首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Endosomal sorting complexes required for transport (ESCRT) have been implicated in topologically similar but diverse cellular and pathological processes including multivesicular body (MVB) biogenesis, cytokinesis and enveloped virus budding. Although receptor sorting at the endosomal membrane producing MVBs employs the regulated assembly of ESCRT-0 followed by ESCRT-I, -II, -III and the vacuolar protein sorting (VPS)4 complex, other ESCRT-catalyzed processes require only a subset of complexes which commonly includes ESCRT-III and VPS4. Recent progress has shed light on the pathway of ESCRT assembly and highlights the separation of tasks of different ESCRT complexes and associated partners. The emerging picture suggests that among all ESCRT-catalyzed processes, divergent pathways lead to ESCRT-III assembly within the neck of a budding structure catalyzing membrane fission.  相似文献   

2.
The endosomal sorting complexes required for transport (ESCRT) pathway mediates membrane fission reactions during intraluminal endosomal vesicle formation, budding of HIV-1 and other enveloped viruses, and the final abscission step of cytokinesis in mammals and archaea. Current models hold that ubiquitin-binding ESCRT factors act early in the pathway to regulate factor recruitment and assembly, whereas the late acting ESCRT-III proteins form filaments that draw the membranes together and mediate fission, possibly, in collaboration with VPS4-ATPases. I will discuss our current understanding of the structures and functions of the different ESCRT factors in HIV budding and abscission with a particular focus on our studies aimed at understanding: (1) how ubiquitin regulates ESCRT recruitment during HIV-1 budding and (2) the structures and membrane-binding properties of ESCRT-III subunits and filaments.  相似文献   

3.
Animal cells bud exosomes and microvesicles (EMVs) from endosome and plasma membranes. The combination of higher-order oligomerization and plasma membrane binding is a positive budding signal that targets diverse proteins into EMVs and retrovirus particles. Here we describe an inhibitory budding signal (IBS) from the human immunodeficiency virus (HIV) Gag protein. This IBS was identified in the spacer peptide 2 (SP2) domain of Gag, is activated by C-terminal exposure of SP2, and mediates the severe budding defect of p6-deficient and PTAP-deficient strains of HIV. This IBS also impairs the budding of CD63 and several other viral and nonviral EMV proteins. The IBS does not prevent cargo delivery to the plasma membrane, a major site of EMV and virus budding. However, the IBS does inhibit an interaction between EMV cargo proteins and VPS4B, a component of the endosomal sorting complexes required for transport (ESCRT) machinery. Taken together, these results demonstrate that inhibitory signals can block protein and virus budding, raise the possibility that the ESCRT machinery plays a role in EMV biogenesis, and shed new light on the role of the p6 domain and PTAP motif in the biogenesis of HIV particles.  相似文献   

4.
As the important molecular machinery for membrane protein sorting in eukaryotic cells, the endosomal sorting and transport complexes (ESCRT-0/I/II/III and VPS4) usually participate in various replication stages of enveloped viruses, such as endocytosis and budding. The main subunit of ESCRT-I, Tsg101, has been previously revealed to play a role in the entry and replication of classical swine fever virus (CSFV). However, the effect of the whole ESCRT machinery during CSFV infection has not yet been well defined. Here, we systematically determine the effects of subunits of ESCRT on entry, replication, and budding of CSFV by genetic analysis. We show that EAP20 (VPS25) (ESCRT-II), CHMP4B and CHMP7 (ESCRT-III) regulate CSFV entry and assist vesicles in transporting CSFV from Clathrin, early endosomes, late endosomes to lysosomes. Importantly, we first demonstrate that HRS (ESCRT-0), VPS28 (ESCRT-I), VPS25 (ESCRT-II) and adaptor protein ALIX play important roles in the formation of virus replication complexes (VRC) together with CHMP2B/4B/7 (ESCRT-III), and VPS4A. Further analyses reveal these subunits interact with CSFV nonstructural proteins (NS) and locate in the endoplasmic reticulum, but not Golgi, suggesting the role of ESCRT in regulating VRC assembly. In addition, we demonstrate that VPS4A is close to lipid droplets (LDs), indicating the importance of lipid metabolism in the formation of VRC and nucleic acid production. Altogether, we draw a new picture of cellular ESCRT machinery in CSFV entry and VRC formation, which could provide alternative strategies for preventing and controlling the diseases caused by CSFV or other Pestivirus.  相似文献   

5.
Kuang Z  Seo EJ  Leis J 《Journal of virology》2011,85(14):7153-7161
Budding of retroviruses from cell membranes requires ubiquitination of Gag and recruitment of cellular proteins involved in endosome sorting, including endosome sorting complex required for transport III (ESCRT-III) protein complex and vacuolar protein sorting 4 (VPS4) and its ATPase. In response to infection, a cellular mechanism has evolved that blocks virus replication early and late in the budding process through expression of interferon-stimulated gene 15 (ISG15), a dimer homologue of ubiquitin. Interferon treatment of DF-1 cells blocks avian sarcoma/leukosis virus release, demonstrating that this mechanism is functional under physiological conditions. The late block to release is caused in part by a loss in interaction between VPS4 and its coactivator protein LIP5, which is required to promote the formation of the ESCRT III-VPS4 double-hexamer complex to activate its ATPase. ISG15 is conjugated to two different LIP5-ESCRT-III-binding charged multivesicular body proteins, CHMP2A and CHMP5. Upon ISGylation of each, interaction with LIP5 is no longer detected. Two other ESCRT-III proteins, CHMP4B and CHMP6, are also conjugated to ISG15. ISGylation of CHMP2A, CHMP4B, and CHMP6 weakens their binding directly to VPS4, thereby facilitating the release of this protein from the membrane into the cytosol. The remaining budding complex fails to release particles from the cell membrane. Introducing a mutant of ISG15 into cells that cannot be conjugated to proteins prevents the ISG15-dependent mechanism from blocking virus release. CHMP5 is the primary switch to initiate the antiviral mechanism, because removal of CHMP5 from cells prevents ISGylation of CHMP2A and CHMP6.  相似文献   

6.
内吞体分选转运复合体(Endosomal sorting complex required for transport,ESCRT)主要识别泛素化修饰的膜蛋白,介导内吞小泡出芽和多泡体(Multivesicular bodies,MVBs)的形成。此外,以类似的拓扑方式,ESCRT也参与胞质分裂、自体吞噬、以及包膜病毒的出芽等过程。已有的研究表明,大量的反转录病毒和RNA病毒含有晚期结构域(Late-domains),该结构域与ESCRT组分相互作用,将ESCRT-Ⅲ和VPS4等募集在病毒组装与出芽区域,并利用ESCRT-Ⅲ使病毒粒子得以释放。最近,有研究发现,一些DNA包膜病毒、如乙肝病毒、疱疹病毒和杆状病毒等的出芽释放也依赖于宿主细胞ESCRT系统,但其机理尚需深入研究。  相似文献   

7.
TSG101 and ALIX both function in HIV budding and in vesicle formation at the multivesicular body (MVB), where they interact with other Endosomal Sorting Complex Required for Transport (ESCRT) pathway factors required for release of viruses and vesicles. Proteomic analyses revealed that ALIX and TSG101/ESCRT-I also bind a series of proteins involved in cytokinesis, including CEP55, CD2AP, ROCK1, and IQGAP1. ALIX and TSG101 concentrate at centrosomes and are then recruited to the midbodies of dividing cells through direct interactions between the central CEP55 'hinge' region and GPP-based motifs within TSG101 and ALIX. ESCRT-III and VPS4 proteins are also recruited, indicating that much of the ESCRT pathway localizes to the midbody. Depletion of ALIX and TSG101/ESCRT-I inhibits the abscission step of HeLa cell cytokinesis, as does VPS4 overexpression, confirming a requirement for these proteins in cell division. Furthermore, ALIX point mutants that block CEP55 and CHMP4/ESCRT-III binding also inhibit abscission, indicating that both interactions are essential. These experiments suggest that the ESCRT pathway may be recruited to facilitate analogous membrane fission events during HIV budding, MVB vesicle formation, and the abscission stage of cytokinesis.  相似文献   

8.
Membrane budding is essential for the egress of many enveloped viruses, and this process shares similarities with the biogenesis of multivesicular bodies (MVBs). In eukaryotic cells, the budding of intraluminal vesicles (IVLs) is mediated by the endosomal sorting complex required for transport (ESCRT) machinery and some viruses require ESCRT machinery components or functions to bud from host cells. Baculoviruses, such as Autographa californica multiple nucleopolyhedrovirus (AcMNPV), enter host cells by clathrin-mediated endocytosis. Viral DNA replication and nucleocapsid assembly occur within the nucleus. Some progeny nucleocapsids are subsequently trafficked to, and bud from, the plasma membrane, forming budded virions (BV). To determine whether the host ESCRT machinery is important or necessary for AcMNPV replication, we cloned a cDNA of Spodoptera frugiperda VPS4, a key regulator for disassembly and recycling of ESCRT III. We then examined viral infection and budding in the presence of wild-type (WT) or dominant negative (DN) forms of VPS4. First, we used a viral complementation system, in combination with fluorescent tags, to examine the effects of transiently expressed WT or DN VPS4 on viral entry. We found that dominant negative VPS4 substantially inhibited virus entry. Entering virus was observed within aberrant compartments containing the DN VPS4 protein. We next used recombinant bacmids expressing WT or DN VPS4 proteins to examine virus egress. We found that production of infectious AcMNPV BV was substantially reduced by expression of DN VPS4 but not by WT VPS4. Together, these results indicate that a functional VPS4 is necessary for efficient AcMNPV BV entry into, and egress from, insect cells.  相似文献   

9.
Essential Role of hIST1 in Cytokinesis   总被引:1,自引:0,他引:1  
The last steps of multivesicular body (MVB) formation, human immunodeficiency virus (HIV)-1 budding and cytokinesis require a functional endosomal sorting complex required for transport (ESCRT) machinery to facilitate topologically equivalent membrane fission events. Increased sodium tolerance (IST) 1, a new positive modulator of the ESCRT pathway, has been described recently, but an essential function of this highly conserved protein has not been identified. Here, we describe the previously uncharacterized KIAA0174 as the human homologue of IST1 (hIST1), and we report its conserved interaction with VPS4, CHMP1A/B, and LIP5. We also identify a microtubule interacting and transport (MIT) domain interacting motif (MIM) in hIST1 that is necessary for its interaction with VPS4, LIP5 and other MIT domain-containing proteins, namely, MITD1, AMSH, UBPY, and Spastin. Importantly, hIST1 is essential for cytokinesis in mammalian cells but not for HIV-1 budding, thus providing a novel mechanism of functional diversification of the ESCRT machinery. Last, we show that the hIST1 MIM activity is essential for cytokinesis, suggesting possible mechanisms to explain the role of hIST1 in the last step of mammalian cell division.  相似文献   

10.
Polymerization of Gag on the inner leaflet of the plasma membrane drives the assembly of Human Immunodeficiency Virus 1 (HIV-1). Gag recruits components of the endosomal sorting complexes required for transport (ESCRT) to facilitate membrane fission and virion release. ESCRT assembly is initiated by recruitment of ALIX and TSG101/ESCRT-I, which bind directly to the viral Gag protein and then recruit the downstream ESCRT-III and VPS4 factors to complete the budding process. In contrast to previous models, we show that ALIX is recruited transiently at the end of Gag assembly, and that most ALIX molecules are recycled into the cytosol as the virus buds, although a subset remains within the virion. Our experiments imply that ALIX is recruited to the neck of the assembling virion and is mostly recycled after virion release.  相似文献   

11.
The endosomal sorting complex required for transport (ESCRT) is thought to support the formation of intralumenal vesicles of multivesicular bodies (MVBs). The ESCRT is also required for the budding of HIV and has been proposed to be recruited to the HIV-budding site, the plasma membrane of T cells and MVBs in macrophages. Despite increasing data on the function of ESCRT, the ultrastructural localization of its components has not been determined. We therefore localized four proteins of the ESCRT machinery in human T cells and macrophages by quantitative electron microscopy. All the proteins were found throughout the endocytic pathway, including the plasma membrane, with only around 10 and 3% of the total labeling in the cytoplasm and on the MVBs, respectively. The majority of the labeling (45%) was unexpectedly found on tubular-vesicular endosomal membranes rather than on endosomes themselves. The ESCRT labeling was twice as concentrated on early and late endosomes/lysosomes in macrophages compared with that in T cells, where it was twice more abundant at the plasma membrane. The ESCRT proteins were not redistributed on HIV infection, suggesting that the amount of ESCRT proteins located at the budding site suffices for HIV release. These results represent the first systematic ultrastructural localization of ESCRT and provide insights into its role in uninfected and HIV-infected cells.  相似文献   

12.
Hrs function: viruses provide the clue   总被引:5,自引:0,他引:5  
The endosomal protein Hrs plays a central role in the downregulation of receptors. A set of recent studies reveals a link between Hrs and the multiprotein complex ESCRT (endosome-associated complex required for transport) machinery that promotes inward vesiculation at the limiting membrane of the sorting endosome. A conserved sequence motif, PT/(S)AP, found in structural proteins of several RNA viruses (e.g. HIV Gag) promotes release of virus from the cell by recruiting the ESCRT machinery to the viral budding sites at the plasma membrane. The same motif is also found in Hrs and recruits the ESCRT I complex to endosomes through direct interaction with one of its components called TSG101. Fusion of Hrs with the gag gene of HIV-1 lacking this motif can complement a defect in virus budding. Further challenging data indicate a wider role for Hrs in the regulation of endosome dynamics.  相似文献   

13.
The human cytomegalovirus (HCMV) has been proposed to complete its final envelopment on cytoplasmic membranes prior to its release to the extracellular medium. The nature of these membranes and the mechanisms involved in virus envelopment and release are poorly understood. Here we show by immunogold-labelling and electron microscopy that CD63, a marker of multivesicular bodies (MVBs), is incorporated into the viral envelope, supporting the notion that HCMV uses endocytic membranes for its envelopment. We therefore investigated a possible role for the cellular endosomal sorting complex required for transport (ESCRT) machinery in HCMV envelopment. Depletion of tumour suppressor gene 101 and ALIX/AIP1 with small interfering RNAs (siRNAs) in HCMV-infected cells did not affect virus production. In contrast, siRNAs against the vacuolar protein sorting 4 (VPS4) proteins silenced the expression of VPS4A and VPS4B, inhibited the sorting of epidermal growth factor to lysosomes, the formation of HIV Gag-derived virus-like particles and vesicular stomatitis virus infection, but enhanced the number of HCMV viral particles produced. Treatment of infected cells with protease inhibitors also increased viral production. These studies indicate that, in contrast to some enveloped RNA viruses, HCMV does not require the cellular ESCRT machinery to complete its envelopment.  相似文献   

14.
The endosomal sorting complex required for transport (ESCRT) system traffics ubiquitinated cargo to lysosomes via an unusual membrane budding reaction that is directed away from the cytosol. Here, we show that human ESCRT-II self-assembles into clusters of 10-100 molecules on supported lipid bilayers. The ESCRT-II clusters are functional in that they bind to ubiquitin and the ESCRT-III subunit VPS20 at nanomolar concentrations on membranes with the same stoichiometries observed in solution and in crystals. The clusters only form when cholesterol is included in the lipid mixture at >10 mol %. The clusters induce the formation of ordered membrane domains that exclude the dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbo-cyanine perchlorate. These results show that ESCRT complexes are capable of inducing lateral lipid phase separation under conditions where the lipids themselves do not spontaneously phase-separate. This property could facilitate ESCRT-mediated membrane budding.  相似文献   

15.
《Biophysical journal》2022,121(21):4229-4238
The assembly and budding of newly formed human immunodeficiency virus-1 (HIV-1) particles occur at the plasma membrane of infected cells. Although the molecular basis for viral budding has been studied extensively, investigation of its spatiotemporal characteristics has been limited by the small dimensions (~100 nm) of HIV particles and the fast kinetics of the process (a few minutes from bud formation to virion release). Here we applied ultra-fast atomic force microscopy to achieve real-time visualization of individual HIV-1 budding events from wild-type (WT) cell lines as well as from mutated lines lacking vacuolar protein sorting-4 (VPS4) or visceral adipose tissue-1 protein (VTA1). Using single-particle analysis, we show that HIV-1 bud formation follows two kinetic pathways (fast and slow) with each composed of three distinct phases (growth, stationary, decay). Notably, approximately 38% of events did not result in viral release and were characterized by the formation of short (rather than tall) particles that slowly decayed back into the cell membrane. These non-productive events became more abundant in VPS4 knockout cell lines. Strikingly, the absence of VPS4B, rather than VPS4A, increased the production of short viral particles, suggesting a role for VPS4B in earlier stages of HIV-1 budding than traditionally thought.  相似文献   

16.
The cellular endosomal sorting complex required for transport (ESCRT) machinery is involved in membrane budding processes, such as multivesicular biogenesis and cytokinesis. In HIV-infected cells, HIV-1 hijacks the ESCRT machinery to drive HIV release. Early in the HIV-1 assembly process, the ESCRT-I protein Tsg101 and the ESCRT-related protein ALIX are recruited to the assembly site. Further downstream, components such as the ESCRT-III proteins CHMP4 and CHMP2 form transient membrane associated lattices, which are involved in virus-host membrane fission. Although various geometries of ESCRT-III assemblies could be observed, the actual membrane constriction and fission mechanism is not fully understood. Fission might be driven from inside the HIV-1 budding neck by narrowing the membranes from the outside by larger lattices surrounding the neck, or from within the bud. Here, we use super-resolution fluorescence microscopy to elucidate the size and structure of the ESCRT components Tsg101, ALIX, CHMP4B and CHMP2A during HIV-1 budding below the diffraction limit. To avoid the deleterious effects of using fusion proteins attached to ESCRT components, we performed measurements on the endogenous protein or, in the case of CHMP4B, constructs modified with the small HA tag. Due to the transient nature of the ESCRT interactions, the fraction of HIV-1 assembly sites with colocalizing ESCRT complexes was low (1.5%-3.4%). All colocalizing ESCRT clusters exhibited closed, circular structures with an average size (full-width at half-maximum) between 45 and 60 nm or a diameter (determined using a Ripley’s L-function analysis) of roughly 60 to 100 nm. The size distributions for colocalizing clusters were narrower than for non-colocalizing clusters, and significantly smaller than the HIV-1 bud. Hence, our results support a membrane scission process driven by ESCRT protein assemblies inside a confined structure, such as the bud neck, rather than by large lattices around the neck or in the bud lumen. In the case of ALIX, a cloud of individual molecules surrounding the central clusters was often observed, which we attribute to ALIX molecules incorporated into the nascent HIV-1 Gag shell. Experiments performed using YFP-tagged Tsg101 led to an over 10-fold increase in ESCRT structures colocalizing with HIV-1 budding sites indicating an influence of the fusion protein tag on the function of the ESCRT protein.  相似文献   

17.
Human immunodeficiency virus (HIV) uses the ESCRT (endosomal sorting complexes required for transport) protein pathway to bud from infected cells. Despite the roles of ESCRT‐I and ‐III in HIV budding being firmly established, participation of ESCRT‐II in this process has been controversial. EAP45 is a critical component of ESCRT‐II. Previously, we utilised a CRISPR‐Cas9 EAP45 knockout cell line to assess the involvement of ESCRT‐II in HIV replication. We demonstrated that the absence of ESCRT‐II impairs HIV budding. Here, we show that virus spread is also defective in physiologically relevant CRISPR/Cas9 EAP45 knockout T cells. We further show reappearance of efficient budding by re‐introduction of EAP45 expression into EAP45 knockout cells. Using expression of selected mutants of EAP45, we dissect the domain requirement responsible for this function. Our data show at the steady state that rescue of budding is only observed in the context of a Gag/Pol, but not a Gag expressor, indicating that the size of cargo determines the usage of ESCRT‐II. EAP45 acts through the YPXL‐ALIX pathway as partial rescue is achieved in a PTAP but not a YPXL mutant virus. Our study clarifies the role of ESCRT‐II in the late stages of HIV replication and reinforces the notion that ESCRT‐II plays an integral part during this process as it does in sorting ubiquitinated cargos and in cytokinesis.  相似文献   

18.
Endosomal sorting complexes required for transport (ESCRTs) regulate several events involving membrane invagination, including multivesicular body (MVB) biogenesis, viral budding, and cytokinesis. In each case, upstream ESCRTs combine with additional factors, such as Bro1 proteins, to recruit ESCRT-III and the ATPase VPS4 in order to drive membrane scission. A clue to understanding how such diverse cellular processes might be controlled independently of each other has been the identification of ESCRT isoforms. Mammalian ESCRT-I comprises TSG101, VPS28, VPS37A-D, and MVB12A/B. These could generate several ESCRT-I complexes, each targeted to a different compartment and able to recruit distinct ESCRT-III proteins. Here we identify a novel ESCRT-I component, ubiquitin-associated protein 1 (UBAP1), which contains a region conserved in MVB12. UBAP1 binds the endosomal Bro1 protein His domain protein tyrosine phosphatase (HDPTP), but not Alix, a Bro1 protein involved in cytokinesis. UBAP1 is required for sorting EGFR to the MVB and for endosomal ubiquitin homeostasis, but not for cytokinesis. UBAP1 is part of a complex that contains a fraction of total cellular TSG101 and that also contains VPS37A but not VPS37C. Hence, the presence of UBAP1, in combination with VPS37A, defines an endosome-specific ESCRT-I complex.  相似文献   

19.
The endosomal sorting complex required for transport (ESCRT) system comprises a series of protein complexes that play essential roles in multivesicular body (MVB) sorting of ubiquitylated membrane proteins, enveloped RNA virus budding, and cytokinesis in mammalian cells. The complex, named ESCRT-I, consists of four subunits (TSG101, VPS28, VPS37, and MVB12). There are four VPS37 isoforms. We have reported that ALIX (an ALG-2-interacting protein and accessory protein in the ESCRT system) is physically linked with TSG101 by ALG-2 in a Ca2+-dependent manner, but the role of ALG-2 as an adaptor protein for the ESCRT-I complex remains unknown. To characterize this adaptor function, initially we investigated the binding of ALG-2 to ESCRT-I complexes containing each one of the four different VPS37 isoforms by two approaches: first, Far-Western blot analysis with biotin-labeled ALG-2 probe, and second, a pulldown assay to determine the binding of the four recombinant ESCRT-I complexes to Strep-tagged ALG-2 after co-expression in HEK293T cells. VPS37B and VPS37C appeared to interact with ALG-2 in a stronger manner than TSG101 does. The results of in vitro binding assays using purified recombinant proteins indicated that ALG-2 functions as a Ca2+-dependent adaptor protein that bridges ALIX and ESCRT-I to form a ternary complex, ESCRT-I/ALIX/ALG-2.  相似文献   

20.
Diverse cellular processes, including multivesicular body formation, cytokinesis, and viral budding, require the sequential functions of endosomal sorting complexes required for transport (ESCRTs) 0 to III. Of these multiprotein complexes, ESCRT-III in particular plays a key role in mediating membrane fission events by forming large, ring-like helical arrays. A number of proteins playing key effector roles, most notably the ATPase associated with diverse cellular activities protein VPS4, harbor present in microtubule-interacting and trafficking molecules (MIT) domains comprising asymmetric three-helical bundles, which interact with helical MIT-interacting motifs in ESCRT-III subunits. Here we assess comprehensively the ESCRT-III interactions of the MIT-domain family member MITD1 and identify strong interactions with charged multivesicular body protein 1B (CHMP1B), CHMP2A, and increased sodium tolerance-1 (IST1). We show that these ESCRT-III subunits are important for the recruitment of MITD1 to the midbody and that MITD1 participates in the abscission phase of cytokinesis. MITD1 also dimerizes through its C-terminal domain. Both types of interactions appear important for the role of MITD1 in negatively regulating the interaction of IST1 with VPS4. Because IST1 binding in turn regulates VPS4, MITD1 may function through downstream effects on the activity of VPS4, which plays a critical role in the processing and remodeling of ESCRT filaments in abscission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号