首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fishing is the major threat to marine fish populations, particularly to higher trophic-level predators such as sharks. Many sharks, and other fish, are caught as commercial by-catch or for recreational purposes and then released; therefore, it is important to understand the effects of capture stress on their physiology and subsequent survival. Nonetheless, although important data have been collected for some sharks, there can be substantial interspecific differences, and the consequences of capture stress are still poorly understood for most species. In this study, the authors quantified the physiological effect of capture on four catshark species endemic to Southern Africa, which are regularly discarded as by-catch and targeted by recreational fisheries. Fifteen pyjama sharks, nine leopard sharks and nine shysharks were captured, and a blood sample was collected to measure their physiological response to capture stress. Stressed blood biochemistry was compared to samples obtained after the sharks recovered for 24 h in an underwater pen. Levels of pH and K+ were significantly lower, and lactate levels were significantly higher, in sharks immediately after capture stress compared to after the 24 h recovery period. Although the species showed a similar response to capture stress, they differed significantly in pH, K+ and lactate levels, and there was some evidence of size affecting the strength of the response to capture stress. The substantial physiological response elicited by even the relatively quick capture event in this study suggests that common fishing practices will have a stronger impact on catshark homeostasis because of longer hooking times and more disruptive fishing gear. Although the relationship between survival and physiological changes elicited by capture needs further investigation, the results provide further evidence that minimizing stress would be beneficial to maximize the survival of sharks and other fish following capture-and-release fishing practices.  相似文献   

2.
Blood gasses of wild bonnethead, bull, and lemon sharks were measured with the i-STAT clinical analyzer with the CG4+ cartridge immediately after capture; and again immediately prior to release after tagging, handling and morphometric measurements were taken. Relative reference ranges of post-capture status were established. Among species, stress response to capture was similar for all parameters; however, pH declined and lactate concentrations rose over time, indicating continued insult from capture and/or response to additional handling stress. pCO(2) rose faster for S. tiburo than for C. leucas, and lactate concentrations rose faster for S. tiburo than for N. brevirostris. All species caught in gillnets experienced lower pH and higher lactate concentrations than on longlines. Discriminant analysis justified the use of blood gas analysis to assess physiological stress induced by different capture methods. From these results, we recommend 1) that gear be monitored closely and sharks be removed immediately, or suboptimally, that gear is deployed for the shortest soak time possible; 2) longline over gillnet gear; and 3) extra caution with sensitive species (e.g., S. tiburo), which may include the administration of blood buffers and other therapeutics if a shark is beyond the limits of relative reference ranges reported here.  相似文献   

3.
Bycatch of endangered loggerhead turtles in longline fisheries results in high rates of post-release mortality that may negatively impact populations. The factors contributing to post-release mortality have not been well studied, but traumatic injuries and physiological disturbances experienced as a result of capture are thought to play a role. The goal of our study was to gauge the physiological status of loggerhead turtles immediately upon removal from longline gear in order to refine our understanding of the impacts of capture and the potential for post-release mortality. We analysed blood samples collected from longline- and hand-captured loggerhead turtles, and discovered that capture in longline gear results in blood loss, induction of the systemic stress response, and a moderate increase in lactate. The method by which turtles are landed and released, particularly if released with the hook or line still attached, may exacerbate stress and lead to chronic injuries, sublethal effects or delayed mortality. Our study is the first, to the best of our knowledge, to document the physiological impacts of capture in longline gear, and our findings underscore the importance of best practices gear removal to promote post-release survival in longline-captured turtles.  相似文献   

4.
For many shark species, little information exists about the stress response to capture and release in commercial longline fisheries. Recent studies have used hematological profiling to assess the secondary stress response, but little is known about how, and to what degree, these indicators vary interspecifically. Moreover, there is little understanding of the extent to which the level of relative swimming activity (e.g., sluggish vs. active) or the general ecological classification (e.g., coastal vs. pelagic) correlates to the magnitude of the exercise-induced (capture-related) stress response. This study compared plasma electrolytes (Na(+), Cl(-), Mg(2+), Ca(2+), and K(+)), metabolites (glucose and lactate), blood hematocrit, and heat shock protein (Hsp70) levels between 11 species of longline-captured sharks (n=164). Statistical comparison of hematological parameters revealed species-specific differences in response to longline capture, as well as differences by ecological classification. Taken together, the blood properties of longline-captured sharks appear to be useful indicators of interspecific variation in the secondary stress response to capture, and may prove useful in the future for predicting survivorship of longline-captured sharks where new technologies (i.e., pop-up satellite tags) can verify post-release mortality.  相似文献   

5.
Common haematological [haematocrit (Hct)], primary (serum cortisol) and secondary (serum glucose and plasma lactate) analytes were utilized to compare blood biochemical status of Gadus morhua captured rapidly by jig with that of G. morhua captured by commercial demersal longline. In general, the physiological status of G. morhua, despite blind hook times, was significantly more disrupted (pronounced haemo-concentration and significantly elevated concentrations of cortisol, glucose and lactate) following longline capture relative to capture by jig, while no differences were detected among longline-caught fish as a function of dehooking method (or concomitant extent of overt physical trauma). Blood profiles from the more stressed G. morhua, a possible function of more extended longline hook times, were similar to the most stressed values reported for this species. The results also demonstrate that, although acute blood biochemical status is an effective gauge of relative stress, it does not reflect physical injury status, which has been shown to exert a strong influence on delayed mortality in previous studies in this species. Thus, acute blood chemical status alone may not be the most complete predictor of mortality. Future studies should evaluate physiological repercussions from capture-handling against physical trauma during more extended post-release periods for this species.  相似文献   

6.
Longline fishing is the most common elasmobranch capture method around the world, yet the physiological consequences of this technique are poorly understood. To quantify the sub-lethal effects of longline capture in the commonly exploited Caribbean reef shark (Carcharhinus perezi), 37 individuals were captured using standard, mid-water longlines. Hook timers provided hooking duration to the nearest minute. Once sharks were landed, blood samples were taken and used to measure a suite of physiological parameters. Control data were obtained by sampling an additional three unrestrained Caribbean reef sharks underwater at an established shark feeding site. The greatest level of physiological disruption occurred after 120-180min of hooking, whereas sharks exposed to minimal and maximal hook durations exhibited the least disturbed blood chemistry. Significant relationships were established between hooking duration and blood pH, pCO(2), lactate, glucose, plasma calcium and plasma potassium. Longline capture appears more benign than other methods assessed to date, causing a shift in the stress response from acute at the onset of capture to a sub-acute regime as the capture event progresses, apparently facilitating a degree of physiological recovery. Continued investigation into the physiological response of elasmobranchs to longline capture is vital for the effective management of such fisheries.  相似文献   

7.
Capture of muskellunge by angling resulted in a reduction of blood pH, elevated lactic acid concentrations, and a drop in total carbon dioxide and bicarbonate concentrations. The acidaemia was most severe immediately after capture and began to decline well before the blood lactate levels rose. Blood lactate levels were not as high as those characterizing fatigue in most other species. Recovery from the acidosis required 12 to 18 h and was accompanied by declines of 22% and 40% in haemoglobin and haematocrit levels respectively. With the exception of dying fish, there were only slight fluctuations in plasma sodium and potassium levels during recovery, indicating that there was no severe ionoregulatory dysfunction.
Thirty per cent of all angled muskellunge died. The last stages immediately preceding death were characterized by declining blood pH and elevated potassium levels.  相似文献   

8.
Recovery from anaerobic exercise is thought to be prolonged in elasmobranchs because they lack several mechanisms for maintaining or increasing oxygen delivery that are present in teleosts. For example, teleosts increase hematocrit and maximal blood-oxygen carrying capacity through red cell ejection from the spleen. Teleosts also counteract the reduction in hemoglobin oxygen affinity resulting from metabolic acidosis through an adrenergic-mediated increase in red cell Na+-H+ exchanger activity. To begin to assess the consequences of anaerobic exercise accompanying catch-and-release fishing occurring within the estuarine nursery habitats of juvenile sandbar sharks (Carcharhinus plumbeus, Nardo), we constructed blood-oxygen equilibrium curves using samples from individuals 1 h after capture by hook and line (exercise-stressed) and samples from fully-recovered animals maintained in a shore-side tank (control sharks). We also compared exercise-stressed and control sharks for hemoglobin concentration, hematocrit, red cell count, intracellular pH, and nucleoside triphosphate concentration ([NTP]). In contrast to results from previous studies on elasmobranchs, we found an elevation in both hematocrit (≈ 21%) and blood hemoglobin concentration (≈ 10%) in exercise-stressed sharks. There was also clear evidence of red cell swelling. Mean red cell volume was ≈ 28% higher and mean cell hemoglobin concentration was ≈ 10% lower in exercise-stressed sharks. Most important, in spite of significant metabolic acidosis (0.3 pH units), blood from exercise-stressed sharks had an oxygen affinity equivalent to that of blood from control sharks. This was a direct consequence of intracellular pH being alkalinized by approximately 0.15 pH units relative to plasma pH in exercise-stressed sharks. Our results using isolated hemoglobin solutions showed that the observed reduction (≈ 15%) in intracellular [NTP] also contributed to the leftward shift in the oxygen equilibrium curves. As expected, we found sandbar shark red cells to be unresponsive to exogenous catecholamines. Regardless, sandbar sharks appear able to prevent the decrease in blood-oxygen affinity resulting from anaerobic exercise (and the concomitant decreases in plasma pH), as has been well-documented in teleosts. Our results suggest, therefore, that oxygen delivery following exhaustive exercise is not necessarily compromised in juvenile sandbar sharks, and that hook and line capture and subsequent release do not increase rates of mortality, although both are yet to be directly confirmed.  相似文献   

9.
Crustacean discards experience stress during commercial fishing operations, due to increased exercise while in the trawl and aerial exposure during sorting of the catch. Physiological stress and recovery were assessed following trawling of two ecologically important decapod species, regularly discarded in the Clyde Nephrops fishery. Haemolymph samples taken from trawled swimming crabs, Liocarcinus depurator, and squat lobsters, Munida rugosa, had significantly higher concentrations of ammonia (0.308 and 0.519 mmol l(-1)), D-glucose (0.14 and 0.097 mmol l(-1)) and L-lactate (6.2 and 0.87 mmol l(-1)) compared with controls, indicating an impairment of ammonia excretion and a switch to anaerobic metabolism. Concurrently, the haemolymph pH of trawled squat lobsters was low (7.47) compared with controls (7.75); however, the reverse trend was found in L. depurator. Initially elevated lactate (7.98 mmol l(-1)) and glucose (0.73 mmol l(-1)) concentrations of trawled and emersed (1 h) L. depurator were restored, 4 h after re-immersion along with pH (7.54). Crabs that had been emersed for 1 h had significantly higher concentrations of glucose (0.2 mmol l(-1)) and lactate (5.14 mmol l(-1)), and had more acidic blood (7.64) than L. depurator subject to 1 h of exercise, indicating that anoxia was the main cause of physiological stress. Crabs and squat lobsters lost 7% and 9% of their initial body wet weight following 1 h of emersion, although blood osmolarities did not change significantly. While all animals survived aerial exposure in our experiments, sorting of the catch on commercial boats takes up to 300 min, which could lead to mortality or sub-lethal chronic biochemical changes that could compromise fitness.  相似文献   

10.
The aim of this study was to describe and compare the blood metabolic responses obtained after a single maximal exercise in elite and less-successful athletes and to investigate whether these responses are related to sprint performance. Eleven elite (ELI) and 14 regional (REG) long sprint runners performed a 300-m running test as fast as possible. Blood samples were taken at rest and at 4 minutes after exercise for measurements of blood lactate concentration [La] and acid-base status. The blood metabolic responses of ELI subjects compared to those of REG subjects for pH (7.07 ± 0.05 vs. 7.14 ± 1.5), sodium bicarbonate concentration ([HCO(3)(-)], 8.1 ± 1.5 vs. 9.8 ± 1.8 mmol·L(-1)), hemoglobin O(2) saturation (SaO(2)) (94.7 ± 1.8 vs. 96.2 ± 1.6%) were significantly lower (p < 0.05), and [La] was significantly higher in ELI (21.1 ± 2.9 vs. 19.1 ± 1.2 mmol·L(-1), p < 0.05). The 300-m performance (in % world record) was negatively correlated with pH (r = -0.55, p < 0.01), SaO2 (r = -0.64, p < 0.001), [HCO(3)(-)] (r = -0.40, p < 0.05), and positively correlated with [La] (r = 0.44, p < 0.05). In conclusion, for the same quantity of work, the best athletes are able to strongly alter their blood acid-base balance compared to underperforming runners, with larger acidosis and lactate accumulation. To obtain the pH limits with acute maximal exercise, coaches must have their athletes perform a distance run with duration of exercise superior to 35 seconds. The blood lactate accumulation values (mmol·L(-1)·s(-1)) recorded in this study indicate that the maximal glycolysis rate obtained in the literature from short sprint distances is maintained, but not increased, until 35 seconds of exercise.  相似文献   

11.
Most sharks, rays and chimaeras (chondrichthyans) taken in commercial fisheries are discarded (i.e. returned to the ocean either dead or alive). Quantifying the post-capture survival (PCS) of discarded species is therefore essential for the improved management and conservation of this group. For all chondrichthyans taken in the main shark fishery of Australia, we quantified the immediate PCS of individuals reaching the deck of commercial shark gillnet fishing vessels and applied a risk-based method to semi-quantitatively determine delayed and total PCS. Estimates of immediate, delayed and total PCS were consistent, being very high for the most commonly discarded species (Port Jackson shark, Australian swellshark, and spikey dogfish) and low for the most important commercial species (gummy and school sharks). Increasing gillnet soak time or water temperature significantly decreased PCS. Chondrichthyans with bottom-dwelling habits had the highest PCS whereas those with pelagic habits had the lowest PCS. The risk-based approach can be easily implemented as a standard practice of on-board observing programs, providing a convenient first-step assessment of the PCS of all species taken in commercial fisheries.  相似文献   

12.
The purpose of this study was to examine whether swimming performance was affected by acute hormonal fluctuation within a monophasic oral contraceptive (OC) cycle. Six competitive swimmers and water polo players completed a 200-m time trial at 3 time points of a single OC cycle: during the consumption phase (CONS), early (WITH1), and late in the withdrawal phase (WITH2). Split times and stroke rate were recorded during the time trial, and heart rate, blood lactate, glucose, and pH were measured after each performance test. Resting endogenous serum estradiol and progesterone concentrations were also assessed. No significant differences were observed between phases for body composition, 200-m swim time, mean stroke rate, peak heart rate, or blood glucose (p > 0.05). The mean peak blood lactate was significantly lower during WITH2 (9.9 ± 3.0 mmol·L(-1)) compared with that of CONS (12.5 ± 3.0 mmol·L(-1)) and mean pH higher during WITH2 (7.183 ± 0.111) compared with that of CONS (7.144 ± 0.092). Serum estradiol levels were significantly greater during WITH2 compared with that during WITH1 and CONS, but there was no difference in serum progesterone levels. These results demonstrate that for monophasic OC users, cycle phase does not impact the 200-m swimming performance. There was a reduction in blood lactate and an increase in pH during the withdrawal phase, possibly because of an increase in fluid retention, plasma volume, and cellular alkalosis. Therefore, female 200-m swimmers taking a monophasic OC need not be concerned by the phase of their cycle with regard to competition and optimizing performance. However, coaches and scientists should exercise caution when interpreting blood lactate results obtained from swimming tests and consider controlling for cycle phase for athletes taking an OC.  相似文献   

13.
Endocrine, metabolic and osmoregulatory changes in Pacific halibut upon capture and at intervals following a 30‐min air exposure were measured. Concentrations of cortisol, sodium, and chloride in plasma and serum peaked two hours after the stressor. Thirty minutes after a 30‐min air exposure concentrations of glucose in plasma had increased significantly from levels obtained immediately after the stressor and remained elevated for up to 4 h. Plasma lactate was also elevated 30 min after the stress treatment and lactate concentrations increased significantly at each subsequent sampling interval, 2 and 4 h. There was a significant linear increase in plasma lactate for fish sampled from 1.5 to 6.5 h after capture. Incidence of delayed mortality was low; of 22 experimentally stressed animals only one died over a 10‐day monitoring period. These data illustrate the difficulties in using single time‐point plasma indices of stress to assess condition of animals after capture since the time‐course of physiological changes associated with the stress response vary with parameter measured and may take hours to be fully expressed.  相似文献   

14.
There is a need to better understand the survivorship of discarded fishes, both for commercial stocks and species of conservation concern. Within European waters, the landing obligations that are currently being phased in as part of the European Union's reformed common fisheries policy means that an increasing number of fish stocks, with certain exceptions, should not be discarded unless it can be demonstrated that there is a high probability of survival. This study reviews the various approaches that have been used to examine the discard survival of elasmobranchs, both in terms of at‐vessel mortality (AVM) and post‐release mortality (PRM), with relevant findings summarized for both the main types of fishing gear used and by taxonomic group. Discard survival varies with a range of biological attributes (species, size, sex and mode of gill ventilation) as well as the range of factors associated with capture (e.g. gear type, soak time, catch mass and composition, handling practices and the degree of exposure to air and any associated change in ambient temperature). In general, demersal species with buccal‐pump ventilation have a higher survival than obligate ram ventilators. Several studies have indicated that females may have a higher survival than males. Certain taxa (including hammerhead sharks Sphyrna spp. and thresher sharks Alopias spp.) may be particularly prone to higher rates of mortality when caught.  相似文献   

15.

Anthropogenic ocean acidification (OA) is a threat to coral reef fishes, but few studies have investigated responses of high-trophic-level predators, including sharks. We tested the effects of 72-hr exposure to OA-relevant elevated partial pressures of carbon dioxide (pCO2) on oxygen uptake rates, acid–base status, and haematology of newborn tropical blacktip reef sharks (Carcharhinus melanopterus). Acute exposure to end-of-century pCO2 levels resulted in elevated haematocrit (i.e. stress or compensation of oxygen uptake rates) and blood lactate concentrations (i.e. prolonged recovery) in the newborns. Conversely, whole blood and mean corpuscular haemoglobin concentrations, blood pH, estimates of standard and maximum metabolic rates, and aerobic scope remained unaffected. Taken together, newborn blacktip reef sharks appear physiologically robust to end-of-century pCO2 levels, but less so than other, previously investigated, tropical carpet sharks. Our results suggest peak fluctuating pCO2 levels in coral reef lagoons could still physiologically affect newborn reef sharks, but studies assessing the effects of long-term exposure and in combination with other anthropogenic stressors are needed.

  相似文献   

16.
Oxygen affinity and other hematological parameters in strictly subterranean mole-rats, Cryptomys hottentotus (subspecies pretoriae) were measured immediately upon capture and after 14-21 days in captivity. The pH, hematocrit, hemoglobin (Hb) concentration, blood oxygen content, 2,3 bisphosphoglycerate (2,3 BPG) concentration and oxygen dissociation curves (ODC), as well as tonometric measurements, were determined using whole blood. Additionally ODCs were also determined for stripped hemolysates of individual animals. Compared to other mammals, blood of freshly caught animals had low pH (7.32+/-0.22), elevated hematocrits (48.4+/-3.8 %) and significantly lower P50 values for whole blood (21.1+/-1.6 mm Hg at pH 7.4) than those reported for other similar-sized fossorial and terrestrial mammals. Blood carbon dioxide content (22.4+/-3.9 mMol L(-1)), hemoglobin concentration (1.9+/-0.15 mMol L(-1)), oxygen content (164.8+/-26 mL L(-1)), bicarbonate concentrations (22.5+/-3.5 mMol L(-1)) were within the range of values reported for similar-sized mammals. We conclude that high blood-oxygen affinity, low body temperature and possibly also high hematocrit enable C. h. pretoriae to maintain an adequate oxygen supply to the tissues in a potentially hypoxic burrow atmospheres, but that the blood of this species shows no exceptional CO2 sensitivity or buffering capacity.  相似文献   

17.
The aim of the present work was to study the effect of ammonia and lactate on growth, metabolism, and productivity of BHK cells producing a recombinant fusion protein. Results show that cell growth was reduced with the increase in ammonia or lactate: k(1/2) of 1.1 mM and 3.5 mM for stirred and stationary cultures, respectively, for ammonia and of 28 mM for both stationary and stirred cultures for lactate, were obtained. The cell-specific consumption rates of both glucose (q(Glc)) and glutamine (q(Gln)) increased, whereas that of oxygen (q(O2)) decreased, with the increase in ammonia or lactate concentrations. The cell-specific production rates of lactate (q(Lac)) increased with an increase in ammonia concentration; similarly for the cell-specific production rates of ammonia (q(Amm)), which also increased with an increase in lactate concentration; on the other hand, both q(Lac) and q(Amm) markedly decreased when lactate or ammonia concentrations were increased, respectively; lactate was consumed at lactate concentrations above 30 mM and ammonia was consumed at ammonia concentrations above 5 mM. In vivo (31)P NMR experiments showed that ammonia and lactate affect the intracellular pH, leading to intracellular acidification, and decrease the content in phosphomonoesters, whereas the cell energy state was maintained. The effect of lactate on cell growth and q(Gln) is partially due to osmolarity, on q(Glc) and q(Amm) is entirely due to osmolarity, but on q(Lac) is mainly due to lactate effect per se. An increase in ammonia from 0 to 20 mM induced a 50% reduction in specific productivity, whereas an increase in lactate from 0 to 60 mM induced a 40% decrease.  相似文献   

18.
Stress and physical exertion may affect the physiology and behavior of wildlife during and after capture, and consequently, survival following release. Such effects may reduce the quality and quantity of the data obtained from captured wildlife. We captured spectacled eiders (Somateria fischeri), a species listed as threatened under the United States Endangered Species Act, in western Alaska, USA, during spring 2018 for surgical implantation of satellite transmitters. We evaluated the efficacy of midazolam, a benzodiazepine sedative given at capture, to reduce stress and physical exertion. We dosed spectacled eiders with either midazolam (5 mg/ml, = 2.2 mg/kg intramuscular; n = 20) or saline (0.7 ml intramuscular; n = 20) at the point of capture. We assessed sedation level and collected blood samples upon arrival to the field surgery site and at anesthetic induction. We found that midazolam reduced mean corticosterone concentration by 29% and median lactate concentration by 30.3% at the mean arrival time (42 min post-dosing) relative to the control group. These effects had abated by the mean induction time (99 min post-dosing). Unexpectedly, blood pH was reduced in the midazolam treatment relative to controls at both arrival and induction, which likely resulted from sedative-induced respiratory depression that was easily treated with intubation and mechanical ventilation, and administration of the reversal drug, flumazenil. Low blood pH was not associated with negative post-surgical outcomes, as had been found in spectacled eiders with acidosis caused by anaerobic metabolism typical of physical exertion. Intramuscular injection of midazolam in the field effectively reduced stress and physical exertion in spectacled eiders prior to surgical implantation of transmitters. © 2021 The Wildlife Society.  相似文献   

19.
ABSTRACT: INTRODUCTION: Metformin is a commonly used treatment modality in type 2 diabetes mellitus, with a welldocumented side effect of lactic acidosis. In the intensive care setting lactate and pH levelsare regularly used as a useful predictor of poor prognosis. In this article we highlight howhigh lactate levels are not an accurate predictor of mortality in deliberate metforminoverdose. CASE PRESENTATION: We present the case of a 70-year-old Caucasian man who took a deliberate metforminoverdose of unknown quantity. He had a profound lactic acidosis at presentation with a pH of6.93 and a lactate level of more than 20mmol/L. These figures would normally correspondwith a mortality of more than 80%; however, with appropriate management this patient'scondition improved. CONCLUSION: We provide evidence that the decision to treat severe lactic acidosis in deliberate metforminoverdose should not be based on arterial lactate and pH levels, as would be the case in otheroverdoses. We also demonstrate that appropriate treatment with hemodiafiltration and 8.4%sodium bicarbonate, even in patients with a very high lactate and low pH, can be successful.  相似文献   

20.
The purpose of this study was to determine whether neuromuscular activation is affected by blood lactate concentration (La) and the level of oxygen uptake immediately before a cycling sprint (preVO(2)). The tests consisted of ten repeated cycling sprints for 10 sec with 35-sec (RCS(35)) and 350-sec recovery periods (RCS(350)). Peak power output (PPO) was not significantly changed despite an increase in La concentration up to 12 mmol/L in RCS(350). Mean power frequency (MPF) of the power spectrum calculated from a surface electromyogram on the vastus lateralis showed a significantly higher level in RCS(350). In RCS(35), preVO(2) level and La were higher than those in RCS(350) in the initial stage of the RCS and in the last half of the RCS, respectively. Thus, neuromuscular activation during exercise with maximal effort is affected by blood lactate concentration and the level of oxygen uptake immediately before exercise, suggesting a cyclic system between muscle recruitment pattern and muscle metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号