首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Domestication of plants and animals is the major factor underlying human civilization and is a gigantic evolutionary experiment of adaptation and speciation, generating incipient species. Wheat is one of the most important grain crops in the world, and consists mainly of two types: the hexaploid bread wheat (Triticum aestivum) accounting for about 95% of world wheat production, and the tetraploid durum wheat (T. durum) accounting for the other 5%. In this review, we summarize and discuss research on wheat domestication, mainly focusing on recent findings in genetics and genomics studies. T. aestivum originated from a cross between domesticated emmer wheat T. dicoccum and the goat grass Aegilops tauschii, most probably in the south and west of the Caspian Sea about 9,000 years ago. Wild emmer wheat has the same genome formula as durum wheat and has contributed two genomes to bread wheat, and is central to wheat domestication. Domestication has genetically not only transformed the brittle rachis, tenacious glume and non-free threshability, but also modified yield and yield components in wheat. Wheat domestication involves a limited number of chromosome regions, or domestication syndrome factors, though many relevant quantitative trait loci have been detected. On completion of the genome sequencing of diploid wild wheat (T. urartu or Ae. tauschii), domestication syndrome factors and other relevant genes could be isolated, and effects of wheat domestication could be determined. The achievements of domestication genetics and robust research programs in Triticeae genomics are of greatly help in conservation and exploitation of wheat germplasm and genetic improvement of wheat cultivars.  相似文献   

2.

Key message

Development of a high-density SNP map and evaluation of QTL shed light on domestication events in tetraploid wheat and the potential utility of cultivated emmer wheat for durum wheat improvement.

Abstract

Cultivated emmer wheat (Triticum turgidum ssp. dicoccum) is tetraploid and considered as one of the eight founder crops that spawned the Agricultural Revolution about 10,000 years ago. Cultivated emmer has non-free-threshing seed and a somewhat fragile rachis, but mutations in genes governing these and other agronomic traits occurred that led to the formation of today’s fully domesticated durum wheat (T. turgidum ssp. durum). Here, we evaluated a population of recombinant inbred lines (RILs) derived from a cross between a cultivated emmer accession and a durum wheat variety. A high-density single nucleotide polymorphism (SNP)-based genetic linkage map consisting of 2,593 markers was developed for the identification of quantitative trait loci. The major domestication gene Q had profound effects on spike length and compactness, rachis fragility, and threshability as expected. The cultivated emmer parent contributed increased spikelets per spike, and the durum parent contributed higher kernel weight, which led to the identification of some RILs that had significantly higher grain weight per spike than either parent. Threshability was governed not only by the Q locus, but other loci as well including Tg-B1 on chromosome 2B and a putative Tg-A1 locus on chromosome 2A indicating that mutations in the Tg loci occurred during the transition of cultivated emmer to the fully domesticated tetraploid. These results not only shed light on the events that shaped wheat domestication, but also demonstrate that cultivated emmer is a useful source of genetic variation for the enhancement of durum varieties.  相似文献   

3.
Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.  相似文献   

4.
Several demographic and selective events occurred during the domestication of wheat from the allotetraploid wild emmer (Triticum turgidum ssp. dicoccoides). Cultivated wheat has since been affected by other historical events. We analyzed nucleotide diversity at 21 loci in a sample of 101 individuals representing 4 taxa corresponding to representative steps in the recent evolution of wheat (wild, domesticated, cultivated durum, and bread wheats) to unravel the evolutionary history of cultivated wheats and to quantify its impact on genetic diversity. Sequence relationships are consistent with a single domestication event and identify 2 genetically different groups of bread wheat. The wild group is not highly polymorphic, with only 212 polymorphic sites among the 21,720 bp sequenced, and, during domestication, diversity was further reduced in cultivated forms--by 69% in bread wheat and 84% in durum wheat--with considerable differences between loci, some retaining no polymorphism at all. Coalescent simulations were performed and compared with our data to estimate the intensity of the bottlenecks associated with domestication and subsequent selection. Based on our 21-locus analysis, the average intensity of domestication bottleneck was estimated at about 3--giving a population size for the domesticated form about one third that of wild dicoccoides. The most severe bottleneck, with an intensity of about 6, occurred in the evolution of durum wheat. We investigated whether some of the genes departed from the empirical distribution of most loci, suggesting that they might have been selected during domestication or breeding. We detected a departure from the null model of demographic bottleneck for the hypothetical gene HgA. However, the atypical pattern of polymorphism at this locus might reveal selection on the linked locus Gsp1A, which may affect grain softness--an important trait for end-use quality in wheat.  相似文献   

5.
Modern durum wheat (AABB) is more sensitive to zinc (Zn) deficiency than bread wheat (AABBDD). One strategy to increase productivity and expansion of durum wheat industry in Zn-deficient soils is to improve its ability to grow and yield in such soils. This ability is termed Zn efficiency. In a growth room experiment using soil culture, we assessed the potential of Triticum turgidum L. subsp. dicoccon (Shrank) Thell. (domesticated emmer wheat, AABB) as a genetic resource for further improvement of Zn efficiency in modern durum wheat. Twenty four accessions of domesticated emmer wheat, four durum landraces/cultivars, and two bread wheat cultivars/ advanced breeders lines of known Zn efficiency were tested under Zn deficiency and Zn sufficiency. Significant variation was observed among genotypes in Zn deficiency symptoms, dry matter production, shoot Zn concentration, shoot Zn content and Zn utilisation efficiency (physiological efficiency). We identified domesticated emmer wheat accessions with greater Zn efficiency than modern durum wheat and even bread wheat genotypes. These accessions could be used in breeding programs to improve Zn efficiency of durum wheat. The results suggest that Zn efficiency of durum or bread wheat is likely to be determined collectively by its progenitors.  相似文献   

6.
Long H  Huang Z  Wei YM  Yan ZH  Ma ZC  Zheng YL 《Genetika》2008,44(4):500-506
Allelic variation of the low-molecular-weight glutenin subunit (LMW-GS) is associated with the significant differences of dough quality in bread and durum wheat, and has been widely evaluated at protein level in wheat and its relatives. In this study, a PCR primer set, targeting the high variable repetitive domains, was employed to assay the length variation of i-type LMW-GS genes in the A-genomes of diploid wheats, the diploid progenitors of tetraploid and hexaploid wheat. A total of 71 accessions of diploid wheats, belonging to two wild and one cultivated species, were investigated. The higher variations of repetitive length in i-type LMW-GS genes were found in diploid wheats with Nei's genetic variation index (H) of 0.834. The two wild species, T. boeoticum and T. urartu, were found to possess the similar degree of variability, with the Nei's genetic variation index of 0.806 and 0.783, respectively. Less variations were detected in T. monococcum (H = 0.680), a cultivated species domesticated from T. boeoticum. The sufficient variations found in this study could be used as valuable sources for the enrichment of the genetic variations and the alteration of flour-processing properties of the cultivated wheat. To our knowledge, it was the first time that an analysis of length variation targeting a particular group of genes of LMW-GS complex multigene families was conducted.  相似文献   

7.
Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker–trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker–trait associations.  相似文献   

8.
The diploid wheat Triticum monococcum L. (einkorn) was among the first crops domesticated by humans in the Fertile Crescent 10,000 years ago. During the last 5,000 years, it was replaced by tetraploid and hexaploid wheats and largely forgotten by modern breeders. Einkorn germplasm is thus devoid of breeding bottlenecks and has therefore preserved in unfiltered form the full spectrum of genetic variation that was present during its domestication. We investigated haplotype variation among >12 million nucleotides sequenced at 18 loci across 321 wild and 92 domesticate T. monococcum lines. In contrast to previous studies of cereal domestication, we sampled hundreds of wild lines, rather than a few dozen. Unexpectedly, our broad sample of wild lines reveals that wild einkorn underwent a process of natural genetic differentiation, most likely an incipient speciation, prior to domestication. That natural differentiation was previously overlooked within wild einkorn, but it bears heavily upon inferences concerning the domestication process because it brought forth 3 genetically, and to some extent morphologically, distinct wild einkorn races that we designate here as alpha, beta, and gamma. Only one of those natural races, beta, was exploited by humans for domestication. Nucleotide diversity and haplotype diversity in domesticate einkorn is higher than in its wild sister group, the einkorn beta race, indicating that einkorn underwent no reduction of diversity during domestication. This is in contrast to findings from previous studies of domestication history among more intensely bred crop species. Taken together with archaeological findings from the Fertile Crescent, the data indicate that a specific wild einkorn race that arose without human intervention was subjected to multiple independent domestication events.  相似文献   

9.
Allelic variation of the low-molecular-weight glutenin subunit (LMW-GS) is associated with the significant differences of dough quality in bread and durum wheat, and has been widely evaluated at protein level in wheat and its relatives. In this study, a PCR primer set, targeting the high variable repetitive domains, was employed to assay the length variation of i-type LMW-GS genes in the A-genomes of diploid wheats, the diploid progenitors of tetraploid and hexaploid wheat. A total of 71 accessions of diploid wheats, belonging to two wild and one cultivated species, were investigated. The higher variations of repetitive length in i-type LMW-GS genes were found in diploid wheats with Nei’s genetic variation index (H) of 0.834. The two wild species, T. boeoticum and T. urartu, were found to possess the similar degree of variability, with the Nei’s genetic variation index of 0.806 and 0.783, respectively. Less variation was detected in T. monococcum (H = 0.680), a cultivated species domesticated from T. boeoticum. The sufficient variation found in this study could be used as valuable source for the enrichment of genetic variations and the alteration of flour-processing properties of the cultivated wheat. To our knowledge, it was the first time that an analysis of length variation targeting a particular group of genes of LMW-GS complex multigene families was conducted. This article was submitted by the authors in English.  相似文献   

10.
Abstract: We tested the hypothesis that cultivar selection during the process of domestication in cereal plants led to a change in dry mass allocation, e.g., less root mass and more leaf mass or more leaf area per unit leaf mass. We divided 24 varieties of diploid, tetraploid and hexaploid winter wheat and two-rowed winter barley into three categories of domestication levels (wild species, old landraces and modern cultivars) and compared the patterns of dry matter fractionation at the time of anthesis under standardized outdoor growth conditions. In both cereals, total biomass per individual increased significantly with domestication level but, to our surprise, we found no significant change in dry matter investment between domestication levels: neither the dry mass fraction of leaves increased, nor was there a trend of reduced investment in stems and roots, contrary to what we expected. Specific leaf area (SLA) and leaf area ratio (LAR) of modern wheat and barley cultivars were significantly lower compared to wild varieties. Major differences in both cereals were of a purely morphological nature, namely a decrease in the number of stems and ears from wild species to domesticated varieties, along with more synchronous tiller development and therefore similar tiller size. Fertilizer increased total biomass in all domestication levels in both cereals, but influenced the dry matter fractionation only in barley. Tissue nitrogen concentration was unresponsive to both domestication and fertilization. The expected shift in functional traits, conventionally considered to determine plant growth, was not found. Indeed, dry matter fractionation among the major plant biomass components seems to be very conservative.  相似文献   

11.
Uptake and retranslocation of leaf-applied radiolabeled cadmium (109Cd) was studied in three diploid (Triticum monococcum, AA), four tetraploid (Triticum turgidum, BBAA) and two hexaploid (Triticum aestivum, BBAADD) wheat genotypes grown for 9 d under controlled environmental conditions in nutrient solution. Among the tetraploid wheats, two genotypes were primitive (ssp. dicoccum) and two genotypes modern wheats (ssp. durum). Radiolabelled Cd was applied by immersing the tips (3 cm) of mature leaf into a 109Cd radiolabelled solution. There was a substantial variation in the uptake and export of 109Cd among and within wheat species. On average, diploid wheats (AA) absorbed and translocated more 109Cd than other wheats. The largest variation in 109Cd uptake was found within tetraploid wheats (BBAA). Primitive tetraploid wheats (ssp. dicoccum) had a greater uptake capacity for 109Cd than modern tetraploid wheats (ssp. durum). In all wheats studied, the amount of the 109Cd exported from the treated leaf into the roots and the remainder of the shoots was poorly related to the total absorption. For example, bread wheat cultivars were more or less similar in total absorption, but differed greatly in the amount of 109Cd retranslocated. The diploid wheat genotype 'FAL-43' absorbed the lowest amount of 109Cd, but retranslocated the greatest amount of 109Cd in roots and remainder of shoots. The results indicate the existence of substantial genotypic variation in the uptake and retranslocation of leaf-applied 109Cd. This variation is discussed in terms of potential genotypic differences in binding of Cd to cell walls and the composition of phloem sap ligands possibly affecting Cd transport into sink organs.  相似文献   

12.
The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. Wild emmer (Triticum turgidum ssp. dicoccoides), the tetraploid AB-genome progenitor of domesticated wheat has genes that confer tenacious glumes (Tg) that underwent genetic mutations to give rise to free-threshing wheat. Here, we evaluated disomic substitution lines involving chromosomes 2A and 2B of wild emmer accessions substituted for homologous chromosomes in tetraploid and hexaploid backgrounds. The results suggested that both chromosomes 2A and 2B of wild emmer possess genes that inhibit threshability. A population of recombinant inbred lines derived from the tetraploid durum wheat variety Langdon crossed with a Langdon — T. turgidum ssp. dicoccoides accession PI 481521 chromosome 2B disomic substitution line was used to develop a genetic linkage map of 2B, evaluate the genetics of threshability, and map the gene derived from PI 481521 that inhibited threshability. A 2BS linkage map comprised of 58 markers was developed, and markers delineated the gene to a 2.3 cM interval. Comparative analysis with maps containing the tenacious glume gene Tg-D1 on chromosome arm 2DS from Aegilops tauschii, the D genome progenitor of hexaploid wheat, revealed that the gene inhibiting threshability in wild emmer was homoeologous to Tg-D1 and therefore designated Tg-B1. Comparative analysis with rice and Brachypodium distachyon indicated a high level of divergence and poorly conserved colinearity, particularly near the Tg-B1 locus. These results provide a foundation for further studies involving Tg-B1, which, together with Tg-D1, had profound influences on wheat domestication.  相似文献   

13.
M Liu  N Rodrigue  J Kolmer 《Heredity》2014,112(4):443-453
Co-evolution of fungal pathogens with their host species during the domestication of modern crop varieties has likely affected the current genetic divergence of pathogen populations. The objective of this study was to determine if the evolutionary history of the obligate rust pathogen on wheat, Puccinia triticina, is correlated with adaptation to hosts with different ploidy levels. Sequence data from 15 loci with different levels of polymorphism were generated. Phylogenetic analyses (parsimony, Bayesian, maximum likelihood) showed the clear initial divergence of P. triticina isolates collected from Aegilops speltoides (the likely B genome donor of modern wheat) in Israel from the other isolates that were collected from tetraploid (AB genomes) durum wheat and hexaploid (ABD genomes) common wheat. Coalescence-based genealogy samplers also indicated that P. triticina on A. speltoides, diverged initially, followed by P. triticina isolates from durum wheat in Ethiopia and then by isolates from common wheat. Isolates of P. triticina found worldwide on cultivated durum wheat were the most recently coalesced and formed a clade nested within the isolates from common wheat. By a relative time scale, the divergence of P. triticinia as delimited by host specificity appears very recent. Significant reciprocal gene flow between isolates from common wheat and isolates from durum wheat that are found worldwide was detected, in addition to gene flow from isolates on common wheat to isolates on durum wheat in Ethiopia.  相似文献   

14.
The geographic distribution of genetic diversity and the population structure of tetraploid wheat landraces in the Mediterranean basin has received relatively little attention. This is complicated by the lack of consensus concerning the taxonomy of tetraploid wheats and by unresolved questions regarding the domestication and spread of naked wheats. These knowledge gaps hinder crop diversity conservation efforts and plant breeding programmes. We investigated genetic diversity and population structure in tetraploid wheats (wild emmer, emmer, rivet and durum) using nuclear and chloroplast simple sequence repeats, functional variations and insertion site-based polymorphisms. Emmer and wild emmer constitute a genetically distinct population from durum and rivet, the latter seeming to share a common gene pool. Our population structure and genetic diversity data suggest a dynamic history of introduction and extinction of genotypes in the Mediterranean fields.  相似文献   

15.
We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.  相似文献   

16.
Bread wheat (Triticum aestivum, genome BBAADD) is a young hexaploid species formed only 8,500–9,000 years ago through hybridization between a domesticated free-threshing tetraploid progenitor, genome BBAA, and Aegilops tauschii, the diploid donor of the D subgenome. Very soon after its formation, it spread globally from its cradle in the fertile crescent into new habitats and climates, to become a staple food of humanity. This extraordinary global expansion was probably enabled by allopolyploidy that accelerated genetic novelty through the acquisition of new traits, new intergenomic interactions, and buffering of mutations, and by the attractiveness of bread wheat’s large, tasty, and nutritious grain with high baking quality. New genome sequences suggest that the elusive donor of the B subgenome is a distinct (unknown or extinct) species rather than a mosaic genome. We discuss the origin of the diploid and tetraploid progenitors of bread wheat and the conflicting genetic and archaeological evidence on where it was formed and which species was its free-threshing tetraploid progenitor. Wheat experienced many environmental changes throughout its evolution, therefore, while it might adapt to current climatic changes, efforts are needed to better use and conserve the vast gene pool of wheat biodiversity on which our food security depends.

We describe the evolution of bread wheat in nature and under human selection with an emphasis on the donors of its subgenomes, evolution under polyploidy, and the “where when and how” of its domestication.  相似文献   

17.
A reconsideration of the domestication geography of tetraploid wheats   总被引:1,自引:0,他引:1  
The domestication of tetraploid wheats started from their wild progenitor Triticum dicoccoides. In this paper, the geographical distribution of this progenitor is revised to include more sampling locations. The paper is based on a collection of wild and domesticated lines (226 accessions in total) analyzed by AFLP at 169 polymorphic loci. The collection includes the 69 wild lines considered by Mori et al. (2003) in their study on chloroplast DNA haplotypes of T. dicoccoides. The goal of the experiment was to reconsider which location thought to have generated the domesticated germplasm has the highest chance of being the actual site from which wild progenitors were sampled during domestication. Phylogenetic analysis of the nuclear AFLP databases indicates that two different genetic taxa of T. dicoccoides exist, the western one, colonizing Israel, Syria, Lebanon and Jordan, and the central-eastern one, which has been frequently sampled in Turkey and rarely in Iran and Iraq. It is the central-eastern race that played the role of the progenitor of the domesticated germplasm. This is supported by the cumulative results of the AFLP data from the collections of Ozkan et al. (2002) and of Mori et al. (2003), which indicate that the Turkish Karacadag population, intermixed with some Iraq-Iran lines, has a tree topology consistent with that of the progenitor of domesticated genotypes. The Turkish Kartal population belongs genetically to the central-eastern T. dicoccoides race but at the nuclear DNA level is less related to the domesticated gene pool. A general agreement between published work on tetraploid wheat domestication emerges from these results. A disagreement is nevertheless evident at the local geographical scale; the chloroplast DNA data indicate the Kartal mountains while AFLP fingerprinting points to the Karacadag Range as the putative site of tetraploid wheat domestication.  相似文献   

18.
Bread wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42), which accounts for most of the cultivated wheat crop worldwide, is a typical allohexaploid with a genome derived from three diploid wild ancestors. Bread wheat arose and evolved via two sequential allopolyploidization events and was further polished through multiple steps of domestication. Today, cultivated allohexaploid bread wheat has numerous advantageous traits, including adaptive plasticity, favorable yield traits, and extended end-use quality, which have enabled its cultivation well beyond the ranges of its tetraploid and diploid progenitors to become a global staple food crop. In the past decade, rapid advances in wheat genomic research have considerably accelerated our understanding of the bases for the shaping of complex agronomic traits in this polyploid crop. Here, we summarize recent advances in characterizing major genetic factors underlying the origin, evolution, and improvement of polyploid wheats. We end with a brief discussion of the future prospects for the design of gene cloning strategies and modern wheat breeding.  相似文献   

19.
Archaeobotanical evidence for Near Eastern einkorn wheat, barley, and Chinese rice suggests that the fixation of key domestication traits such as non-shattering was slower than has often been assumed. This suggests a protracted period of pre-domestication cultivation, and therefore implies that both in time and in space the initial start of cultivation was separated from eventual domestication, when domesticated and wild populations would have become distinct gene pools. Archaeobotanical evidence increasingly suggests more pathways to cultivation than are represented by modern domesticated crop lines, including apparent early experiments with cultivation that did not lead to domestication, and early domesticates, such as two-grained einkorn and striate-emmeroid wheats, which went extinct in prehistory. This diverse range of early crops is hard to accommodate within a single centre of origin for all early Near Eastern cultivars, despite suggestions from genetic datasets that single origins from a single centre ought to be expected. This apparent discrepancy between archaeobotany and genetics highlights the need for modelling the expected genetic signature of different domestication scenarios, including multiple origins. A computer simulation of simple plant populations with 20 chromosomes was designed to explore potential differences between single and double origins of domesticated populations as they might appear in genomic datasets millennia later. Here we report a new simulation of a self-pollinating (2% outbreeding) plant compared to panmictic populations, and find that the general outcome is similar with multiple starts of cultivation drifting towards apparent monophyly in genome-wide phylogenetic analysis over hundreds of generations. This suggests that multiple origins of cultivation of a given species may be missed in some forms of modern genetic analysis, and it highlights the need for more complex modelling of population genetic processes associated with the origins of agriculture.  相似文献   

20.
Wheat is undoubtedly one of the world's major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号