首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Vegetative growth of Nosema sp. occurs within the gut submucosal cells of Callinectes sapidus. Vegetative cell morphology is dominated by profiles of endoplasmic reticulum, numerous free ribosomes and aggregates of vesicles enclosed by a membranous sac. The dikaryotic vegetative cell is the earliest stage found in the target area for sporogenesis, the sarcoplasm of the striated muscle cell. The next obvious stage is the sporoblast mother cell; it undergoes karyokinesis without breakdown of the nuclear envelope. Intranuclear mitotic microtubules extend from the chromosomes to the intact nuclear envelope. After repeated nuclear divisions, the sporoblast mother cell undergoes delayed cytokinesis and a series of sporoblast progeny develops.The polar filament is the first visually apparent system to develop during sporogenesis. It appears to be of dual origin: (1) the central core component is condensed in Golgi-like saccules, and (2) the envelopes around the core originate from the endoplasmic reticulum.The polaroplast, which forms after early polar filament development, appears to originate as an elaboration of the endoplasmic reticulum.Supported in part by a training grant from the National Institutes of Health (GM-669-05) and research grants from the National Science Foundation (GB-3036, GB-5235, and GB-7938) to Prof. F. Sogandares-Bernal. The skillful guidance of Prof. F. Sogandares-Bernal is acknowledged. Special thanks are extended to Prof. D. E. Copeland for the use of a Siemens Elmiskop IA electron microscope. I also wish to thank Mr. Julian King, professional fisherman of Irish Bayou, Louisiana, for providing hundreds of blue crabs used in the course of this study.  相似文献   

2.
Tetrasporogenesis begins with the formation of the tetra-sporocyte, an elongate, apparently wall-less, cell containing few organelles. The tetrasporocyte rapidly elongates and a distinctive cell wall forms before the onset of meiosis. During this elongation phase there is also an increase in the number of plastids and mitochondria. The meiotic tetrasporocyte is characterized by extensive development of perinuclear endoplasmic reticulum (PNER) and peripheral endoplasmic reticulum (PER) and during the latter stages of sporogenesis by internuclear endoplasmic reticulum. Immediately next to the nuclear envelope the inter-cisternal spaces of the PNER are filled with very electron dense material and the PNER cisternae are quite narrow, while further away from the nucleus the PNER cisternae dilate. Throughout meiosis there is continued replication of plastids and mitochondria as well as synthesis of starch and the formation of Golgi-derived vesicles with very osmiophilic contents. Cytokinesis begins with the formation of striated thickenings on the inside of the tetrasporocyte wall, at the sites where the cleavage furrow, produced by infurrowing of the plasmalemma, will be formed. Early in cytokinesis the PER disappears and is replaced by osmiophilic vesicles and mitochondria. Tubular plasmalemma invaginations of 27–30 nm width also appear during the early stages of tetraspore wall formation. The ultra-structure of the early stages of tetraspore germination is also described.  相似文献   

3.
On the ultrastructure of differentiating secondary xylem in willow   总被引:1,自引:1,他引:0  
A. W. Robards 《Protoplasma》1968,65(4):449-464
Summary Studies of differentiating xylem inSalix fragilis L. show the immediate cambial derivatives to be ultrastructurally similar. The Golgi apparatus is important at all stages of wall synthesis, possibly producing (amongst other substances) hemicellulose material which is carried to the wall in vesicles or multivesicular bodies. The endoplasmic reticulum also contributes one or more components to the developing wall: at some stages during differentiation the endoplasmic reticulum produces electron opaque bodies which appear to be guided towards the wall by microtubules. Compact structures formed from concentric membranes (myelin-like bodies) have been found joined to rough endoplasmic reticulum, but their presence is not explained.Two types of plasmalemma elaboration occur: invagination of the plasmalemma itself to form vesicles which may contain cytoplasmic material; and vesicles between the plasmalemma and cell wall which are the result of single vesicles or multivesicular bodies traversing the plasmalemma. Both systems provide a means for transporting cytoplasmic material across the plasmalemma.Microtubules have been seen associated with all vesicles derived from the cytoplasm which appear to be moving towards the wall. The presence of microtubules may generally be explained in terms of orientation of vesicles, even if they also happen coincidentally to parallel the supposed orientation of microfibrils in the wall itself. It is possible to resolve connections between the microtubules and the plasmalemma.  相似文献   

4.
The ultrastructure and histochemistry of the refractile, vesiculate cells (“blasenzellen,”“cellules secretrices,”“gland cells”) of Antithamnion defectum Kylin were examined. The refringent vacuolar contents disclosed two components of differing density: an electron opaque, proteinaceous matrix material surrounding cores of irregularly shaped, less opaque material. The cores contain less protein and more unknown material than the matrix. Part or all of the vacuolar material is synthesized by abundant rough endoplasmic reticulum (ER) and deposited in smooth surfaced cisternae that swell to form vesicles. Mitochondria are usually associated with stacks of the swelling cisternae. The vesicles enlarge by continued deposition of synthesized material and coalescence with other vesicles. All vesicles eventually coalesce to form the mature vacuole. A crystalline array of fibrils develops in the cytoplasm during later stages of vacuole enlargement. The crystal contains a sulfated, acidic polysaccharidic material. The chloroplasts, if present, and nucleus degenerate at vacuole maturity. Active release of the vacuolar material does not occur, and organelles for extracellular secretion are not present. Structural evidence suggests a storage, rather than secretory, function for the cells.  相似文献   

5.
SYNOPSIS. The ultrastructure of the known tissue stages of Cryptosporidium wrairi Vetterling, Jervis, Merrill, and Sprinz, 1971 parasitizing the ileum of guinea pigs is described. Young trophozoites are surrounded by 4 unit membranes, the outer 2 of host origin, the inner 2 the pellicle of the parasite. Each trophozoite contains a vesicular nucleus with a large nucleolus. Its cytoplasm contains ribosomes, but eventually fills with cisternae of the rough endoplasmic reticulum. As the trophozoite matures the area of attachment of the parasite to the host cell becomes vacuolated, with vertical membranous folds. It is apparent that the parasite acquires nourishment from the host cell thru this area of attachment. As schizonts develop, (a) multiple nuclei appear, (b) the endoplasmic reticulum enlarges, (c) the attachment zone increases in area, (d) large vacuoles, which develop as endocytotic vesicles in the attachment area, are found in the cytoplasm and (e) the inner unit membrane of the parasite pellicle is resorbed around the sides of the developing schizont. Following nuclear division, merozoites develop from the schizont by budding. Merozoites have an ultrastructure similar to that described for other coccidia except that no mitochondria, micropores, or subpellicular tubules were observed. Merozoites penetrate the epithelial cell causing invagination of the microvillar membrane and lysing it. No unit membrane is formed between the parasite and the host cell. However, the cell produces one or 2 dense bands adjacent to the parasite attachment area. The macrogamete contains a nucleus, endoplasmic reticulum, attachment zone, and large vacuoles. It also contains a variety of granules, some of which are polysaccharide. The immature microgametocyte contains multiple compact nuclei. No mature microgametocytes or zygotes were found.  相似文献   

6.
谢伟东 《动物学报》1989,35(4):345-347
用电镜技术研究蓖麻蚕微孢子虫各发育阶段的超微结构,发现其裂殖体和母孢子具双核,其细胞核由双层单位膜所包裹,核具半圆形的纺锤空斑,细胞质中有内质网和丰富的核糖体,但无线粒体。成熟的孢子壁由外壳、内壳及孢子膜组成,孢子器具有片层结构的极质体和后液泡,极丝为10—11圈,孢质含有核糖体和一对细胞核。  相似文献   

7.
Taste buds in foliate papillae of the rhesus monkey were examined by electron microscopy. Three distinct cell types were identified. Type I cells were narrow elongated cells containing an oval nucleus, bundles of intermediate filaments, several Golgi bodies, and characteristic apical membrane-bounded dense granules. These cells exhibited morphological variations: some had a moderately dense cytoplasm, perinuclear free ribosomes, and flattened sacs of rough endoplasmic reticulum; others had a more lucent cytoplasm, dilated irregular rough endoplasmic reticulum, lysosome-like dense bodies, and lipid droplets. Type II cells typically contained a spherical, pale nucleus, a prominent nucleolus, supranuclear and infranuclear Golgi bodies, mitochondria with tubular cristae, and one or two centrioles. This cell type, too, showed some variation in the relative amounts of ribosomes and smooth endoplasmic reticulum, which varied inversely with each other. Type III cells were characterized by a clear apical cytoplasm essentially devoid of ribosomes and containing microtubules. In a few type III cells, the peri- and infranuclear regions contained many ribosomes and some rough endoplasmic reticulum. In most Type III cells, there were large numbers of dense and clear vesicles in the peri- and infranuclear regions; some of the vesicles were grouped in synapse-like arrangements with adjacent nerves. The morphological variations exhibited by all three cell types could be accounted for by age differences in each of the cells. This would be consistent with the notion that cell renewal occurs in each of the three cell populations.  相似文献   

8.
The initial stages of sporulation in oocysts of Eimeria brunetti were examined in samples sporulated at 27 degrees C for 0, 12 and 24 hours. The initial zygote was found to be roughly spherical and to contain a number of polysaccharide granules which were congregated in one region of the organism. The cytoplasm also contained some strands of rough endoplasmic reticulum together with a number of mitochondria, some Golgi bodies, and some electron translucent vacuoles. The nucleus was large, with amorphous nucleoplasm and a nucleous. The cytoplasmic mass of the zygote was limited by a single unit membrane which possessed some micropores. After initiation of the sporulation, the metabolic activity of the organism appeared to increase as evidenced by the augmentation in the cytoplasm of the amounts of rough endoplasmic reticulum, number of Golgi bodies, and the appearance of polyribosomes. However, at this stage, the presence of large spherical bodies (anlagen of the refractile bodies of the sporozoites) constituted the most obvious change in the cytoplasm of the organism. After nuclear division the daughter nuclei were situated well separated in the cytoplasm and the polysaccharide granules were evenly distributed throughout the cytoplasm of the zygote. Eventually four sporoblasts were formed by invaginations of the limiting membrane. Each sporoblast was limited by a unit membrane and contained a nucleus, and the same cytoplasmic organelles as found in the zygote. The development of the sporoblast was initially accompanied by the appearance of a second limiting membrane.  相似文献   

9.
Summary The mature spore possesses a thick spore coat and a particle-bearing spore membrane. The highly laminated polaroplast membranes are located at the anterior pole of the spore. Close to its base, the polar filament is surrounded by the polaroplast membrane. The polar filament runs spirally towards the posterior pole of the spore. A large portion of the polar filament is arranged in two layers. A similar arrangement was also observed in immature spores and in the sporoblast stage, although it was not so orderly arranged in the latter. The developing polaroplast membrane was observed in the immature spore, but not in the sporoblast. The sporoblast wall is much thinner than the spore coat, but has the same texture. Endoplasmic reticulum is the most prominent cytoplasmic organelle in the developing stages of Nosema apis. Porous nuclear envelopes are also observed in developing stages. The role of the endoplasmic reticulum in the formation of the polar filament, polaroplast and spore coat, and the function of the spore membrane, are discussed.  相似文献   

10.
Fine structure of nerve cells in a planarian   总被引:2,自引:0,他引:2  
The fine structure of the nerve cell types in the white planarian Procotyla fluviatilis were described. Ganglion cells comprise the major portion of the brain. These cells are irregular in shape with several cytoplasmic processes and contain ribosomes, a sparse endoplasmic reticulum, microtubules, lysosomes, and a Golgi apparatus with numerous small vesicles. Granule-containing cells are situated in the peripheral regions of the brain and along the nerve cords. These cells contain ribosomes, rough-surfaced endoplasmic reticulum and a Golgi apparatus with associated dense granules. The granules occupy most of the cytoplasm and are ~ 750A in diameter with moderately dense contents, ~ 750A with opaque contents, and ~ 1000A with contents of medium density. These granules are similar to those in the nervous systems of higher animals that contain epinephrine, norepinephrine, and neurosecretory substance, respectively. Each cell contains predominantly one type of granule although there is some intermixing of granules and intermediate types between the three most abundant granules. Small clear vesicles, resembling cholinergic synaptic vesicles, and all types of dense granules occur in the neuropil and within nerve endings.  相似文献   

11.
Bank voles (Clethrionomys glareolus) were infected by stomach tube with Frenkelia sporocysts from the faeces of buzzards (Buteo buteo). The voles were sacrificed at regular intervals and their livers examined electronmicroscopically. Seven days p.i. developmental stages of Frenkelia could be detected in liver parenchymal cells. The youngest schizonts detected are enveloped by a pellicle consisting of two membranes. This pellicle, which is in direct contact with the host cell mitochondria, shows marked invaginations which increase with the development of the schizont. A parasitophorous vacuole is not detectable. In developing schizonts numerous sections through nuclei with nucleic spindles and merozoite anlagen (dome-shaped) structures) are visible. It is not clear whether there are several nuclei or a section through one large and lobed nucleus. Within the merozoite anlagen the conoid and the subpellicular microtubules are formed first. By the prolongation of the dome-shaped structures towards the posterior pole, the nucleus and the other newly formed cell organelles are incorporated into the forming merozoite. The posterior pole of the merozoite still remains open at this stage of development. With increasing differentiation the merozoites become lancet-shaped, their apical poles bing always directed towards the periphery of the schizont. The outer membrane of the pellicle of the schizont forms the outer part of the pellicle of the merozoites by invaginating around them. At this stage of development the inner membrane of the pellicle of the schizont is no longer detectable. Thus the typical pellicle of the motile stages of sporozoaonsisting of three membranes is formed. In the centre of the merozoites which lie freely in the liver cell a residual body is present. The host cell reacts against the parasites by forming a thick border of mitochondria and distinct endoplasmic reticulum.  相似文献   

12.
Summary The volumetric density of most cytoplasmic organelles in the segmenting ovum of the rat was determined by morphometric techniques described by Weibel, at the 1-, 2-, 4-, and 8-cell stages, and at the early and late blastocyst stages.During the course of cleavage, the volumetric density of mitochondria remained practically unchanged. The volumetric density of the Golgi complex was too small to permit assessment of the differences between the individual stages of development. Significant changes were found in both granular and agranular endoplasmic reticulum, secondary lysosomes, multivesicular bodies, lamellar structures and lipid droplets. Granular endoplasmic reticulum was first observed as late as the 8-cell ovum stage and its volumetric density increased further in the early and late blastocysts. The relative volume of agranular endoplasmic reticulum was highest in the 1-cell ovum and decreased during the course of cleavage. The same is true for multivesicular bodies. The volumetric density of secondary lysosomes increased during cleavage, reaching the highest values in the 8-cell ovum. Lamellar structures were the most voluminous part of the cytoplasm of the segmenting ovum at all stages. Their volumetric density, however, decreased during the course of cleavage. Lipid droplets occur in very small quantities in the 1- to 4-cell ova, but at later stages their volumetric density increased.Our findings underline the importance of acquiring quantitative information about changes in cell organelle populations for assessing morphological and functional relationships during the early stages of cleavage of the ovum.  相似文献   

13.
The ultrastructure of the microsporidian parasite Nosema grylli, which parasitizes primarily fat body cells and haemocytes of the cricket Gryllus bimaculatus (Orthoptera, Gryllidae) is described. All observed stages (meront, meront/sporont transitional stage ("second meront"), sporont, sporoblast, and spore) are found in direct contact with the host cell cytoplasm. Nuclei are diplokaryotic during almost all stages of the life cycle, but a brief stage with one nucleus containing an abundance of electron-dense material is observed during a "second merogony." Sporogony is disporous. Mature spores are ovocylindrical in shape and measure 4.5+/-0.16micromx2.2+/-0.07 microm (n=10) on fresh smears and 3.3+/-0.06 micromx1.4+/-0.07 microm (n=10) on ultrathin sections. Spores contain 15-18 coils of an isofilar polar filament arranged in one or two layers. Comparative phylogenetic analysis using rDNA shows N. grylli to be closely related to another orthopteran microsporidian, Nosema locustae, and to Nosema whitei from the confused flour beetle, Tribolium confusum. Antonospora scoticae, a parasite of the communal bee Andrena scotica, is a sister taxon to these three Nosema species. The sequence divergence and morphological traits clearly separate this group of "Nosema" parasites from the "true" Nosema clade containing Nosema bombycis. We therefore propose to change the generic name of N. grylli and its close relative N. locustae to Paranosema n. comb. We leave N. whitei in former status until more data on fine morphology of the species are obtained.  相似文献   

14.
A diverse afferent synaptic input to immunostained oxytocin magnocellular neurons of the paraventricular nucleus of the rat hypothalamus is described. By electron microscopy, immunoreactive material is present within cell bodies and neuronal processes and it is associated primarily with neurosecretory granules and granular endoplasmic reticulum. Afferent axon terminals synapse on perikarya, dendritic processes, and possibly axonal processes of oxytocin-containing neurons. The presynaptic elements of the synaptic complexes contain clear spherical vesicles, a mixture of clear spherical and ellipsoidal vesicles, or a mixture of clear and dense-centered vesicles. The postsynaptic membranes of oxytocinergic cells frequently show a prominent coating of dense material on the cytoplasmic face which gives the synaptic complex a marked asymmetry.  相似文献   

15.
The developmental stages of a microsporidium from larvae of Pristiphora erichsonii were investigated. Meronts appeared to be the only stage containing a diplokaryon. Nuclei of sporonts in a parasitophorous vesicle underwent at least three divisions and uninucleate sporoblasts developed from these multinucleate sporonts. As many as 38 spores were observed with a vesicle. A thin pansporoblastic membrane limited the vesicle and was derived from rough endoplasmic reticulum of the host cell. The microsporidium was tentatively identified as Pleistophora sp. Infection levels of the microsporidium in natural populations of P. erichsonii reached 25%.  相似文献   

16.
The ultrastructural characteristics of the neurons containing complex convolutions have been studied in the dorsal lateral geniculate nucleus of the 31-month-old rat. Neurons were seen to contain oval or round dense bodies which were surrounded by a nuclear membrane and granular endoplasmic reticulum. Their perikarya showed rarely clusters of pleomorphic and small clear vesicles intermingled with a few larger vesicles of dense material. Dendrites occasionally exhibited intermediate forms between laminated bodies and complex convolutions. The significance of these features has been discussed.  相似文献   

17.
Abstract:  Carbendazim, a benzimidazole compound is effective in curing pebrine disease in silkworm, Bombyx mori , caused by Nosema bombycis , if treatment is given within 48 h post-infection or before the parasite establishes itself in the host tissue. Ultrastructural evidence of the action of carbendazim showed an adverse effect of the drug on both merogonic and sporogonic stages of the parasite in the midgut and silk gland of the silkworm. The drug caused elongation, vacuolation and depletion of cytoplasmic contents of the meront, sporont, sporoblast and spore stages of N. bombycis .  相似文献   

18.
Oocytes from the land hermit crab, Coenobita clypeatus, in various stages of vitellogenesis were examined by light and electron microscopy. Early vitellogenic oocytes are characterized by accumulations of discrete vesicles of endoplasmic reticulum in the perinuclear cytoplasm. As oocytes develop, the endoplasmic reticulum becomes abundant, and numerous Golgi complexes are seen. There is a well developed Golgi-endoplasmic reticulum interaction. Within the confines of the reticulum are discrete intracisternal granules, which can be seen coalescing into electron-dense yolk bodies. Lipid accumulation is seen throughout the cytoplasm. Coincident with the burst of intra-oocytic metabolism are oolemma modifications and micropinocytosis, which provide ultrastructural evidence for extra-oocytic yolk production. The mature oocyte contains numerous yolk and lipid vesicles of varying electron density that comprise both intra- and extra-oocytic substrates.  相似文献   

19.
日本沼虾精子发生的研究   总被引:18,自引:3,他引:18  
赵云龙  堵南山 《动物学报》1997,43(3):243-248
对日本沼虾精子发生全过程的电镜观察表明:精原细胞核染色质分散,胞质内有线粒休、内质网的分布。初级精母细胞核染色质块状,不均匀地分布于核中,内质同多小泡多。次级精母细胞核染色质大多分布于核膜内侧,内质网聚集成团,精细胞分化形成精子的早期,胞核增大,核侧形成内质同多小泡的聚合体;中期的核内染色质浓缩,同时形成空囊状结构,  相似文献   

20.
ABSTRACT. The life cycle of Vairimorpha necatrix was studied by electron microscopy. Disporous development has two distinct stages: 1) diplokaryotic meronts which are actively mitotic, and 2) diplokaryotic sporonts which are distinguished by reduced ribosome density and a thickened plasmalemma. After final division of the sporont, sporoblasts form spores which are ovocylindrical and measure 4.4 ± 0.08 × 2.3 ± 0.05 μ m (mean ± SE). Octosporous development results in eight haploid spores being formed in a sporophorous vesicle. The uninucleate octospores were smaller than the binucleate dispores and the exospore was thicker but less crenulate in outline. Early in octosporogony, tubules are produced from the sporont plasmalemma and electron-dense material accumulates in the episporontal space. The latter may be amorphous, vesiculated, or vacuolated in appearance and in later stages may take a stacked, lamellar form. At sporoblast formation, exospore material coats the plasmalemma and attached tubules; all inclusions in the episporontal space gradually disappear as spores are formed. These secretory products may have application to taxonomic distinction at the species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号