首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species are toxic to cells but they may also have active roles in transducing apoptotic events. To study the role of reactive oxygen species in growth factor depletion induced apoptosis of human primary CD4+ T cells, we used a synthetic manganese porphyrin superoxide dismutase mimetic to detoxify superoxide anions formed during apoptosis. Apoptosis of primary CD4+ T cells was characterized by generation of superoxide anions, plasma membrane phosphatidyl-serine translocation, loss of mitochondrial membrane potential, activation of caspase 3, condensation of chromatin, as well as DNA degradation. The detoxification of superoxide anions did not influence plasma membrane phosphatidyl-serine translocation, or chromatin condensation, and only marginally inhibited the loss of mitochondrial membrane potential and the formation of DNA strand breaks. In contrast, the detoxification of superoxide anions significantly reduced caspase 3 activity and almost completely inhibited the apoptotic decrease in total cellular DNA content as measured by propidium iodide staining. Our results indicate that reactive oxygen anions induce signals leading to efficient DNA degradation after the initial formation of DNA strand breaks. Thus, reactive oxygen anions have active roles in signaling that lead to the apoptotic events.  相似文献   

2.
The potency of UVA radiation, representing 90% of solar UV light reaching the earth׳s surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1 J/cm2 was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5 M Na+, implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.  相似文献   

3.
Direct attack to genomic DNA by reactive oxygen species causes various types of lesions, including base modifications and strand breaks. The most significant lesion is considered to be an unrepaired double-strand break that can lead to fatal cell damage. We directly observed double-strand breaks of DNA in reconstituted chromatin stained by a fluorescent cyanine dye, YOYO (quinolinium, 1,1'-[1,3- propanediylbis[(dimethyliminio)-3,1- propanediyl]]bis[4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]]-, tetraiodide), in solution, where YOYO is known to have the ability to photo-cleave DNAs by generating reactive oxygen species. Reconstituted chromatin was assembled from large circular DNA (106 kbp) with core histone proteins. We also investigated the effect of vitamin C (ascorbic acid) on preventing photo-induced double-strand breaks in a quantitative manner. We found that DNA is protected against double-strand breaks by the addition of ascorbic acid, and this protective effect is dose dependent. The effective kinetic constant of the breakage reaction in the presence of 5 mM ascorbic acid is 20 times lower than that in the absence of ascorbic acid. This protective effect of ascorbic acid in reconstituted chromatin is discussed in relation to the highly compacted polynucleosomal structure. The results highlight the fact that single-molecule observation is a useful tool for studying double-strand breaks in giant DNA and chromatin.  相似文献   

4.
Certain estrogen metabolites are involved in carcinogenesis and the development of resistance to methotrexate (MTX). In this study, we determined whether these well-established biological effects correlate with the relative efficiency of several estrogen metabolites to induce DNA strand breaks in the presence of copper, and investigated the potential enhancing effect of reduced nicotinamide adenine dinucleotide (NADH). DNA strand breaks induced by estradiol metabolites were measured by the conversion of supercoiled phage phiX-174 RF1 DNA to open circular and linear forms. The most active catecholestrogens were the 4-hydroxy derivatives, which produced about 2.5 times more DNA double strand breaks than the 2-hydroxy derivatives, while estradiol and 16alpha-hydroxyestrone were inactive. In addition, our results show that 4-hydroxyestradiol (4-OHE2) at physiological concentrations was capable of exhibiting DNA cleaving activity. The formation of these catecholestrogen-induced DNA strand breaks was associated with the utilization of oxygen and the generation of H2O2, because catalase inhibited the DNA cleaving activity of 4-OHE2. Interestingly, we also observed that NADH enhanced the induction of DNA strands breaks by 4-OHE2/Cu(II), probably by perpetuating the redox cycle between the quinone and the semiquinone forms of the catecholestrogen. In conclusion, this study demonstrated that the relative efficiency of 2-, and 4-hydroxyestrogen in carcinogenesis and for the enhancement of MTX resistance correlates with their relative capability to induce DNA strand breaks. In order to inhibit these estrogen-mediated biological effects, it may be important to develop different strategies to block the production of reactive oxygen species by the catecholestrogen-redox cycle.  相似文献   

5.
One-electron reduction of diaziquone (AZQ) by purified rat liver NADPH cytochrome c reductase was associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as indicated by ESR spin-trapping studies. Reactive oxygen formation correlated with AZQ-dependent production of single and double PM2 plasmid DNA strand breaks mediated by this system as detected by gel electrophoresis. Direct two-electron reduction of AZQ by purified rat liver NAD(P)H (quinone acceptor) oxidoreductase (QAO) was also associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as detected by ESR spin trapping. Furthermore, PM2 plasmid DNA strand breaks were detected in the presence of this system. Plasmid DNA strand breakage was inhibited by dicumarol (49 +/- 5%), catalase (57 +/- 2.3%), SOD (42.2 +/- 3.6%) and ethanol (41.1 +/- 3.9%) showing QAO and reactive oxygen formation was involved in the PM2 plasmid DNA strand breaks observed. These results show that both one- and two-electron enzymatic reduction of AZQ give rise to formation of reactive oxygen species and DNA strand breaks. Autoxidation of the AZQ semiquinone and hydroquinone in the presence of molecular oxygen appears to be responsible for these processes. QAO appears to be involved in the metabolic activation of AZQ to free radical species. The cellular levels and distribution of this enzyme may play an important role in the response of tumor and normal cells to this antitumor agent.  相似文献   

6.
7.
8.
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.  相似文献   

9.
Previous studies have demonstrated that phenolic compounds, including genistein (4',5,7-trihydroxyisoflavone) and resveratrol (3,4',5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in phi X-174 plasmid DNA. H(2)O(2)/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H(2)O(2)/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H(2)O(2) suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H(2)O(2)/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H(2)O(2) were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.  相似文献   

10.
We describe a novel system for two dimensional electrophoresis at neutral and alkaline pH for determining the double-stranded and single-stranded lengths of DNA. With this system we analysed the mode of micrococcal nuclease digestion of DNA in cellular and SV40 viral chromatin and of supercoiled SV40 DNA. The enzyme reaction occurred in two steps : the enzyme first introduced single-strand breaks, then converted these to double-strand breaks by an adjacent cleavage on the opposite strand. Digestion of cellular chromatin DNA occurred by a similar mechanism. Chromatin fragments produced by limited micrococcal nuclease action contained many single-strand breaks, which may be important when this method is used to prepare chromatin fragments for biochemical and biophysical studies. Nucleosome monomer to tetramer produced at later stages of digestion contained few if any single-strand breaks.  相似文献   

11.
P M?ller  S Loft  C Lundby  N V Olsen 《FASEB journal》2001,15(7):1181-1186
The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage. Urinary excretion of 8-oxodG increased during the first day in altitude hypoxia, and there were more endonuclease III-sensitive sites on day 3 at high altitude. The subjects had more DNA strand breaks in altitude hypoxia than at sea level. The level of DNA strand breaks further increased immediately after exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity to withstand oxidative stress produced by exhaustive exercise.  相似文献   

12.
UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.  相似文献   

13.
Cytosine arabinoside (AraC) is a nucleoside analog that produces significant neurotoxicity in cancer patients. The mechanism by which AraC causes neuronal death is a matter of some debate because the conventional understanding of AraC toxicity requires incorporation into newly synthesized DNA. Here we demonstrate that AraC-induced apoptosis of cultured cerebral cortical neurons is mediated by oxidative stress. AraC-induced cell death was reduced by treatment with several different free-radical scavengers (N-acetyl-L-cysteine, dipyridamole, uric acid, and vitamin E) and was increased following depletion of cellular glutathione stores. AraC induced the formation of reactive oxygen species in neurons as measured by an increase in the fluorescence of the dye 5-(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate. AraC produced DNA single-strand breaks as measured by single-cell gel electrophoresis and the level of DNA strand breakage was reduced by treatment with the free radical scavengers. These data support a model in which AraC induces neuronal apoptosis by provoking the generation of reactive oxygen species, causing oxidative DNA damage and initiating the p53-dependent apoptotic program. These observations suggest the use of antioxidant therapies to reduce neurotoxicity in AraC chemotherapeutic regimens.  相似文献   

14.
The formation of reactive oxygen species (ROS), although a normal cellular activity, is considerably enhanced under chronic inflammatory conditions and ischemia. These species have been implicated in various disorders, mutagenesis, carcinogenesis and aging. Of many macromolecules, DNA is the most susceptible to hydroxyl radical, the most reactive of the ROS. The present study is designed to detect oxidative DNA damage in cancer patients and healthy aged humans using an anti-ROS-DNA monoclonal antibody (mAb). Purified calf thymus DNA fragments (approximate size 400 bp) were modified with ·OH, generated by UV-irradiation (254 nm) of hydrogen peroxide. ROS-modified DNA was characterized by UV-spectroscopy, melting temperature, alkaline sucrose density gradient ultracentrifugation and ion-exchange chromatography. ROS-DNA showed single strand breaks, decrease in Tm, modification of thymine (58.3%) and guanine (20%). The mAb generated against ROS-DNA was characterized for antigen binding specificity by competition ELISA. Monoclonal antibody showed strong binding to ROS-modified DNA, its modified fragments, polynucleotides and bases. With the exception of native DNA, binding of unmodified polynucleotides and bases was much lower. The mAb distinctly recognized DNA samples from lymphocytes of healthy aged humans and gave maximum inhibitions of 49, 53, 64 and 70%, while not reacting with DNA from young population. Similarly, oxidative lesions in DNA from cancer patients were also efficiently recognized by the mAb. DNA from healthy controls served as negative control. The studies demonstrate that the mAb, although cross-reactive, preferentially binds ROS-modified epitopes on DNA. High reactivity of mAb to DNA samples from cancer patients and healthy aged humans indicates increased oxidative stress leading to DNA damage.  相似文献   

15.
Recombinational repair is a well conserved DNA repair mechanism present in all living organisms. Repair by homologous recombination is generally accurate as it uses undamaged homologous DNA molecule as a repair template. In Escherichia coli homologous recombination repairs both the double-strand breaks and single-strand gaps in DNA. DNA double-strand breaks (DSB) can be induced upon exposure to exogenous sources such as ionizing radiation or endogenous DNA-damaging agents including reactive oxygen species (ROS) as well as during natural biological processes like conjugation. However, the bulk of double strand breaks are formed during replication fork collapse encountering an unrepaired single strand gap in DNA. Under such circumstances DNA replication on the damaged template can be resumed only if supported by homologous recombination. This functional cooperation of homologous recombination with replication machinery enables successful completion of genome duplication and faithful transmission of genetic material to a daughter cell. In eukaryotes, homologous recombination is also involved in essential biological processes such as preservation of genome integrity, DNA damage checkpoint activation, DNA damage repair, DNA replication, mating type switching, transposition, immune system development and meiosis. When unregulated, recombination can lead to genome instability and carcinogenesis.  相似文献   

16.
Inorganic cadmium (Cd) causes cellular damage to eukaryotes and to tissues of higher organisms, including DNA strand breaks and intracellular membrane damage, as a result of reactive oxygen stress. We previously reported cadmium chloride (CdCl2)-induced abnormal cell morphologies in the unicellular eukaryote Euglena gracilis Z (a plant cell model) and its achlorophyllous mutant SMZ strain (an animal cell model). The present study was undertaken to examine whether exposure of both strains to CdCl2 would lead to similar cellular responses, especially with regard to reactive oxygen stress loading and cellular damage. The results indicate that CdCl2 exposure can induce morphological alteration, linked to reactive oxygen stress. Both E. gracilis Z and SMZ cells subjected to short-term, high-dose CdCl2 exposure showed long 'comet lengths' in the so-called 'Comet' assay, indicating DNA strand breaks. Similarly, short-term, high-dose CdCl(2)-exposed cells and CdCl(2)-induced morphologically altered cells showed intense fluorescence of dihydrofluorescein (HFLUOR) after incubation with dihydrofluorescein diacetate (HFLUOR-DA). Positive data on the generation and involvement of intracellular reactive oxygen species (ROS) were obtained from long-term, low-dose CdCl(2)-exposed E. gracilis Z and SMZ, by thiobarbituric acid (TBA)-malondialdehyde (MDA) complex analyses.  相似文献   

17.
Previous studies have demonstrated that phenolic compounds, including genistein (4′,5,7-trihydroxyisoflavone) and resveratrol (3,4′,5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in φX-174 plasmid DNA. H2O2/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H2O2/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H2O2 suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H2O2/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H2O2 were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.  相似文献   

18.
DNA damage by carbonyl stress in human skin cells   总被引:1,自引:0,他引:1  
Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the alpha-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N(epsilon)-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.  相似文献   

19.
Reactive oxygen and nitrogen species (RONS) are formed as byproducts of many endogenous cellular processes, in response to infections, and upon exposure to various environmental factors. An increase in RONS can saturate the antioxidation system and leads to oxidative stress. Consequently, macromolecules are targeted for oxidative modifications, including DNA and protein. The oxidation of DNA, which leads to base modification and formation of abasic sites along with single and double strand breaks, has been extensively investigated. Protein oxidation is often neglected and is only recently being recognized as an important regulatory mechanism of various DNA repair proteins. This is a review of the current state of research on the regulation of DNA repair by protein oxidation with emphasis on the correlation between inflammation and cancer.  相似文献   

20.
DNA damage caused by exposure to reactive oxygen species is one of the primary causes of DNA decay in most organisms. In plants, endogenous reactive oxygen species (ROS) are generated not only by respiration and photosynthesis, but also by active responses to certain environmental challenges, such as pathogen attack. Significant extracellular sources of activated oxygen include air pollutants such as ozone and oxidative effects of UV light and low-level ionizing radiation. Plants are well equipped to cope with oxidative damage to cellular macromolecules, including DNA. Oxidative attack on DNA generates both altered bases and damaged sugar residues that undergo fragmentation and lead to strand breaks. Recent advances in the study of DNA repair in higher plants show that they use mechanisms similar to those present in other eukaryotes to remove and/or tolerate oxidized bases and other oxidative DNA lesions. Therefore, plants represent a valuable model system for the study of DNA oxidative repair processes in eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号