共查询到20条相似文献,搜索用时 0 毫秒
1.
McShea A Lee HG Petersen RB Casadesus G Vincent I Linford NJ Funk JO Shapiro RA Smith MA 《Biochimica et biophysica acta》2007,1772(4):467-472
Evidence showing the ectopic re-expression of cell cycle-related proteins in specific vulnerable neuronal populations in Alzheimer disease led us to formulate the hypothesis that neurodegeneration, like cancer, is a disease of inappropriate cell cycle control. To test this notion, we used adenoviral-mediated expression of c-myc and ras oncogenes to drive postmitotic primary cortical neurons into the cell cycle. Cell cycle re-entry in neurons was associated with increased DNA content, as determined using BrdU and DAPI, and the re-expression of cyclin B1, a marker for the G2/M phase of the cell cycle. Importantly, we also found that cell cycle re-entry in primary neurons leads to tau phosphorylation and conformational changes similar to that seen in Alzheimer disease. This study establishes that the cell cycle can be instigated in normally quiescent neuronal cells and results in a phenotype that shares features of degenerative neurons in Alzheimer disease. As such, our neuronal cell model may be extremely valuable for the development of novel therapeutic strategies. 相似文献
2.
Background
Mutations in Nek1 (NIMA-Related Kinase 1) are causal in the murine models of polycystic kidney disease kat and kat 2J . The Neks are known as cell cycle kinases, but recent work in protists has revealed that in addition to roles in the regulation of cell cycle progression, some Neks also regulate cilia. In most cells, cilia are disassembled prior to mitosis and are regenerated after cytokinesis. We propose that Neks participate in the coordination of ciliogenesis with cell cycle progression. Mammalian Nek1 is a candidate for this activity because renal cysts form in response to dysfunctional ciliary signalling. 相似文献3.
4.
5.
Di Stefano V Giacca M Capogrossi MC Crescenzi M Martelli F 《The Journal of biological chemistry》2011,286(10):8644-8654
Proliferation of mammalian cardiomyocytes stops rapidly after birth and injured hearts do not regenerate adequately. High cyclin-dependent kinase inhibitor (CKI) levels have been observed in cardiomyocytes, but their role in maintaining cardiomyocytes in a post-mitotic state is still unknown. In this report, it was investigated whether CKI knockdown by RNA interference induced cardiomyocyte proliferation. We found that triple transfection with p21(Waf1), p27(Kip1), and p57(Kip2) siRNAs induced both neonatal and adult cardiomyocyte to enter S phase and increased the nuclei/cardiomyocyte ratio; furthermore, a subpopulation of cardiomyocytes progressed beyond karyokynesis, as assessed by the detection of mid-body structures and by straight cardiomyocyte counting. Intriguingly, cardiomyocyte proliferation occurred in the absence of overt DNA damage and aberrant mitotic figures. Finally, CKI knockdown and DNA synthesis reactivation correlated with a dramatic change in adult cardiomyocyte morphology that may be a prerequisite for cell division. In conclusion, CKI expression plays an active role in maintaining cardiomyocyte withdrawal from the cell cycle. 相似文献
6.
Meredith JE Kiosses WB Takada Y Schwartz MA 《The Journal of biological chemistry》1999,274(12):8111-8116
Integrin beta1C is an alternatively spliced cytoplasmic variant of the beta1 subunit that potently inhibits cell cycle progression. In this study, we analyzed the requirements for growth suppression by beta1C. A chimera containing the extracellular/transmembrane domain of the Tac subunit of the human interleukin 2 receptor (gp55) fused to the cytoplasmic domain of beta1C (residues 732-805) strongly inhibited growth in mouse 10T1/2 cells even at low expression levels, whereas chimeras containing the beta1A, beta1B, beta1D, beta3, and beta5 cytoplasmic domains had weak and variable effects. The beta1C cytoplasmic domain is composed of a membrane proximal region (732-757) common to all beta1 variants and a COOH-terminal 48-amino acid domain (758-805) unique to beta1C. The beta1C-specific domain (758-805) was sufficient to block cell growth even when expressed as a soluble cytoplasmic green fluorescent protein fusion protein. These results indicate that growth inhibition by beta1C does not require the intact receptor and can function in the absence of membrane targeting. Analysis of deletions within the beta1C-specific domain showed that the 18-amino acid sequence 775-792 is both necessary and sufficient for maximal growth inhibition, although the 13 COOH-terminal residues (793-805) also had weak activity. Finally, beta1C is known to be induced in endothelial cells in response to tumor necrosis factor and is down-regulated in prostate epithelial cells after transformation. The green fluorescent protein/beta1C (758-805) chimera blocked growth in the human endothelial cell line EV304 and in the transformed prostate epithelial cell line DU145, consistent with a role for beta1C as a growth inhibitor in vivo. 相似文献
7.
Regulation of cell cycle re-entry by growth, survival and stress signalling pathways 总被引:7,自引:0,他引:7
Cook SJ Balmanno K Garner A Millar T Taverner C Todd D 《Biochemical Society transactions》2000,28(2):233-240
The mitogen-activated and stress-activated protein kinases transduce signals from plasma membrane signalling machinery into the nucleus to modulate gene expression. By regulating the genomic response to environmental cues (growth factors, stresses) these pathways determine whether a cell re-enters the cell cycle, undergoes cell cycle arrest, senescence or apoptosis. We are particularly interested in how these pathways integrate with each other, and interact with the cell cycle machinery to achieve these discrete biological responses. 相似文献
8.
A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration 总被引:8,自引:0,他引:8
Border cell migration in the Drosophila ovary is a relatively simple and genetically tractable model for studying the conversion of epithelial cells to migratory cells. Like many cell migrations, border cell migration is inhibited by a dominant-negative form of the GTPase Rac. To identify new genes that function in Rac-dependent cell motility, we screened for genes that when overexpressed suppressed the migration defect caused by dominant-negative Rac. Overexpression of the Drosophila inhibitor of apoptosis 1 (DIAP1), which is encoded by the thread (th) gene, suppressed the migration defect. Moreover, loss-of-function mutations in th caused migration defects but, surprisingly, did not cause apoptosis. Mutations affecting the Dark protein, an activator of the upstream caspase Dronc, also rescued RacN17 migration defects. These results indicate an apoptosis-independent role for DIAP1-mediated Dronc inhibition in Rac-mediated cell motility. 相似文献
9.
《Cell cycle (Georgetown, Tex.)》2013,12(3):408-416
WW domain-containing oxidoreductase (WWOX) has been reported to be a tumor suppressor in multiple cancers, including prostate cancer. WWOX can induce apoptotic responses to inhibit tumor progression, and the other mechanisms of WWOX in tumor suppression have also been reported recently. In this study, we found significant down-regulation of WWOX in prostate cancer specimens and prostate cancer cell lines compared with the normal controls. In addition, an ectopically increased WWOX expression repressed tumor progression both in vitro and in vivo. Interestingly, overexpression of WWOX in 22Rv1 cells led to cell cycle arrest in the G1 phase but did not affect sub-G1 in flow cytometry. GFP-WWOX overexpressed 22Rv1 cells were shown to inhibit cell cycle progression into mitosis under nocodazole treatment in flow cytometry, immunoblotting and GFP fluorescence. Further, cyclin D1 but not apoptosis correlated genes were down-regulated by WWOX both in vitro and in vivo. Restoration of cyclin D1 in the WWOX-overexpressed 22Rv1 cells could abolish the WWOX-mediated tumor repression. In addition, WWOX impair c-Jun-mediated cyclin D1 promoter activity. These results suggest that WWOX inhibits prostate cancer progression through negatively regulating cyclin D1 in cell cycle lead to G1 arrest. In summary, our data reveal a novel mechanism of WWOX in tumor suppression. 相似文献
10.
11.
Jen-Tai Lin Hao-Yi Li Nan-Shan Chang Cheng-Han Lin Yu-Chia Chen Pei-Jung Lu 《Cell cycle (Georgetown, Tex.)》2015,14(3):408-416
WW domain-containing oxidoreductase (WWOX) has been reported to be a tumor suppressor in multiple cancers, including prostate cancer. WWOX can induce apoptotic responses to inhibit tumor progression, and the other mechanisms of WWOX in tumor suppression have also been reported recently. In this study, we found significant down-regulation of WWOX in prostate cancer specimens and prostate cancer cell lines compared with the normal controls. In addition, an ectopically increased WWOX expression repressed tumor progression both in vitro and in vivo. Interestingly, overexpression of WWOX in 22Rv1 cells led to cell cycle arrest in the G1 phase but did not affect sub-G1 in flow cytometry. GFP-WWOX overexpressed 22Rv1 cells were shown to inhibit cell cycle progression into mitosis under nocodazole treatment in flow cytometry, immunoblotting and GFP fluorescence. Further, cyclin D1 but not apoptosis correlated genes were down-regulated by WWOX both in vitro and in vivo. Restoration of cyclin D1 in the WWOX-overexpressed 22Rv1 cells could abolish the WWOX-mediated tumor repression. In addition, WWOX impair c-Jun-mediated cyclin D1 promoter activity. These results suggest that WWOX inhibits prostate cancer progression through negatively regulating cyclin D1 in cell cycle lead to G1 arrest. In summary, our data reveal a novel mechanism of WWOX in tumor suppression. 相似文献
12.
Sa?a ?tefani? Cornelia Spycher Laura Morf Gemma Fabriàs Josefina Casas Elisabeth Schraner Peter Wild Adrian B. Hehl Sabrina Sonda 《Journal of lipid research》2010,51(9):2527-2545
Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes. 相似文献
13.
14.
15.
Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells
下载免费PDF全文

Satyanarayana A Wiemann SU Buer J Lauber J Dittmar KE Wüstefeld T Blasco MA Manns MP Rudolph KL 《The EMBO journal》2003,22(15):4003-4013
Telomere shortening limits the regenerative capacity of primary cells in vitro by inducing cellular senescence characterized by a permanent growth arrest of cells with critically short telomeres. To test whether this in vitro model of cellular senescence applies to impaired organ regeneration induced by telomere shortening in vivo, we monitored liver regeneration after partial hepatectomy in telomerase-deficient mice. Our study shows that telomere shortening is heterogeneous at the cellular level and inhibits a subpopulation of cells with critically short telomeres from entering the cell cycle. This subpopulation of cells with impaired proliferative capacity shows senescence-associated beta-galactosidase activity, while organ regeneration is accomplished by cells with sufficient telomere reserves that are capable of additional rounds of cell division. This study provides experimental evidence for the existence of an in vivo process of cellular senescence induced by critical telomere shortening that has functional impact on organ regeneration. 相似文献
16.
During entry into the cell cycle a phosphatidylcholine (PC) metabolic cycle is activated. We have examined the hypothesis that PC synthesis during the G(0) to G(1) transition is controlled by one or more lipid products of PC turnover acting directly on the rate-limiting enzyme in the synthesis pathway, CTP: phosphocholine cytidylyltransferase (CCT). The acceleration of PC synthesis was two- to threefold during the first hour after addition of serum to quiescent IIC9 fibroblasts. The rate increased to approximately 15-fold above the basal rate during the second hour. The production of arachidonic acid, diacylglycerol (DAG), and phosphatidic acid (PA) preceded the second, rapid phase of PC synthesis. However, an increase in the cellular content of these lipid mediators was detected only for DAG. CCT activation and translocation to membranes accompanied the second phase of the PC synthesis acceleration. Bromoenol lactone (BEL), an inhibitor of calcium-independent phospholipase A(2) and PA phosphatase, blocked production of fatty acids and DAG, inhibited both phases of the PC synthesis response to serum, and reduced CCT activity and membrane affinity. The effect of BEL on PC synthesis was partially reversed by in situ generation of DAG via exogenous PC-specific phospholipase C to generate approximately 2-fold elevation in PC-derived DAG. Exogenous arachidonic acid also partially reversed the inhibition by BEL, but only at a concentration that generated a supra-physiological cellular content of free fatty acid. 1-Butanol, which blocks PA production, had no effect on DAG generation, or on PC synthesis. We conclude that fatty acids and DAG could contribute to the initial slow phase of the PC synthesis response. DAG is the most likely lipid regulator of CCT activity and the rapid phase of PC synthesis. However, processes other than direct activation of CCT by lipid mediators likely contribute to the highly accelerated phase during entry into the cell cycle. 相似文献
17.
Tulis DA Bohl Masters KS Lipke EA Schiesser RL Evans AJ Peyton KJ Durante W West JL Schafer AI 《Biochemical and biophysical research communications》2002,291(4):1014-1021
YC-1, a synthetic benzyl indazole derivative, is capable of stimulating endogenous vessel wall cyclic guanosine monophosphate (cGMP) production and attenuating the remodeling response to experimental arterial angioplasty. In an effort to investigate the mechanisms of this YC-1-mediated vasoprotection, we examined the influence of soluble YC-1 or YC-1 incorporated in a polyethylene glycol (PEG) hydrogel on cultured rat vascular smooth muscle cell (SMC) cGMP synthesis, SMC proliferation, and platelet function. Results demonstrate that soluble YC-1 stimulated SMC cGMP production in a dose-dependent fashion, while both soluble and hydrogel-released YC-1 inhibited vascular SMC proliferation in a dose-dependent fashion without effects on cell viability. Platelet aggregation and adherence to collagen were both significantly inhibited in a dose-dependent fashion by soluble and hydrogel-released YC-1. Arterial neointima formation following experimental balloon injury was significantly attenuated by perivascular hydrogel-released YC-1. These results suggest that YC-1 is a potent, physiologically active agent with major anti-proliferative and anti-platelet properties that may provide protection against vascular injury through cGMP-dependent mechanisms. 相似文献
18.
19.
20.
Trivedi PP Roberts PC Wolf NA Swanborg RH 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(8):4590-4597
NK cells have been shown to influence immune responses via direct interaction with cells of the adaptive immune system, such as dendritic cells, B cells, and T cells. A role for NK cells in down-regulation of T cell responses has been implicated in several studies; however, the underlying mechanism of this suppression has remained elusive. In this study we show that dark Agouti rat NK cells inhibit syngeneic T cell proliferation via up-regulation of the cell cycle inhibitor, p21, resulting in a G0/G1 stage cell cycle arrest. The inhibition is cell-cell contact dependent, reversible, and Ag nonspecific. Interestingly, NK cells do not inhibit IL-2 secretion or IL-2R up-regulation and do not induce T cell death. Thus, our results show that NK cells do not affect early T cell activation events, but specifically inhibit T cell proliferation by direct interaction with T cells. Our findings suggest that NK cells may play an important role in maintaining immune homeostasis by directly regulating clonal expansion of activated T cells. This novel mechanism of T cell regulation by NK cells provides insight into NK cell-mediated regulation of adaptive immunity and provides a mechanistic link between NK cell function and suppression of T cell responses. 相似文献