首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular targeted agents are pharmacologically used to treat liver fibrosis and have gained increased attention. The present study examined the preventive effect of lenvatinib on experimental liver fibrosis and sinusoidal capillarization as well as the in vitro phenotypes of hepatic stellate cells. LX-2, a human stellate cell line, was used for in vitro studies. In vivo liver fibrosis was induced in F344 rats using carbon tetrachloride by intraperitoneal injection for 8 weeks, and oral administration of lenvatinib was started two weeks after initial injection of carbon tetrachloride. Lenvatinib restrained proliferation and promoted apoptosis of LX-2 with suppressed phosphorylation of extracellular signal-regulated kinase 1/2 and AKT. It also down-regulated COL1A1, ACTA2 and TGFB1 expressions by inhibiting the transforming growth factor-β1/Smad2/3 pathway. Treatment with lenvatinib also suppressed platelet-derived growth factor-BB-stimulated proliferation, chemotaxis and vascular endothelial growth factor-A production, as well as basic fibroblast growth factor-induced LX-2 proliferation. In vivo study showed that lenvatinib attenuated liver fibrosis development with reduction in activated hepatic stellate cells and mRNA expression of profibrogenic markers. Intrahepatic neovascularization was ameliorated with reduced hepatic expressions of Vegf1, Vegf2 and Vegfa in lenvatinib-treated rats. Collectively, these results suggest the potential use of lenvatinib as a novel therapeutic strategy for liver fibrosis.  相似文献   

2.
Hepatic fibrosis is a chronic inflammatory and reversible repair reaction of the liver under the continuous action of virus or various injuries. In this study, we aimed at identifying the role of miR-326 in the hepatic stellate cell (HSC) activation and liver fibrosis and its potential mechanism. In this study, the liver fibrosis mouse model was developed by injecting CCl4. Liver tissue morphology was observed and the expression level of α-smooth muscle actin, collagen1α1 and miR-326 was measured. Target gene identification was performed by loss-of-function and gain-of-function. The effect of miR-326 on the expression level of the cytokines associated with the TLR4/MyD88/nuclear factor-κB (NF-κB) pathway was assessed in vitro and in vivo. We show that miR-326 was downregulated in CCl4-induced fibrotic mice and activated HSCs. The target gene of miR-326 is TLR4. Moreover, miR-326 inhibited the activation of HSCs in vitro through TLR4/MyD88/NF-κB signaling. miR-326 attenuated hepatic fibrosis and inflammation of CCl4-induced mice in vivo. Our results demonstrate for the first time that miR-326 inhibits HSC activation through TLR4/MyD88/NF-κB signaling. Furthermore, miR-326 plays critical roles in attenuating liver fibrosis and inflammation, suggesting the therapeutic potential of miRNAs.  相似文献   

3.
4.
Sterol regulatory element‐binding protein 1c (SREBP1c) plays key roles in maintenance of hepatic stellate cell (HSC) quiescence. The present researches investigated the mechanisms underlying the effects of SREBP1c on HSCs and liver fibrogenesis by HSC‐targeted overexpression of the active SREBP1c using adenovirus in vitro and in vivo. Results demonstrated that SREBP1c exerted inhibitory effects on TAA‐induced liver fibrosis. SREBP1c down‐regulated TGFβ1 level in liver, reduced the receptors for TGFβ1 and PDGFβ, and interrupted the signalling pathways of Smad3 and Akt1/2/3 but not ERK1/2 in HSCs. SREBP1c also led to the decreases in the protein levels of the bromodomain‐containing chromatin‐modifying factor bromodomain protein 4, methionine adenosyltransferase 2B (MAT2B) and TIMP1 in HSCs. In vivo activated HSCs did not express cyclin D1 and cyclin E1 but SREBP1c down‐regulated both cyclins in vitro. SREBP1c elevated PPARγ and MMP1 protein levels in the model of liver fibrosis. The effect of SREBP1c on MAT2B expression was associated with its binding to MAT2B1 promoter. Taken together, the mechanisms underlying the effects of SREBP1c on HSC activation and liver fibrosis were involved in its influences on TGFβ1 level, the receptors for TGFβ1 and PDGFβ and their downstream signalling, and the molecules for epigenetic regulation of genes.  相似文献   

5.
Ming Chen  Jiaxing Liu  Wenqi Yang 《Autophagy》2017,13(11):1813-1827
Bacterial translocation and lipopolysaccharide (LPS) leakage occur at a very early stage of liver fibrosis in animal models. We studied the role of LPS in hepatic stellate cell (HSC) activation and the underlying mechanisms in vitro and in vivo. Herein, we demonstrated that LPS treatment led to a dramatic increase in autophagosome formation and autophagic flux in LX-2 cells and HSCs, which was mediated through the AKT-MTOR and AMPK-ULK1 pathway. LPS significantly decreased the lipid content, including the lipid droplet (LD) number and lipid staining area in HSCs; pretreatment with macroautophagy/autophagy inhibitors or silencing ATG5 attenuated this decrease. Furthermore, lipophagy was induced by LPS through the autophagy-lysosomal pathway in LX-2 cells and HSCs. Additionally, LPS-induced autophagy further reduced retinoic acid (RA) signaling, as demonstrated by a decrease in the intracellular RA level and Rar target genes, resulting in the downregulation of Bambi and promoting the sensitization of the HSC's fibrosis response to TGFB. Compared with CCl4 injection alone, CCl4 plus LPS injection exaggerated liver fibrosis in mice, as demonstrated by increased Col1a1 (collagen, type I, α 1), Acta2, Tgfb and Timp1 mRNA expression, ACTA2/α-SMA and COL1A1 protein expression, and Sirius Red staining area, which could be attenuated by injection of an autophagy inhibitor. LPS also reduced lipid content in HSCs in vivo, with this change being attenuated by chloroquine (CQ) administration. In conclusion, LPS-induced autophagy resulted in LD loss, RA signaling dysfunction, and downregulation of the TGFB pseudoreceptor Bambi, thus sensitizing HSCs to TGFB signaling.  相似文献   

6.
7.
8.
9.
10.
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family and is involved in pathological angiogenesis associated with chronic liver diseases. However, the precise mechanisms underlying PlGF signalling contributing to liver fibrosis and angiogenesis remain largely unexplored. This study aimed to assess the effect of reducing PlGF expression using small interfering RNA (siRNA) on experimental liver fibrosis and angiogenesis, and to elucidate the underlying molecular mechanisms. Fibrosis was induced in mice by carbon tetrachloride (CCl4) for 8 weeks, and mice were treated with PlGF siRNA or non‐targeting control siRNA starting two weeks after initiating CCl4 injections. The results showed that PlGF was highly expressed in cirrhotic human and mice livers; which mainly distributed in activated hepatic stellate cells (HSCs). PlGF silencing robustly reduced liver inflammation, fibrosis, intrahepatic macrophage recruitment, and inhibited the activation of HSCs in vivo. Moreover, PlGF siRNA‐treated fibrotic mice showed diminished hepatic microvessel density and angiogenic factors, such as hypoxia‐inducible factor‐1α (HIF‐1α), VEGF and VEGF receptor‐1. Moreover, down‐regulation of PlGF with siRNA in HSCs inhibited the activation and proliferation of HSCs. Mechanistically, overexpression of PlGF in activated HSCs was induced by hypoxia dependent on HIF‐1α, and PlGF induces HSC activation and proliferation via activation the phosphatidylinositol 3‐kinase (PI3K)/Akt signalling pathways. These findings indicate that PlGF plays an important role in liver fibrosis‐associated angiogenesis and that blockage of PlGF could be an effective strategy for chronic liver disease.  相似文献   

11.
Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver‐specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet‐derived growth factor‐β receptor (PDGF‐βR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF‐βR/focal adhesion kinase/RhoA cascade. Gain‐ or loss‐of‐function analyses revealed that activation of peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR‐γ activation‐dependent mechanism. PPAR‐γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis.  相似文献   

12.
Hepatic stellate cells (HSCs) are the primary extracellular matrix-producing cells within the river and have numerous vital functions. A robust protocol for the isolation and culture of HSCs is important for further investigations of cell functions and related mechanisms in river disease. The volume of the mouse river is much smaller than that of the rat river, which makes it much more difficult to isolate mouse HSCs (mHSCs) than rat HSCs. At present, isolating mHSCs is still a challenge because there is no efficient, robust method to isolate and culture these cells. In the present study, C57BL/6J mice were intravenously injected with riposomeencapsulated dichloromethylene diphosphate (CL2MDP) to selectively eliminate Kupffer cells from the river. The mouse livers were then perfused in situ, and the mHSCs were isolated with an optimized density gradient centrifugation technique. In the phosphate buffer solution (PBS)-liposome group, the yield of mHSCs was (1.37 ±0.23) × 10^6/g river, the cell purity was (90.18 ± 1.61)%, and the cell survival rate was (94.51 ±1.61)%. While in the CL2MDP-liposome group, the yield of mHSCs was (1.62 ±0.34)× 10^6/g liver, the cell purity was (94.44 ± 1.89)%, and the cell survival rate was (94.41 ±1.50)%. Based on the yield and purity of mHSCs, the CL2MDP-riposome treatment was superior to the PBS-liposome treatment (P 〈 0.05, P 〈 0.01). This study established successfully a robust and efficient protocol for the separation and purification of mHSCs, and both a high purity and an adequate yield of mHSCs were obtained.  相似文献   

13.
Caveolin-1 (Cav-1) expression is increased in hepatic stellate cells (HSC) upon liver cirrhosis and it functions as an integral membrane protein of lipid rafts and caveolae that regulates and integrates multiple signals as a platform. This study aimed to evaluate the role of Cav-1 in HSC. Thus, the effects of exogenous expression of Cav-1 in GRX cells, a model of activated HSC, were determined. Here, we demonstrated through evaluating well-known HSC activation markers – such as α-smooth muscle actin, collagen I, and glial fibrillary acidic protein – that up regulation of Cav-1 induced GRX to a more activated phenotype. GRXEGFP-Cav1 presented an increased migration, an altered adhesion pattern, a reorganization f-actin cytoskeleton, an arrested cell cycle, a modified cellular ultrastructure, and a raised endocytic flux. Based on this, GRX EGFP-Cav1 represents a new cellular model that can be an important tool for understanding of events related to HSC activation. Furthermore, our results reinforce the role of Cav-1 as a molecular marker of HSC activation.  相似文献   

14.
15.
16.
Liver fibrosis occurs in most cases of chronic liver disease, which are somewhat common, but also a potentially deadly group of diseases. In vitro modeling of liver fibrosis relies primarily on the isolation of in vivo activated hepatic stellate cells (aHSCs) and studying them in standard tissue culture dishes (two-dimensional [2D]). In contrast, modeling of fibrosis in a biofabricated three-dimensional (3D) construct allows us to study changes to the environment, such as extracellular matrix (ECM) composition and structure, and tissue rigidity. In the current study, we used aHSCs produced through subcultures in 2D and encapsulated them in a 3D collagen gel to form spherical constructs. In parallel, and as a comparison, we used an established HSC line, LX-2, representing early and less severe fibrosis. Compared with LX-2 cells, the aHSCs created a stiffer environment and expressed higher levels of TIMP1 and LOXL2, all of which are indicative of advanced liver fibrosis. Collectively, this study presents a fibrosis model that could be incorporated with multi-cellular models to more accurately reflect the effects of a severe fibrotic environment on liver function.  相似文献   

17.
目的: 探讨大鼠肝纤维化病理过程中肝组织及在体肝星状细胞 (HSC)的含SH2结构域的蛋白酪氨酸磷酸酶1 (SHP1)表达变化与在体HSC活化及增殖的关系。方法: 随机将50只健康雄性SD大鼠分为对照组(10只)、模型组(40只),采用腹腔注射四氯化碳法建立大鼠肝纤维化模型,Masson三色染色及HE染色检测大鼠肝脏组织的病理组织学变化,SHP1与α-平滑肌肌动蛋白 (α-SMA)免疫荧光双标记检测大鼠肝组织中活化HSC的SHP1表达,免疫组织化学染色检测大鼠肝组织的α-SMA及SHP1表达,并分别对大鼠肝组织的SHP1表达及大鼠肝组织中活化HSC的SHP1表达与大鼠肝组织的α-SMA表达进行Pearson’s相关性分析。结果: 大鼠肝纤维化模型成功构建,随着造模时间延长,大鼠肝纤维化逐渐加重。与对照组大鼠肝组织的SHP1阳性表达平均光密度值 (MOD) (0.08±0.01)比较,造模不同时间(2周、4周、6周、8周)大鼠纤维化肝组织的SHP1阳性表达MOD (0.11±0.01、0.14±0.01、0.16±0.01、0.19±0.01)显著增加(P<0.05),并逐渐升高(P<0.05)。与对照组大鼠肝组织的α-SMA阳性表达MOD (0.04±0.01)比较,造模不同时间(2周、4周、6周、8周)大鼠纤维化肝组织的α-SMA阳性表达MOD (0.06±0.01、 0.09±0.01、0.12±0.01、0.16±0.02)明显增加(P<0.05),并逐渐升高(P<0.05),即在体HSC的活化及增殖逐渐加快(α-SMA是HSC的活化标志)。SHP1与α-SMA免疫荧光双标记检测显示,造模2周、4周、6周、8周大鼠纤维化肝组织中表达SHP1的活化HSC占总的活化HSC的百分比(26.49%±3.44%、37.14%±4.57%、44.90%±2.94%、58.09%±5.33%)逐渐升高(P<0.05)。上述大鼠纤维化肝组织的SHP1表达及大鼠纤维化肝组织中表达SHP1的活化HSC占总的活化HSC的百分比均与大鼠纤维化肝组织的α-SMA表达呈显著正相关(r值为0.926, 0.984,P<0.05)。结论: 在大鼠肝纤维病理过程中,肝组织及在体HSC 的SHP1表达与在体HSC的活化及增殖呈显著正相关。  相似文献   

18.
Liver fibrosis is a critical pathological process in the early stage of many liver diseases, including hepatic cirrhosis and liver cancer. However, the molecular mechanism is not fully revealed. In this study, we investigated the role of F-box protein 31 (FBXO31) in liver fibrosis. We found FBXO31 upregulated in carbon tetrachloride (CCl4) induced liver fibrosis and in activated hepatic stellate cells, induced by transforming growth factor-β (TGF-β). The enforced expression of FBXO31 caused enhanced proliferation and increased expression of α-smooth muscle actin (α-SMA) and Col-1 in HSC-T6 cells. Conversely, suppression of FBXO31 resulted in inhibition of proliferation and decreased accumulation of α-SMA and Col-1 in HSC-T6 cells. In addition, upregulation of FBXO31 in HSC-T6 cells decreased accumulation of Smad7, the negative regulator of the TGF-β/smad signaling pathway, and suppression of the FBXO31 increased accumulation of Smad7. Immunofluorescence staining showed FBXO31 colocalized with Smad7 in HSC-T6 cells and in liver tissues of BALB/c mice treated with CCl4. Immunoprecipitation demonstrated FBXO31 interacted with Smad7. Moreover, FBXO31 enhanced ubiquitination of Smad7. In conclusion, FBXO31 modulates activation of HSCs and liver fibrogenesis by promoting ubiquitination of Smad7.  相似文献   

19.
AII (angiotensin II) is a vasoactive peptide that plays an important role in the development of liver fibrosis mainly by regulating profibrotic cytokine expression such as TGF‐β (transforming growth factor‐β). Activated HSCs (hepatic stellate cells) are the major cell type responsible for ECM (extracellular matrix) deposition during liver fibrosis and are also a target for AII and TGF‐β actions. Here, we studied the effect of AII on the mRNA levels of TGF‐β isoforms in primary cultures of rat HSCs. Both quiescent and activated HSCs were stimulated with AII for different time periods, and mRNA levels of TGF‐β1, TGF‐β2 and TGF‐β3 isoforms were evaluated using RNaseI protection assay. The mRNA levels of all TGF‐β isoforms, particularly TGF‐β2 and TGF‐β3, were increased after AII treatment in activated HSCs. In addition, activated HSCs were able to produce active TGF‐β protein after AII treatment. The mRNA expression of TGF‐β isoforms induced by AII required both ERK1/2 and Nox (NADPH oxidase) activation but not PKC (protein kinase C) participation. ERK1/2 activation induced by AII occurs via AT1 receptors, but independently of either PKC and Nox activation or EGFR (epidermal growth factor receptor) transactivation. Interestingly, AII has a similar effect on TGF‐β expression in quiescent HSCs, although it has a smaller but significant effect on ERK1/2 activation in these cells.  相似文献   

20.
Liver fibrosis, an important health condition associated with chronic liver injury that provides a permissive environment for cancer development, is characterized by the persistent deposition of extracellular matrix components that are mainly derived from activated hepatic stellate cells (HSCs). CDH11 belongs to a group of transmembrane proteins that are principally located in adherens junctions. CDH11 mediates homophilic cell-to-cell adhesion, which may promote the development of cirrhosis. The goal of this study was to determine whether CDH11 regulates liver fibrosis and to examine its mechanism by focusing on HSC activation. Here we demonstrate that CDH11 expression is elevated in human and mouse fibrotic liver tissues and that CDH11 mediates the profibrotic response in activated HSCs. Our data indicate that CDH11 regulates the TGFβ-induced activation of HSCs. Moreover, cells from CDH11 deficient mice displayed decreased HSC activation in vitro, and CDH11 deficient mice developed liver fibrogenesis in response to chronic damage induced by CCl4 administration. In addition, CDH11 expression was positively correlated with liver fibrosis in patients with cirrhosis, and could therefore be a prognostic factor in patients with liver fibrosis. Collectively, our findings demonstrate that CDH11 promotes liver fibrosis by activating HSCs and may represent a potential target for anti-fibrotic therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号