首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-photon-excited fluorescence laser-scanning microscopy (2PLSM) has provided a wealth of information about the spatiotemporal properties of biological processes at the single cell and population level. Because such nonlinear optical methods allow for imaging deep within biological tissue, 2PLSM can be combined with patch-clamp techniques to obtain electrophysiological recordings from specific fluorescently labeled cells in vivo. Here a protocol referred to as two-photon targeted patching (TPTP) describes a method that may be used to record from cells in the intact animal labeled by virtually any type of fluorophore. We target neurons that have been optically and genetically identified using green fluorescent protein (GFP) expressed under the control of a specific promoter. TPTP when combined with genetic approaches therefore permits electrophysiological recordings from specified neurons and their compartments, including dendrites. This technique may be repeated in the same preparation many times over the course of several hours and is equally applicable to non-neuronal cell types.  相似文献   

2.
The pre-B?tzinger complex (PBC) in the rostral ventrolateral medulla contains a kernel involved in respiratory rhythm generation. So far, its respiratory activity has been analyzed predominantly by electrophysiological approaches. Recent advances in fluorescence imaging now allow for the visualization of neuronal population activity in rhythmogenic networks. In the respiratory network, voltage-sensitive dyes have been used mainly, so far, but their low sensitivity prevents an analysis of activity patterns of single neurons during rhythmogenesis. We now have succeeded in using more sensitive Ca(2+) imaging to study respiratory neurons in rhythmically active brain stem slices of neonatal rats. For the visualization of neuronal activity, fluo-3 was suited best in terms of neuronal specificity, minimized background fluorescence, and response magnitude. The tissue penetration of fluo-3 was improved by hyperosmolar treatment (100 mM mannitol) during dye loading. Rhythmic population activity was imaged with single-cell resolution using a sensitive charge-coupled device camera and a x20 objective, and it was correlated with extracellularly recorded mass activity of the contralateral PBC. Correlated optical neuronal activity was obvious online in 29% of slices. Rhythmic neurons located deeper became detectable during offline image processing. Based on their activity patterns, 74% of rhythmic neurons were classified as inspiratory and 26% as expiratory neurons. Our approach is well suited to visualize and correlate the activity of several single cells with respiratory network activity. We demonstrate that neuronal synchronization and possibly even network configurations can be analyzed in a noninvasive approach with single-cell resolution and at frame rates currently not reached by most scanning-based imaging techniques.  相似文献   

3.
We report here an approach for simultaneous fluorescence imaging and electrical recording of single ion channels in planar bilayer membranes. As a test case, fluorescently labeled (Cy3 and Cy5) gramicidin derivatives were imaged at the single-molecule level using far-field illumination and cooled CCD camera detection. Gramicidin monomers were observed to diffuse in the plane of the membrane with a diffusion coefficient of 3.3 x 10(-8) cm(2)s(-1). Simultaneous electrical recording detected gramicidin homodimer (Cy3/Cy3, Cy5/Cy5) and heterodimer (Cy3/Cy5) channels. Heterodimer formation was observed optically by the appearance of a fluorescence resonance energy transfer (FRET) signal (irradiation of Cy3, detection of Cy5). The number of FRET signals was significantly smaller than the number of Cy3 signals (Cy3 monomers plus Cy3 homodimers) as expected. The number of FRET signals increased with increasing channel activity. In numerous cases the appearance of a FRET signal was observed to correlate with a channel opening event detected electrically. The heterodimers also diffused in the plane of the membrane with a diffusion coefficient of 3.0 x 10(-8) cm(2)s(-1). These experiments demonstrate the feasibility of simultaneous optical and electrical detection of structural changes in single ion channels as well as suggesting strategies for improving the reliability of such measurements.  相似文献   

4.
The microdomains of Ca2+ in the cytosol around the mouth of open Ca2+ channels are the basic 'building blocks' from which cellular Ca2+ signals are constructed. Moreover, the kinetics of local [Ca2+] closely reflect channel gating, so their measurement holds promise as an alternative to electrophysiological patch-clamp recording as a means to study single channel behavior. We have thus explored the development of optical techniques capable of imaging single-channel Ca2+ signals with good spatial and temporal resolution, and describe results obtained using total internal reflection fluorescence microscopy to monitor Ca2+ influx through single N-type channels expressed in Xenopus oocytes.  相似文献   

5.
Signaling of information in the vertebrate central nervous system is often carried by populations of neurons rather than individual neurons. Also propagation of suprathreshold spiking activity involves populations of neurons. Empirical studies addressing cortical function directly thus require recordings from populations of neurons with high resolution. Here we describe an optical method and a deconvolution algorithm to record neural activity from up to 100 neurons with single-cell and single-spike resolution. This method relies on detection of the transient increases in intracellular somatic calcium concentration associated with suprathreshold electrical spikes (action potentials) in cortical neurons. High temporal resolution of the optical recordings is achieved by a fast random-access scanning technique using acousto-optical deflectors (AODs)1. Two-photon excitation of the calcium-sensitive dye results in high spatial resolution in opaque brain tissue2. Reconstruction of spikes from the fluorescence calcium recordings is achieved by a maximum-likelihood method. Simultaneous electrophysiological and optical recordings indicate that our method reliably detects spikes (>97% spike detection efficiency), has a low rate of false positive spike detection (< 0.003 spikes/sec), and a high temporal precision (about 3 msec) 3. This optical method of spike detection can be used to record neural activity in vitro and in anesthetized animals in vivo3,4.  相似文献   

6.
7.
Large scale electrophysiological recordings from neuronal ensembles offer the opportunity to investigate how the brain orchestrates the wide variety of behaviors from the spiking activity of its neurons. One of the most effective methods to monitor spiking activity from a large number of neurons in multiple local neuronal circuits simultaneously is by using silicon electrode arrays1-3.Action potentials produce large transmembrane voltage changes in the vicinity of cell somata. These output signals can be measured by placing a conductor in close proximity of a neuron. If there are many active (spiking) neurons in the vicinity of the tip, the electrode records combined signal from all of them, where contribution of a single neuron is weighted by its ''electrical distance''. Silicon probes are ideal recording electrodes to monitor multiple neurons because of a large number of recording sites (+64) and a small volume. Furthermore, multiple sites can be arranged over a distance of millimeters, thus allowing for the simultaneous recordings of neuronal activity in the various cortical layers or in multiple cortical columns (Fig. 1). Importantly, the geometrically precise distribution of the recording sites also allows for the determination of the spatial relationship of the isolated single neurons4. Here, we describe an acute, large-scale neuronal recording from the left and right forelimb somatosensory cortex simultaneously in an anesthetized rat with silicon probes (Fig. 2).  相似文献   

8.
《Cell calcium》2007,41(5-6):413-422
The Ca2+ microdomains generated around the mouth of open ion channels represent the basic building blocks from which cytosolic Ca2+ signals are constructed. Recent improvements in optical imaging techniques now allow these microdomains to be visualized as single channel calcium fluorescence transients (SCCaFTs), providing information about channel properties that was previously accessible only by electrophysiological patch-clamp recordings. We review recent advances in single channel Ca2+ imaging methodologies, with emphasis on total internal reflection fluorescence microscopy (TIRFM) as the technique of choice for recording SCCaFTs from voltage- and ligand-gated plasmalemmal ion channels. This technique of ‘optical patch-clamp recording’ is massively parallel, permitting simultaneous imaging of hundreds of channels; provides millisecond resolution of gating kinetics together with sub-micron spatial resolution of channel locations; and is applicable to diverse families of membrane channels that display partial permeability to Ca2+ ions.  相似文献   

9.
A single ganglion of the nervous system of the leechHirudo medicinalis was isolated. One or both roots emerging from each side of the ganglion were sucked into suction pipettes used either for extracellular stimulation or for recording the gross electrical activity. The ganglion was stained with the fluorescence voltage sensitive dye Di-4-Anepps. The fluorescence was measured with a nitrogen cooled CCD camera. Our recording system allowed us to measure in real time slow optical signals corresponding to changes in light intensity of at least 5. These signals were caused by the direct polarization of neuronal structures, the afterhyperpolarization or the afterdischarge induced by a prolonged stimulation. When images were acquired at fixed times, several of them could be averaged and optical signals of at least 2 could be reliably measured. These optical signals originated from well identified neurons, such as T, P and N sensory neurons. By taking images at different times and at different focal planes, electrical events could be followed at a temporal resolution of 50 Hz. The three dimensional dynamics of electrical events, initiated by a specific stimulation, was imaged and the spread of excitation among leech neurons was followed. When two roots were selectively stimulated, their neuronal interactions could be imaged and the linear and non-linear terms of the interaction could be characterized.  相似文献   

10.
目的: 通过对比内置和外置参考电极的微丝电极阵列在记录大鼠脑神经元放电过程中的优缺点,优化微丝电极阵列的制作与埋置,为多通道电生理实时记录系统提供更加实惠、优异的媒介工具。方法: 采用镍铬合金丝、电路板、电极引脚和地线(银线)制作16通道的微丝电极阵列,通过内置(参考电极与电极阵列并列排布)或外置(参考电极与地线分别焊接在电极一侧的两端)微丝电极阵列的参考电极,观察对比两种电极在记录大鼠ACC脑区神经元放电中的区别。实验大鼠分为内置组(8只)和外置组(9只),检测指标有信噪比(n=8)、放电幅度(n=380)和放电频率(n=54)。结果: 内置与外置参考电极的微丝电极阵列均可顺利记录出大鼠ACC脑区神经元的电信号;与外置组相比,内置组的神经元电信号具有信噪比高(P<0.05)、背景信号幅度小、受噪音干扰小,和放电幅度大(P<0.05)的优点;锋电位放电频率没有显著差异(P>0.05)。结论: 在记录大鼠ACC脑区神经元电活动时,内置参考电极的微丝电极阵列记录到更高信噪比、更大放电幅度的电信号,为多通道电生理技术提供更加可靠的工具。  相似文献   

11.
Treatment of psychostimulants leads to the development of behavioral sensitization, an augmented behavioral response to drug re-administration. The induction of behavioral sensitization to psychostimulants such as amphetamine and cocaine occurs at the ventral tegmental area's dopaminergic neurons (VTA-DA). Currently, there is limited experimental data about the physiological properties of methylphenidate (MPD) on VTA-DA neurons. Behavioral and electrophysiological experiments using male rats were performed before and after MPD treatment. The behavioral experiment included dose-response (0.6, 2.5, and 10.0 mg/kg MPD) study to select the most effective dose for the electrophysiological study. Methylphenidate increased locomotion in typical dose response characteristics. Based on this experiment, the 10.0 mg/kg MPD was used in two types of electrophysiological recordings: 1) intracellular recording of neuronal activity performed on horizontal 275-300 μm brain slices and 2) whole-cell patch clamping before and after electrical stimulation to study post-synaptic currents on neurophysiologically identified VTA-DA neurons. Methylphenidate suppressed the neuronal activity of these neurons for 210±30 sec. Stimulation of the prefrontal cortex afferent fibers to these VTA-DA neurons in the presence of TTX, saclofen, and picrotoxin led to the conclusion that this input is mediated via NMDA and kainate/AMPA receptors and may participate to induce behavioral sensitization to psychostimulants.  相似文献   

12.
The extension of knowledge how the brain works requires permanent improvement of methods of recording of neuronal activity and increase in the number of neurons recorded simultaneously to better understand the collective work of neuronal networks and assemblies. Conventional methods allow simultaneous intracellular recording up to 2-5 neurons and their membrane potentials, currents or monosynaptic connections or observation of spiking of neuronal groups with subsequent discrimination of individual spikes with loss of details of the dynamics of membrane potential. We recorded activity of a compact group of serotonergic neurons (up to 56 simultaneously) in the ganglion of a terrestrial mollusk using the method of optical recording of membrane potential that allowed to record individual action potentials in details with action potential parameters and to reveal morphology of the neurons rcorded. We demonstrated clear clustering in the group in relation with the dynamics of action potentials and phasic or tonic components in the neuronal responses to external electrophysiological and tactile stimuli. Also, we showed that identified neuron Pd2 could induce activation of a significant number of neurons in the group whereas neuron Pd4 did not induce any activation. However, its activation is delayed with regard to activation of the reacting group of neurons. Our data strongly support the concept of possible delegation of the integrative function by the network to a single neuron.  相似文献   

13.
Imaging single-channel calcium microdomains   总被引:3,自引:0,他引:3  
Demuro A  Parker I 《Cell calcium》2006,40(5-6):413-422
The Ca(2+) microdomains generated around the mouth of open ion channels represent the basic building blocks from which cytosolic Ca(2+) signals are constructed. Recent improvements in optical imaging techniques now allow these microdomains to be visualized as single channel calcium fluorescence transients (SCCaFTs), providing information about channel properties that was previously accessible only by electrophysiological patch-clamp recordings. We review recent advances in single channel Ca(2+) imaging methodologies, with emphasis on total internal reflection fluorescence microscopy (TIRFM) as the technique of choice for recording SCCaFTs from voltage- and ligand-gated plasmalemmal ion channels. This technique of 'optical patch-clamp recording' is massively parallel, permitting simultaneous imaging of hundreds of channels; provides millisecond resolution of gating kinetics together with sub-micron spatial resolution of channel locations; and is applicable to diverse families of membrane channels that display partial permeability to Ca(2+) ions.  相似文献   

14.
We investigated the functional organization of the human auditory cortex using a novel electrophysiological recording technique combined with an advanced brain magnetic resonance imaging (MRI) technique. Tonotopic mapping data were obtained during single unit recording along the Heschl’s gyrus. Most of the units studied (73%) demonstrated sharply tuned excitatory responses. A tonotopic pattern was observed with the best frequencies systematically increasing as more medial-caudal recording sites were sampled. Additionally, a new auditory field along the posterior aspect of the superior temporal gyrus has been identified using a high spatial resolution direct recording technique. Results obtained during electrical stimulation demonstrate functional connectivity between the primary auditory cortex and the auditory field in the posterior superior temporal gyrus.  相似文献   

15.
In genetically predisposed WAG/Rij rats and healthy Wistar rats, we studied functioning of the paralemniscal region of the thalamo-cortical system. The responses of neurons of the somatosensory cortex to single electrical stimulation of the posterior nucleus of the thalamus were recorded in two- to three-monthold rats within the period when the epileptic activity was not developed. We revealed lower number of shortterm inhibitory responses in WAG/Rij rats as compared to Wistar rats. This may create preconditions for the spreading of spike-wave activity in the somatosensory cortex, which is an electrophysiological sign of absence epilepsy.  相似文献   

16.
The purpose of this study is to develop an apparatus for simultaneous measurement of electrical and spectroscopic parameters of single ion channels. We have combined the single channel recording apparatus with an artificial lipid bilayer and a fluorescence microscope designed to detect single fluorescent molecules. The artificial membranes were formed on an agarose-coated glass and observed with an objective-type total internal reflection fluorescence microscope (TIRFM). The lateral motion of a single lipid molecule (beta-BODIPY 530/550 HPC) was recorded. The lateral diffusion constant of the lipid molecule was calculated from the trajectories of single molecules as D = 8.5 +/- 4.9 x 10(-8) cm(2)/s. Ionic channels were incorporated into the membrane and current fluctuations were recorded at the single-channel level. After incorporation of Cy3-labeled alametithin molecules into the membrane, bright spots were observed moving rather slowly (D = 4.0 +/- 1.6 x 10(-8) cm(2)/s) in the membrane, simultaneously with the alametithin-channel current. These data show the possibility of the present technique for simultaneous measurement of electrical and spectroscopic parameters of single-channel activities.  相似文献   

17.
Fujii R  Ichikawa M  Ozaki M 《Neuro-Signals》2008,16(4):260-277
One of the major challenges in brain research is to unravel a network of molecules, neurons, circuits and systems that are responsible for dynamic and hierarchical brain functions. To understand molecular events that occur in synapses could be an important key to exploring the mechanism of information processing. A spatiotemporal recording method is required to observe neuronal activities in a particular local circuit and to resolve single synaptic potential with high resolution. As alternative methods, real-time imaging using fluorescent probes and optical recording methods are also a powerful approach for investigating the molecular dynamics of biological events in neurons in vitro and in vivo. Recently, optical imaging techniques have become of great importance to visualize the molecular dynamics in a micron-sized compartment of a single neuron such as neuronal synapse. In general, the presynaptic axon forms synapses at the postsynaptic site on the dendritic spines in the mammalian central nervous system. Subsets of the synapses undergo a series of enduring changes in spine shape and density as well as alterations in electrophysiological functions. Here we describe recent optical imaging studies conducted by elaborate methods and techniques that provide evidence for the link between neural activity and molecular dynamics.  相似文献   

18.
We used an optical imaging technique to investigate whether axons of neurons in the caudal end of the ventrolateral medulla (CeVLM), as well as axons of neurons in the rostral ventrolateral medulla (RVLM), project to neurons in the intermediolateral cell column (IML) of the spinal cord. Brain stem-spinal cord preparations from neonatal normotensive Wistar-Kyoto and spontaneously hypertensive rats were stained with a voltage-sensitive dye, and responses to electrical stimulation of the IML at the Th2 level were detected as changes in fluorescence intensity with an optical imaging apparatus (MiCAM-01). The results were as follows: 1) depolarizing responses to IML stimulation during low-Ca high-Mg superfusion were detected on the ventral surface of the medulla at the level of the CeVLM, as well as at the level of the RVLM, 2) depolarizing responses were also detected on cross sections at the level of the CeVLM, and they had a latency of 24.0 +/- 5.5 (SD) ms, 3) antidromic action potentials in response to IML stimulation were demonstrated in the CeVLM neurons where optical images were detected, and 4) glutamate application to the CeVLM increased the frequency of excitatory postsynaptic potentials (EPSPs) and induced depolarization of the IML neurons. The optical imaging findings suggested a novel axonal and functional projection from neurons in the CeVLM to the IML. The increase in EPSPs of the IML neurons in response to glutamate application suggests that the CeVLM participates in the regulation of sympathetic nerve activity and blood pressure and may correspond to the caudal pressor area.  相似文献   

19.
For the analysis of membrane transport processes two single molecule methods are available that differ profoundly in data acquisition principle, achievable information, and application range: the widely employed electrical single channel recording and the more recently established optical single transporter recording. In this study dense arrays of microscopic horizontal bilayer membranes between 0.8 microm and 50 microm in diameter were created in transparent foils containing either microholes or microcavities. Prototypic protein nanopores were formed in bilayer membranes by addition of Staphylococcus aureus alpha-hemolysin (alpha-HL). Microhole arrays were used to monitor the formation of bilayer membranes and single alpha-HL pores by confocal microscopy and electrical recording. Microcavity arrays were used to characterize the formation of bilayer membranes and the flux of fluorescent substrates and inorganic ions through single transporters by confocal microscopy. Thus, the unitary permeability of the alpha-HL pore was determined for calcein and Ca(2+) ions. The study paves the way for an amalgamation of electrical and optical single transporter recording. Electro-optical single transporter recording could provide so far unresolved kinetic data of a large number of cellular transporters, leading to an extension of the nanopore sensor approach to the single molecule analysis of peptide transport by translocases.  相似文献   

20.
用电压敏感染料光学记录膜电位   总被引:4,自引:0,他引:4  
应用传统电生理方法如微电极和膜片钳技术,在记录较小的神经细胞和纤细的神经突起膜电位及同步记录神经细胞群的电活动等方面目前仍是一大难题。随着生理科学和神经生物学的发展,利用电压敏感染料光学记录膜电位技术已成为一种较为理想的新手段。本文对光学记录膜电位技术的发展史、染料特性和作用机制、光学成像及膜电位记录原理、目前的光学方法中某些不足及未来前景等做了较系统的介绍,并且简述了光学记录膜电位在电生理和神经生物学中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号