首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Invariant NKT (iNKT) cells expressing a semi-invariant Vα14 TCR recognize self and foreign lipid Ags when presented by the nonclassical MHCI homolog CD1d. Whereas the majority of known iNKT cell Ags are characterized by the presence of a single α-linked sugar, mammalian self Ags are β-linked glycosphingolipids, posing the interesting question of how the semi-invariant TCR can bind to such structurally distinct ligands. In this study, we show that the mouse iNKT TCR recognizes the complex β-linked Ag isoglobotrihexosylceramide (iGb3; Galα1-3-Galβ1-4-Glcβ1-1Cer) by forcing the proximal β-linked sugar of the trisaccharide head group to adopt the typical binding orientation of α-linked glycolipids. The squashed iGb3 orientation is stabilized by several interactions between the trisaccharide and CD1d residues. Finally, the formation of novel contacts between the proximal and second sugar of iGb3 and CDR2α residues of the TCR suggests an expanded recognition logic that can possibly distinguish foreign Ags from self Ags.  相似文献   

2.

Background

There have been few reports on the role of Fc receptors (FcRs) and immunoglobulin G (IgG) in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs) in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa.

Methods

In FcγRIIB deficient (KO) and C57BL/6 (WT) mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA). Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs) in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs) differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL).

Results

In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously.

Conclusion

Antigen-specific IgG ameliorates allergic airway inflammation via FcγRIIB on DCs.  相似文献   

3.
K/BxN serum-induced passive arthritis was reported to depend on the activation of mast cells, triggered by the activating IgG receptor FcγRIIIA, when engaged by IgG1 autoantibodies present in K/BxN serum. This view is challenged by the fact that FcγRIIIA-deficient mice still develop K/BxN arthritis and because FcγRIIIA is the only activating IgG receptor expressed by mast cells. We investigated the contribution of IgG receptors, IgG subclasses, and cells in K/BxN arthritis. We found that the activating IgG2 receptor FcγRIV, expressed only by monocytes/macrophages and neutrophils, was sufficient to induce disease. K/BxN arthritis occurred not only in mast cell-deficient W(sh) mice, but also in mice whose mast cells express no activating IgG receptors. We propose that at least two autoantibody isotypes, IgG1 and IgG2, and two activating IgG receptors, FcγRIIIA and FcγRIV, contribute to K/BxN arthritis, which requires at least two cell types other than mast cells, monocytes/macrophages, and neutrophils.  相似文献   

4.

Background

Although fungi have been implicated as initiating/deteriorating factors for allergic asthma, their contributing components have not been fully elucidated. We previously isolated soluble β-glucan from Candida albicans (CSBG) (Ohno et al., 2007). In the present study, the effects of CSBG exposure on airway immunopathology in the presence or absence of other immunogenic allergen was investigated in vivo, and their cellular mechanisms were analyzed both in vivo and in vitro.

Methods

In vivo, ICR mice were divided into 4 experimental groups: vehicle, CSBG (25 μg/animal), ovalbumin (OVA: 2 μg/animal), and CSBG + OVA were repeatedly administered intratracheally. The bronchoalveolar lavage cellular profile, lung histology, levels of cytokines and chemokines in the lung homogenates, the expression pattern of antigen-presenting cell (APC)-related molecules in the lung digests, and serum immunoglobulin values were studied. In vitro, the impacts of CSBG (0–12.5 μg/ml) on the phenotype and function of immune cells such as splenocytes and bone marrow-derived dendritic cells (BMDCs) were evaluated in terms of cell proliferation, the surface expression of APC-related molecules, and OVA-mediated T-cell proliferating activity.

Results

In vivo, repeated pulmonary exposure to CSBG induced neutrophilic airway inflammation in the absence of OVA, and markedly exacerbated OVA-related eosinophilic airway inflammation with mucus metaplasia in mice, which was concomitant with the amplified lung expression of Th2 cytokines and IL-17A and chemokines related to allergic response. Exposure to CSBG plus OVA increased the number of cells bearing MHC class II with or without CD80 in the lung compared to that of others. In vitro, CSBG significantly augmented splenocyte proliferation in the presence or absence of OVA. Further, CSBG increased the expression of APC-related molecules such as CD80, CD86, and DEC205 on BMDCs and amplified OVA-mediated T-cell proliferation through BMDCs.

Conclusion

CSBG potentiates allergic airway inflammation with maladaptive Th immunity, and this potentiation was associated with the enhanced activation of APCs including DC.  相似文献   

5.
6.
γδ T lymphocytes are commonly viewed as embracing properties of both adaptive and innate immunity. Contributing to this is their responsiveness to pathogen products, either with or without the involvement of the TCR and its coreceptors. This study clarifies this paradoxical behavior by showing that these two modes of responsiveness are the properties of two discrete sets of murine lymphoid γδ T cells. Thus, MyD88 deficiency severely impaired the response to malaria infection of CD27((-)), IL-17A-producing γδ T cells, but not of IFN-γ-producing γδ cells. Instead, the latter compartment was severely contracted by ablating CD27, which synergizes with TCRγδ in the induction of antiapoptotic mediators and cell cycle-promoting genes in CD27((+)), IFN-γ-secreting γδ T cells. Hence, innate versus adaptive receptors differentially control the peripheral pool sizes of discrete proinflammatory γδ T cell subsets during immune responses to infection.  相似文献   

7.
Bacillus Calmette-Guérin (BCG), the antituberculosis vaccine, localizes within immature phagosomes of macrophages and dendritic cells (APCs), and avoids lysosomal degradation. BCG-derived antigenic peptides are thus inefficiently processed by APCs, and we investigated alternate mechanisms of Ag processing. Proteomics identified that BCG phagosomes are enriched for nicastrin, APH, and presenilin components of γ-secretase, a multimeric protease. Using an in vitro Ag presentation assay and BCG-infected APCs, we found γ-secretase components to cleave BCG-derived Ag85B to produce a peptide epitope, which, in turn, primed IL-2 release from Ag85B-specific T cell hybridoma. siRNA knockdown or chemical inhibition of γ-secretase components using L685458 decreased the ability of BCG or Mycobacterium tuberculosis-infected APCs to present Ag85B. In addition, L685485 inhibition of γ-secretase led to a decreased ability of BCG-dendritic cells to immunize mice and induce Ag85B-specific CD4 T cells in vivo. Because BCG and M. tuberculosis sequester within APCs preventing immune recognition, γ-secretase components appear to fortuitously process the immunodominant Ag85B, facilitating immune recognition.  相似文献   

8.
《Cellular signalling》2014,26(4):730-739
Studies demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) ligands reduce nicotine-induced non small cell lung carcinoma (NSCLC) cell growth through inhibition of nicotinic acetylcholine receptor (nAChR) mediated signaling pathways. However, the mechanisms by which PPARγ ligands inhibited nAChR expression remain elucidated. Here, we show that GW1929, a synthetic PPARγ ligand, not only inhibited but also antagonized the stimulatory effect of acetylcholine on NSCLC cell proliferation. Interestingly, GW1929 inhibited α7 nAChR expression, which was not blocked by GW9662, an antagonist of PPARγ, or by PPARγ siRNA, but was abrogated by the p38 MPAK inhibitor SB239063. GW1929 reduced the promoter activity of α7 nAChR and induced early growth response-1 (Egr-1) protein expression, which was overcame by SB239063, but enhanced by inhibitors of PI3-K and mTOR. Silencing of Egr-1 blocked, while overexpression of Egr-1 enhanced, the effect of GW1929 on α7 nAChR expression and promoter activity. Finally, GW1929 induced Egr-1 bound to specific DNA areas in the α7 nAChR gene promoter. Collectively, these results demonstrate that GW1929 not only inhibits but also antagonizes Ach-induced NSCLC cell growth by inhibition of α7 nAChR expression through PPARγ-independent signals that are associated with activation of p38 MPAK and inactivation of PI3-K/mTOR, followed by inducing Egr-1 protein and Egr-1 binding activity in the α7 nAChR gene promoter. By downregulation of the α7 nAchR, GW1929 blocks cholinergic signaling and inhibits NSCLC cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号