procedure for such injuries. To achieve this goal, the effect of four types of ligament injuries on the three-dimensional mechanical characteristics of the ankle were investigated. These types of injuries consisted of: 1) isolated tear of the anterior talofibular ligament; 2) isolated tear of the calcaneofibular ligament; 3) isolated tear of the posterior talofibular ligament; and 4) combined tear of both the anterior talofibular ligament and the calcaneofibular ligament. The experiments were conducted on 31 amputated lower limbs and consisted of comparing the three-dimensional load-displacement and flexibility characteristics of the ankle joint prior to and following sectioning of selected ligaments. The experimental and analytical procedures used to derive these characteristics was developed previously by the authors. From the results of this study it was concluded that the three-dimensional flexibility characteristics of the ankle joint are strongly influenced by damage to the lateral collateral ligaments. Furthermore, it was found that each type of ligament injury produced unique and identifiably changes in the flexibility characteristics of the ankle. These unique changes, which are described in detail in this paper, can be used to discriminate between the different types of ligament injuries. Consequently, it was concluded that it is feasible to develop a quantitative diagnostic procedure for ankle ligament injuries based on the effect of the injury on the flexibility characteristics of the ankle.  相似文献   

7.
Fifteen swine cadavers were examined to determine a quick, reliable means of locating the level of the cricothyroid ligament from consistently palpable structures in the head and neck area. From calculations of measurements made on these cadavers, it was discovered that when a 21-43 kg pig was placed in a standard position, the measured length (L) from the angle of the mandible to the manubrium sterni multiplied by a factor of 0.48 equals the parameter Z [L (0.48) = Z]. Z was measured, beginning at the manubrium sterni, along the ventral midline. The endpoint of Z was at the level of the cricothyroid ligament. A catheter inserted at this point through the ligament into the airway provides a means of transtracheal ventilation. This method of ventilation can be used in emergencies to avoid a tracheostomy or as an alternative to endotracheal ventilation. This method was applied successfully to four anesthetized pigs as determined by a series of arterial blood gas samples.  相似文献   

8.
9.
F K Fuss 《Acta anatomica》1991,140(3):260-268
By means of a combined technique of dissection and radiography, the function of cruciate ligament fibers was analyzed for motions in the sagittal plane, and different functional fiber bundles were reconstructed in cadaver knees. In order to grant permanent stability, crucial replacement must be concentrated on the reconstruction of the constantly taut 'guiding bundle' of each cruciate ligament. The femoral attachment point of each guiding bundle was found to be in a constant position within the femoral attachment of the respective cruciate ligament. The femoral attachment areas of different functional fibers are also defined geometrically, and the consequences of improper guiding bundle replacement are discussed.  相似文献   

10.
The cervical facet joint has been identified as a source of neck pain, and its capsular ligament is a likely candidate for injury during whiplash. Many studies have shown that the mechanical properties of ligaments can be altered by subfailure injury. However, the subfailure mechanical response of the facet capsular ligament has not been well defined, particularly in the context of physiology and pain. Therefore, the goal of this study was to quantify the structural mechanics of the cervical facet capsule and define the threshold for altered structural responses in this ligament during distraction. Tensile failure tests were preformed using isolated C6/C7 rat facet capsular ligaments (n=8); gross ligament failure, the occurrence of minor ruptures and ligament yield were measured. Gross failure occurred at 2.45+/-0.60 N and 0.92+/-0.17 mm. However, the yield point occurred at 1.68+/-0.56 N and 0.57+/-0.08 mm, which was significantly less than gross failure (p<0.001 for both measurements). Maximum principal strain in the capsule at yield was 80+/-24%. Energy to yield was 14.3+/-3.4% of the total energy for a complete tear of the ligament. Ligament yield point occurred at a distraction magnitude in which pain symptoms begin to appear in vivo in the rat. These mechanical findings provide insight into the relationship between gross structural failure and painful loading for the facet capsular ligament, which has not been previously defined for such neck injuries. Findings also present a framework for more in-depth methods to define the threshold for persistent pain and could enable extrapolation to the human response.  相似文献   

11.
This study determined which knee joint motions lead to anterior cruciate ligament (ACL) rupture with the knee at 25° of flexion. The knee was subjected to internal and external rotations, as well as varus and valgus motions. A failure locus representing the relationship between these motions and ACL rupture was established using finite element simulations. This study also considered possible concomitant injuries to the tibial articular cartilage prior to ACL injury. The posterolateral bundle of the ACL demonstrated higher rupture susceptibility than the anteromedial bundle. The average varus angular displacement required for ACL failure was 46.6% lower compared to the average valgus angular displacement. Femoral external rotation decreased the frontal plane angle required for ACL failure by 27.5% compared to internal rotation. Tibial articular cartilage damage initiated prior to ACL failure in all valgus simulations. The results from this investigation agreed well with other experimental and analytical investigations. This study provides a greater understanding of the various knee joint motion combinations leading to ACL injury and articular cartilage damage.  相似文献   

12.
Concomitant soft tissue injury resulting from knee instability following cruciate rupture is a serious clinical problem. To study this injury mechanism, the biomechanical properties of the lateral collateral ligament were measured at 0, 4, 8, 12, and 16 weeks post-operatively in rabbits having the anterior and posterior cruciate ligaments sectioned. No significant changes were found in the ligament's cross-sectional area, tensile mechanical response, or in its hexosamine content. The predominant mode of ligament failure was by bone avulsion at the insertion sites (78 percent) with 86 percent of paired limbs failing in a similar manner.  相似文献   

13.
The anterior drawer test at the human ankle joint is a routine clinical examination. The relationship between the mechanical response of this joint and the flexion angle was elucidated by a recent mathematical model, using purely elastic mechanical characteristics for the ligament fibres. The objective of the present work was to assess the effect of ligament viscoelasticity on the force response of the ankle joint for anterior displacements of the foot relative to the tibia, at different ankle flexion positions. A viscoelastic model of the ligaments from the literature was included in the recently proposed mathematical model. Drawer tests were simulated at several flexion angles and for increasing velocities of the imposed anterior displacement. The stiffness of the model ankle joint increased only modestly with velocity. The response force found for a 6mm displacement at 20 degrees plantarflexion increased by only 13% for a one hundred-fold increase in velocity from 0.1 to 10 mm/s. The flexion angle was confirmed as the most influential parameter in the mechanical response of the ankle to anterior drawer test.  相似文献   

14.
The purpose of this study is to investigate the effect of anterior portion of anterior cruciate ligament, posterior cruciate ligament, anterior and deep portions of medial collateral ligament and the tibio-femoral articular contacts on passive knee motion. A well-accepted reference model for a normal tibio-femoral joint is reconstructed from the literature. The proposed three-dimensional dynamic tibio-femoral model includes the isometric fascicles, ligament bundles and irregularly shaped medial-lateral contact surfaces. With the approach we aim to analyze bone shape and ligament related abnormalities of knee kinematics. The rotations, translations and the contact forces during passive knee flexion were compared against a reference model and the results were found in close accordance. This study demonstrated that isometric ligament bundles play an important role in understanding the femur shape from contact points on tibia. Femoral condyles are not necessarily spherical. The surgical treatments should consider both ligament bundle lengths and contact surface geometries to achieve a problem free knee kinematics after a knee surgery.  相似文献   

15.
Recruitment of knee joint ligaments   总被引:6,自引:0,他引:6  
On the basis of earlier reported data on the in vitro kinematics of passive knee-joint motions of four knee specimens, the length changes of ligament fiber bundles were determined by using the points of insertion on the tibia and femur. The kinematic data and the insertions of the ligaments were obtained by using Roentgenstereophotogrammetry. Different fiber bundles of the anterior and posterior cruciate ligaments and the medial and lateral collateral ligaments were identified. On the basis of an assumption for the maximal strain of each ligament fiber bundle during the experiments, the minimal recruitment length and the probability of recruitment were defined and determined. The motions covered the range from extension to 95 degrees flexion and the loading conditions included internal or external moments of 3 Nm and anterior or posterior forces of 30 N. The ligament length and recruitment patterns were found to be consistent for some ligament bundles and less consistent for other ligament bundles. The most posterior bundle of each ligament was recruited in extension and the lower flexion angles, whereas the anterior bundle was recruited for the higher flexion angles. External rotation generally recruited the collateral ligaments, while internal rotation recruited the cruciate ligaments. However, the anterior bundle of the posterior cruciate ligament was recruited with external rotation at the higher flexion angles. At the lower flexion angles, the anterior cruciate and the lateral collateral ligaments were recruited with an anterior force. The recruitment of the posterior cruciate ligament with a posterior force showed that neither its most anterior nor its most posterior bundle was recruited at the lower flexion angles. Hence, the posterior restraint must have been provided by the intermediate fiber bundles, which were not considered in the experiment. At the higher flexion angles, the anterior bundles of the anterior cruciate ligament and the posterior cruciate ligament were found to be recruited with anterior and posterior forces, respectively. The minimal recruitment length and the recruitment probability of ligament fiber bundles are useful parameters for the evaluation of ligament length changes in those experiments where no other method can be used to determine the zero strain lengths, ligament strains and tensions.  相似文献   

16.
Although the anterior drawer test at the ankle joint is commonly used in routine clinical practice, very little is known about the sharing of load between the individual passive structures and the joint response at different flexion angles.A mathematical model of the ankle joint was devised to calculate ligament fibre recruitment and load/displacement curves at different flexion angles. Ligaments were modelled as three-dimensional arrays of fibres, and their orientations at different flexion angles were taken from a previously validated four-bar-linkage model in the sagittal plane. A non-linear stress/strain relationship was assumed for ligament fibres and relevant mechanical parameters were taken from two reports in the literature. Talus and calcaneus were assumed to move as a single rigid body. Antero/distal motion of the talus relative to the tibia was analysed.The ankle joint was found to be stiffer at the two extremes of the flexion range, and the highest laxity was found around the neutral position, confirming previous experimental works. With a first dataset, a 20N anterior force produced 4.3, 5.5, and 4.4mm displacement respectively at 20 degrees plantarflexion, at neutral, and at 20 degrees dorsiflexion. At 10 degrees plantarflexion, for a 6mm displacement, 65% of the external force was supported by the anterior talofibular, 11% by the deep anterior tibiotalar and 5.5% by the tibionavicular ligament. Corresponding results from a second dataset were 1.4, 2.4 and 1.8mm at 40N force, and 80%, 0% and 2% for a 3mm displacement. A component of the contact force supported the remainder.  相似文献   

17.
Knee hyperextension has been described as a mechanism of isolated anterior cruciate ligament (ACL) tears, but clinical and experimental studies have produced contradictory results for the ligament injuries and the injury sequence caused by the hyperextension loading mechanism. The hypothesis of this study was that bicruciate ligament injuries would occur as a result of knee hyperextension by producing high tibio-femoral (TF) compressive forces that would cause anterior translation of the tibia to rupture the ACL, while joint extension would simultaneously induce rupture of the posterior cruciate ligament (PCL). Six human knees were loaded in hyperextension until gross injury, while bending moments and motions were recorded. Pressure sensitive film documented the magnitude and location of TF compressive forces. The peak bending moment at failure was 108?N?m±46?N?m at a total extension angle of 33.6?deg±11?deg. All joints failed by simultaneous ACL and PCL damages at the time of a sudden drop in the bending moment. High compressive forces were measured in the anterior compartments of the knee and likely produced the anterior tibial subluxation, which contributed to excessive tension in the ACL. The injury to the PCL at the same time may have been due to excessive extension of the joint. These data, and the comparisons with previous experimental studies, may help explain the mechanisms of knee ligament injury during hyperextension. Knowledge of forces and constraints that occur clinically could then help diagnose primary and secondary joint injuries following hyperextension of the human knee.  相似文献   

18.
The presence of a short furcula in Archaeopteryx suggests that this bird possessed a small, shortfibered, cranial portion of the pinnate m. pectoralis originating from the furcula and possibly from the aponeurosis between the furcula and the coracoid and cartilaginous sternum, and inserting on the cranial edge of the humerus, and an equally small, short-fibered pinnate caudal part of the same muscle arising from the presumably cartilaginous sternum and inserting on the ventral surface of the deltoid crest of the humerus. In Archaeopteryx, the cranial-most portion of the m. pectoralis protracted the wing and held it in place against the backward pressure, or drag, of the air when the bird flew. There is no basis for postulating that the caudal part of the m. pectoralis in Archaeopteryx was sufficiently large for active flapping flight, although this presumably small muscle probably held the wings in a horizontal position necessary for aerial locomotion. The muscle fibers of all parts of the m. pectoralis were short because the small distance between its origin and insertion. The combination of features in the pectoral system of Archaeopteryx indicates strongly that this bird was a specialized glider, not an active flapping flier. Avian flight started from the trees downward, not from the ground upward.  相似文献   

19.
A compound flap is described that utilizes skin from the anterior chest on a narrow segment of pectoralis major muscle, with its underlying axial neurovascular bundle. This flap has been used successfully to reconstruct large defects in 4 consecutive patients. Our experience with this flap suggests that it may be more versatile than the deltopectoral flap.  相似文献   

20.
90% of the first (hallucal) tarsometatarsal joints are screw-shaped; the axis is directed upwards to the front touching the lateral edge of the joint. Thus the plantar flexion is inevitably accompanied by an adduction and a pronation, and vice versa a dorsiflexion is consequently accompanied by an abduction and a supination, when the articular surfaces exactly slide along each other. 10% of these joints, however, are ellipsoid-shaped; in this case the distal articular surface of the medial cuneiform bone has the form of an ovoid head, and a strong ligament situated next to the lateral edge of the joint effects the same kind of motion described above. The medial cuneonavicular joint is always ellipsoid-shaped, the head of which is made up by the medial facet of the distal articular surface of the navicular bone. Each of the two joints mentioned has a considerable range of mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号