首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ontogeny of larval body density and the morphological and histological events during swimbladder development were investigated in two cohorts of yellowtail kingfish Seriola lalandi larvae to understand the relationship between larval morphology and body density. Larvae <3 days post hatch (dph) were positively buoyant with a mean ± s.d . body density of 1·023 ± 0·001 g cm?3. Histological evidence demonstrated that S. lalandi larvae are initially transient physostomes with the primordial swimbladder derived from the evagination of the gut ventral to the notochord and seen at 2 dph. A pneumatic duct connected the swimbladder to the oesophagus, but degenerated after 5 dph. Initial swimbladder (SB) inflation occurred on 3 dph, and the inflation window was 3–5 dph when the pneumatic duct was still connected to the gut. The swimbladder volume increased with larval age and the epithelial lining on the swimbladder became flattened squamous cells after initial inflation. Seriola lalandi developed into a physoclist with the formation of the rete mirabile and the gas‐secreting gland comprised low‐columnar epithelial cells. Larvae with successfully inflated swimbladders remained positively buoyant, whereas larvae without SB inflation became negatively buoyant and their body density gradually reached 1·030 ± 0·001 g cm?3 by 10 dph. Diel density changes were observed after 5 dph, owing to day time deflation and night‐time inflation of the swimbladder. These results show that SB inflation has a direct effect on body density in larval S. lalandi and environmental factors should be further investigated to enhance the rate of SB inflation to prevent the sinking death syndrome in the early life stage of the fish larvae.  相似文献   

2.
The structure of the hoki, Macruronus novaezelandiae , swimbladder is similar to well-developed swimbladders in other deep water fish that undergo extensive diel vertical migrations. The preponderance of a globular mass of submucosal tissue in the posterio-ventral floor of the swimbladder in large individuals is an unusual feature of unknown function, but has characteristics similar to regressed swimbladders that occur in some species of the Myctophidae. Two out of three different estimates of swimbladder volume were significantly lower than 'neutral buoyancy volume' estimates, probably because the swimbladders were inflated artificially without accounting for their natural compliancy and internal pressure. Volume estimates from such swimbladders may reduce substantially the accuracy of target strength estimates from morphometry-based models of the swimbladder. However, this may be a trivial consideration in acoustic surveys compared to the probable occurrence of diel and seasonal variation in swimbladder shape and volume.  相似文献   

3.
A finite interval of initial swimbladder inflation in striped trumpeter Latris lineata larvae occurred over 4 days at 16° C. Water‐surface films were removed on different days to form treatments: 4, 8, 9, 10, 11 and 12 days post hatching, dph (day 4, 8, 9, 10, 11 and 12 treatments, respectively). No swimbladder inflation was recorded prior to water‐surface film removal. When the water‐surface films were removed in day 4 and 8 treatments, initial swimbladder inflation was first recorded in larvae 9 dph at mean ± s .e . 35·0 ± 5·4%(n = 4) and 45·0 ± 7·9%, respectively. Water‐surface film removal at days 9, 10 and 11, resulted in initial swimbladder inflation the following day at 62·5 ± 2·5, 62·5 ± 7·2 and 11·3 ± 5·5% in larvae 10, 11 and 12 dph, respectively. No swimbladder inflation was recorded following water‐surface film removal on day 12. There was no significant difference in initial inflation among larvae in day 4, 8, 9 and 10 treatments, ranging from 65·0 ± 4·1 to 73·8 ± 6·9%(P > 0·05). Initial inflation was significantly lower in the day 11 treatment (11·3 ± 5·5%)(P < 0·05). During the inflation interval (9–12 dph) swimbladders displayed one of three morphologies; liquid dilation, gas inflated and collapsed. Collapse of the swimbladder lumen was first apparent in larvae without swimbladder inflation from 11 dph and progressively developed thereafter in all larvae with non‐inflated swimbladders. Larvae >6·1 mm standard length lost the ability to undergo initial swimbladder inflation. This study demonstrates that the interval for initial swimbladder inflation in striped trumpeter is short, finite and related to larval size. The end of the inflation interval was marked by onset of abnormal swimbladder morphologies, but not to closure of the pneumatic duct.  相似文献   

4.
Many teleost fishes use a swimbladder, a gas-filled organ in the coelomic cavity, to reduce body density toward neutral buoyancy, thus minimizing the locomotory cost of maintaining a constant depth in the water column. However, for most swimbladder-bearing teleosts, the contribution of this organ to the attainment of neutral buoyancy has not been quantified. Here, we examined the quantitative contribution of the swimbladder to buoyancy and three-dimensional stability in a small cyprinid, the zebrafish (Danio rerio). In aquaria during daylight hours, adult animals were observed at mean depths from 10.1 +/- 6.0 to 14.2 +/- 5.6 cm below the surface. Fish mass and whole-body volume were linearly correlated (r(2) = 0.96) over a wide range of body size (0.16-0.73 g); mean whole-body density was 1.01 +/- 0.09 g cm(-3). Stereological estimations of swimbladder volume from linear dimensions of lateral X-ray images and direct measurements of gas volumes recovered by puncture from the same swimbladders showed that results from these two methods were highly correlated (r(2) = 0.85). The geometric regularity of the swimbladder thus permitted its volume to be accurately estimated from a single lateral image. Mean body density in the absence of the swimbladder was 1.05 +/- 0.04 g cm(-3). The swimbladder occupied 5.1 +/- 1.4% of total body volume, thus reducing whole-body density significantly. The location of the centers of mass and buoyancy along rostro-caudal and dorso-ventral axes overlapped near the ductus communicans, a constriction between the anterior and posterior swimbladder chambers. Our work demonstrates that the swimbladder of the adult zebrafish contributes significantly to buoyancy and attitude stability. Furthermore, we describe and verify a stereological method for estimating swimbladder volume that will aid future studies of the functions of this organ.  相似文献   

5.
Many teleosts including zebrafish, Danio rerio, actively regulate buoyancy with a gas-filled swimbladder, the volume of which is controlled by autonomic reflexes acting on vascular, muscular, and secretory effectors. In this study, we investigated the morphological development of the zebrafish swimbladder together with its effectors and innervation. The swimbladder first formed as a single chamber, which inflated at 1-3 days posthatching (dph), 3.5-4 mm body length. Lateral nerves were already present as demonstrated by the antibody zn-12, and blood vessels had formed in parallel on the cranial aspect to supply blood to anastomotic capillary loops as demonstrated by Tie-2 antibody staining. Neuropeptide Y-(NPY-) like immunoreactive (LIR) fibers appeared early in the single-chambered stage, and vasoactive intestinal polypeptide (VIP)-LIR fibers and cell bodies developed by 10 dph (5 mm). By 18 dph (6 mm), the anterior chamber formed by evagination from the cranial end of the original chamber; both chambers then enlarged with the ductus communicans forming a constriction between them. The parallel blood vessels developed into an arteriovenous rete on the cranial aspect of the posterior chamber and this region was innervated by zn-12-reactive fibers. Tyrosine hydroxylase- (TH-), NPY-, and VIP-LIR fibers also innervated this area and the lateral posterior chamber. Innervation of the early anterior chamber was also demonstrated by VIP-LIR fibers. By 25-30 dph (8-9 mm), a band of smooth muscle formed in the lateral wall of the posterior chamber. Although gas in the swimbladder increased buoyancy of young larvae just after first inflation, our results suggest that active control of the swimbladder may not occur until after the formation of the two chambers and subsequent development and maturation of vasculature, musculature and innervation of these structures at about 28-30 dph.  相似文献   

6.
The swimbladder of fishes is readily compressed by hydrostatic pressure with depth, causing changes in buoyancy. While modern fishes can regulate buoyancy by secreting gases from the blood into the swimbladder, primitive fishes, such as sturgeons, lack this secretion mechanism and rely entirely on air gulped at the surface to inflate the swimbladder. Therefore, sturgeons may experience changes in buoyancy that will affect their behavior at different depths. To test this prediction, we attached data loggers to seven free-ranging Chinese sturgeons Acipenser sinensis in the Yangtze River, China, to monitor their depth utilization, tail-beating activity, swim speed and body inclination. Two distinct, individual-specific, behavioral patterns were observed. Four fish swam at shallow depths (7–31 m), at speeds of 0.5–0.6 m s−1, with ascending and descending movements of 1.0–2.4 m in amplitude. They beat their tails continuously, indicating that their buoyancy was close to neutral with their inflated swimbladders. In addition, their occasional visits to the surface suggest that they gulped air to inflate their swimbladders. The other three fish spent most of their time (88–94%) on the river bottom at a depth of 106–122 m with minimum activity. They occasionally swam upwards at speeds of 0.6–0.8 m s−1 with intense tailbeats before gliding back passively to the bottom, in a manner similar to fishes that lack a swimbladder. Their bladders were probably collapsed by hydrostatic pressure, resulting in negative buoyancy. We conclude that Chinese sturgeons behave according to their buoyancy, which varies with depth due to hydrostatic compression of the swimbladder.  相似文献   

7.
At the onset of swimbladder inflation, Tinca tinca larvae were exposed for 24 h to cadmium or copper at 0.0 (control concentration), 0.1, 0.2 and 0.3 mg dm−3 at 22°C. From then larvae were reared at 25°C for 9 days in un-supplemented water. Both metals resulted in a significantly reduced growth, survival, and retarded swimbladder inflation in a dose-response manner. The highest Cd and Cu concentration delayed the onset of exogenous feeding (live artemia nauplii) for 2 or 1 days, respectively, comparing to the control concentration. Our results demonstrate a highly toxic effect of Cd and Cu in the studied period of larval ontogeny, when fish seem especially sensitive. Although, at low concentrations and long exposure period, Cu is considered more toxic to fish than Cd, our study revealed the reverse effect for first-feeding larvae of both metals at high concentrations and short exposure.  相似文献   

8.
Compared to a control gas bladder inflation rate of 95·1±1·9%, zebrafish Danio rerio larvae 72 h post-fertilization maintained in closed chambers had an inflation rate of just 19·1±7·7%. Larval survivorship through 10 days in closed chambers (32%) was significantly less than that in open chambers (76%), and the extent of spinal curvature was significantly higher among larvae maintained in closed chambers. Larvae which failed to inflate their gas bladder showed very little change in body length, and had a final dry weight c. 14% of that for control larvae. The small number of larvae with inflated gas bladders found in closed chambers might be attributed to the inadvertent introduction of small bubbles into two replicates. These results indicate that access to an air-water interface is critical for the normal development of zebrafish larvae, but also that a small, submerged, spherical gas volume may to a limited extent be used for initial gas bladder inflation.  相似文献   

9.
Previous reports of the behavior of aquatic organisms in the microgravity environment of space (~10(-6) g) or during the brief weightless period of parabolic flight indicate that most species display a dramatic "looping" or "circling" response (De Jong et al. 1996, Anken, Ibsch and Rahmann 1998). However, the behavior of aquatic species under hypergravity conditions is less clear. Our objectives in the present study were to examine the behavioral response of adult zebrafish (Danio rerio) to hypergravity conditions (2-g), quantify changes in adult swimbladder volume, and to determine if the larvae of zebrafish are capable of accessing the air-water interface for initial swimbladder inflation under hypergravity conditions.  相似文献   

10.
Summary The innervation of the swimbladder in four different teleost species has been studied by the use of immunohistochemical methods. The teleosts examined belong to two different groups regarding their swimbladder morphology: physoclists (the cod, Gadus morhua and the goldsinny wrasse, Ctenolabrus rupestris) and physostomes (the eel, Anguilla anguilla and the rainbow trout, Salmo gairdneri). Vasoactive intestinal polypeptide-like immunoreactivity was demonstrated in nerves of the swimbladder walls of all four species, and in the gas glands of the cod and the goldsinny wrasse. Substance P-like immunoreactivity was shown in swimbladders of the cod, eel and rainbow trout but not the goldsinny wrasse. Immunoreactivity to met-enkephalin antiserum was revealed in the swimbladder walls of the eel and the goldsinny wrasse, while neurotensin-like immunoreactivity was present in the goldsinny wrasse and rainbow trout swimbladders. Neurotensin-like immunoreactivity was also seen in the gas gland of the goldsinny wrasse. 5-Hydroxytryptamine immunoreactivity was found in endocrine cells in the pneumatic duct of the eel and in the swimbladder walls of the goldsinny wrasse and the rainbow trout. In conclusion, all teleosts examined showed a very close resemblance in the peptidergic/tryptaminergic innervation of the swimbladder to that of the gut, inasmuch as the immunoreactivity present in the swimbladders always occurred in the gut of the same species.  相似文献   

11.
12.
The paper puts forward a new approach to estimation of buoyancy of hydrobionts using dispersion of various densities. The technique was applied to evaluate buoyancy variations in climbing perch Anabas testudineus at its early ontogeny. It was found that positive buoyancy characteristic of eggs and early stage larvae does not remain longer than the first eighty hours of development. Besides, this period is marked by significant fluctuations in buoyancy. The maximum buoyancy was recorded at the time of hatching of the embryos, which occurs at the age of approximately thirty hours. At ninety hours the buoyancy of larvae becomes negative. Later, it goes up somewhat, and the individual differences become more important in its dynamics pattern. Some individuals are neutrally buoyant, though no return to positive buoyancy was observed. The estimates obtained by the author create a foundation for further morphofunctional analysis of the hydrostatically significant structures in the early development of the climbing perch.  相似文献   

13.
The swimbladder in the sand goby, Pomatoschistus minutus , collected in shallow waters of the Oslofjord, Norway, was studied. As the literature on swimbladders in gobies appeared to be confusing, a short review of relevant literature has been made. On average, the volume of the swimbladder in the sand goby expressed as percentage of the body weight was found to be 4·7 % in May and 2·5 % in June. The significance of this volume variation is discussed.  相似文献   

14.
目的 采用模式动物斑马鱼作为研究对象,观察氯丙嗪(chlorpromazine,CPZ)暴露对胚胎和幼鱼早期神经发育的影响.方法 在一般毒性评价的基础上,通过整体胚胎细胞凋亡检测和脑组织病理学检查,了解CPZ对神经发育的器质性改变;采用神经行为学方法,包括幼鱼触动逃避反应、自发运动以及惊恐逃避反射等,研究氯丙嗪暴露所致的神经发育功能性障碍.结果斑马鱼胚胎受精后6 h(6 hpf)~72 hpf暴露于CPZ(≥5 mg/L)可引起胚胎和幼鱼死亡、致畸和幼鱼孵化延迟,并呈浓度和时间依赖性;采用吖啶橙染色检测36 hpf整体胚胎凋亡细胞,发现凋亡细胞主要集中在胚胎中脑、后脑、丘脑以及中后脑连接区、脊索和尾部等处;脑组织病理学检测发现,7dpf幼鱼颅腔增大、脑体积减小、脑细胞缩小且细胞间隙增宽.6~72 hpf CPZ(≥0.0625 mg/L)暴露后,幼鱼神经行为学研究发现,CPZ(≥0.125 mg/L)可引起3dpf幼鱼触觉运动能力下降;CPZ(≥0 5 mg/L)可浓度依赖性地抑制幼鱼自发运动,并出现僵直不动、震颤或快速刻板式转圈运动等行为改变;光惊恐实验中,暗环境下各暴露组幼鱼对突发强光刺激均表现为惊跳逃避,并且暗-光交替期运动加速度变化与对照组无显著差异;在撤除光源后,1mg/L和2 mg/L暴露组幼鱼暗适应时程缩短,而0.125 mg/L和0.25 mg/L暴露组暗适应时程延长,提示CPZ对外界刺激引发的幼鱼活跃游动有抑制和促进双重毒性作用.结论 CPZ暴露对斑马鱼胚胎和幼鱼具有明显的神经发育毒性作用.模式动物斑马鱼作为一种高通量筛选模型在外源性化合物神经发育毒性评价中具有较好的应用前景.  相似文献   

15.
The histopathological changes in swimbladders of European eels naturally and experimentally infected with Anguillicola crassus were studied using transmission and scanning electron microscopy. During the course of probably several infections swimbladders undergo characteristic changes. In addition to the thickening of the entire swimbladder wall, and to the folded internal surface of this organ, inflammation, migration of white blood cells, fibrosis and changes in the epithelial cells are frequently seen. Epithelial cells tend to proliferate heavily and form hyperplastic tissues; these processes are accompanied by changes in the internal structure of the cells. The normally cubic cells become spherical or columnar and form folds facing the lumen of the swimbladder. As a consequence, most of these cells lose contact with the blood vessels and show no strict polarity. In heavily affected swimbladders the basal labyrinth of the epithelial cells is reduced, i.e. becomes shorter and less densely packed. The lamina propria shows severe fibrosis with infiltration of white blood cells. Larvae of A. crassus, inhabiting the wall of the swimbladder, were found to be surrounded by cell debris, but this local necrosis does not affect the entire swimbladder in its overall structure. These histological findings can partly explain changes in the gas composition in eels infected with A. crassus.  相似文献   

16.
Buoyancy in Marine Fishes: Direct and Indirect Role of Lipids   总被引:2,自引:0,他引:2  
SYNOPSIS. The major lipids that have a direct role in buoyancyof marine fish are wax esters, squalene, and alkyldiacylglycerols.Wax esters are stored extracellularly in certain fishes, suchas the orange roughy (Hoplostethus atlanticus), and thereforebuoyancy appears to be their sole function. Some myctophid fisheshave wax-invested swimbladders, where the non-compressible waxesters may aid in diurnal vertical migration, by replacing compressibleswimbladder gases. Squalene is metabolically inert in the liversof certain sharks, and therefore probably has buoyancy as itsonly function. Alkyldiacylglycerols (DAGE) are abundant componentsof liver oil of certain deep sea sharks and holocephalans, wherethey may have an important role in buoyancy. Triacylglycerolsand cholesterol are lipids that have an indirect role in buoyancyof marine fish. Many fishes in the ocean have oil-filled bones(mostly triacylglycerols). Although this oil aids buoyancy,its major function is as an energy storage lipid which can beutilized during starvation. Cholesterol, which is found in highamounts in the lipid-rich membranes of the swimbladder of deepsea fishes, may aid buoyancy by combining with oxygen gas inthe swimbladder membranes to facilitate gas secretion in fishat great depths in the ocean. Further research is needed tounderstand the physical state of lipids, such as wax estersat deep sea temperatures and pressures, and more evidence isneeded to clarify the role of cholesterol-rich membranes inswimbladders of deep sea fishes.  相似文献   

17.
The swimbladder is a hydrostatic organ in fish postulated as a homolog of the tetrapod lung. While lung development has been well studied, the molecular mechanism of swimbladder development is essentially uncharacterized. In the present study, swimbladder development in zebrafish was analyzed by using several molecular markers: hb9 (epithelium), fgf10a and acta2 (mesenchyme), and anxa5 (mesothelium), as well as in vivo through enhancer trap transgenic lines Et(krt4:EGFP)sq33-2 and Et(krt4:EGFP)sqet3 that showed strong EGFP expression in the swimbladder epithelium and outer mesothelium respectively. We defined three phases of swimbladder development: epithelial budding between 36 and 48 hpf, growth with the formation of two additional mesodermal layers up to 4.5 dpf, and inflation of posterior and anterior chambers at 4.5 and 21 dpf respectively. Similar to those in early lung development, conserved expression of Hedgehog (Hh) genes, shha and ihha, in the epithelia, and Hh receptor genes, ptc1 and ptc2, as well as fgf10a in mesenchyme was observed. By analyzing several mutants affecting Hh signaling and Ihha morphants, we demonstrated an essential role of Hh signaling in swimbladder development. Furthermore, time-specific Hh inhibition by cyclopamine revealed different requirements of Hh signaling in the formation and organization of all three tissue layers of swimbladder.  相似文献   

18.
The developmental stages of Oreochromis niloticus are similar to those described in other mouth-breeding tilapias except that, as in zebrafish, no cavity was found in the blastula. Variation in the rate of development of the embryo and larva of O. niloticus was found within a clutch of eggs as well as between clutches. Hatching glands are described for the first time in tilapias. They are widely distributed within the ectoderm covering the head, body, tail, and surface of the yolk sac near its attachment to the embryo. Timing of larval development is similar to that in other mouthbrooding tilapias, but is slower than that found in substrate-spawning tilapias. A pneumatic duct connects the swimbladder to the digestive tract and swimbladder inflation and initiation of feeding occurs at about the same time. The digestive tract of the larva 8 and 9 days after fertilization is similar to that found in the adult, except that there are no digestive glands. An endocrine pancreatic islet was first seen 76 h after fertilization. A prominent thymus gland is present at 100 h. Hematopoietic tissue develops in the vicinity of the pronephros during early larval development. A spleen develops later, 7 days after fertilization.  相似文献   

19.
Metallothionein-2 (mt2) and similar to metallothionein-B (smt-B) are included in the MT gene family. The objective of this study was to compare mt2 and smt-B messenger (m)RNA expressions after cadmium exposure and cold shock with whole-mount in situ hybridization in immature zebrafish (Danio rerio) and with a semi-quantitative RT-PCR in mature zebrafish. Three-day post-fertilization (dpf) larvae were treated with 0, 0.08, 0.26, and 0.89 microM cadmium for 24 and 48 h, and some larvae were challenged with a normal (28.5 degrees C) or low temperature (12 degrees C) for 12, 24, and 48 h. Results were obtained. (1) During embryonic and larval development, mt2 mRNA existed at 6 h post-fertilization (hpf), and the level rapidly increased to 24 hpf, then it gradually increased with further larval growth. smt-B was found at 12 hpf, and it also rapidly increased to 24 hpf, but remained constant during further larval development. (2) The mt2 mRNA signals and whole-body Cd contents displayed dose- and time-dependent responses after Cd exposure. After cold shock, mt2 mRNA signals also showed time-dependent expression. But smt-B mRNA signals were not appeared by either challenge. Besides, mature zebrafish were treated with 1.78 microM Cd and found that the highest levels of smt-B mRNA (smt-B/beta-actin) appeared in brain, and seems a reverse expression between smt-B mRNA and mt2 in brain after Cd exposure. Apparently, mt2 is possibly more relevant to Cd detoxification and cold shock adaptation in zebrafish larvae compared to smt-B, but smt-B might be related to certain physiological functions in neural (or brain) of mature zebrafish.  相似文献   

20.
The swimbladder plays an important role in buoyancy regulation but is typically reduced or even absent in benthic freshwater fishes that inhabit fast flowing water. Here, we document, for the first time, a remarkable example of swimbladder sexual dimorphism in the highly rheophilic South Asian torrent minnows (Psilorhynchus). The male swimbladder is not only much larger than that of the female (up to five times the diameter and up to 98 times the volume in some cases), but is also structurally more complex, with multiple internal septa dividing it into smaller chambers. Males also exhibit a strange organ of unknown function or homology in association with the swimbladder that is absent in females. Extreme sexual dimorphism of non-gonadal internal organs is rare among vertebrates and the swimbladder sexual dimorphisms that we describe for Psilorhynchus are unique among fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号