首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Podoplanin is a transmembrane glycoprotein up-regulated in different human tumors, especially those derived from squamous stratified epithelia (SCCs). Its expression in tumor cells is linked to increased cell migration and invasiveness; however, the mechanisms underlying this process remain poorly understood. Here we report that CD44, the major hyaluronan (HA) receptor, is a novel partner for podoplanin. Expression of the CD44 standard isoform (CD44s) is coordinately up-regulated together with that of podoplanin during progression to highly aggressive SCCs in a mouse skin model of carcinogenesis, and during epithelial-mesenchymal transition (EMT). In carcinoma cells, CD44 and podoplanin colocalize at cell surface protrusions. Moreover, CD44 recruitment promoted by HA-coated beads or cross-linking with a specific CD44 antibody induced corecruitment of podoplanin. Podoplanin-CD44s interaction was demonstrated both by coimmunoprecipitation experiments and, in vivo, by fluorescence resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM), the later confirming its association on the plasma membrane of cells with a migratory phenotype. Importantly, we also show that podoplanin promotes directional persistence of motility in epithelial cells, a feature that requires CD44, and that both molecules cooperate to promote directional migration in SCC cells. Our results support a role for CD44-podoplanin interaction in driving tumor cell migration during malignancy.  相似文献   

2.
Some transmembrane proteins must associate with lipid rafts to function. However, even if acylated, transmembrane proteins should not pack well with ordered raft lipids, and raft targeting is puzzling. Acylation is necessary for raft targeting of linker for activation of T cells (LAT). To determine whether an acylated transmembrane domain is sufficient, we examined raft association of palmitoylated and nonpalmitoylated LAT transmembrane peptides in lipid vesicles by a fluorescence quenching assay, by microscopic examination, and by association with detergent-resistant membranes (DRMs). All three assays detected very low raft association of the nonacylated LAT peptide. DRM association was the same as a control random transmembrane peptide. Acylation did not measurably enhance raft association by the first two assays but slightly enhanced DRM association. The palmitoylated LAT peptide and a FLAG-tagged LAT transmembrane domain construct expressed in cells showed similar DRM association when both were reconstituted into mixed vesicles (containing cell-derived proteins and lipids and excess artificial raft-forming lipids) before detergent extraction. We conclude that the acylated LAT transmembrane domain has low inherent raft affinity. Full-length LAT in mixed vesicles associated better with DRMs than the peptide. However, cells appeared to contain two pools of LAT, with very different raft affinities. Since some LAT (but not the transmembrane domain construct) was isolated in a protein complex, and the Myc- and FLAG-tagged forms of LAT could be mutually co-immunoprecipitated, oligomerization or interactions with other proteins may enhance raft affinity of one pool of LAT. We conclude that both acylation and other factors, possibly protein-protein interactions, target LAT to rafts.  相似文献   

3.
Cell polarization is a key feature of cell motility, driving cell migration to tissues. CD43 is an abundantly expressed molecule on the T-cell surface that shows distinct localization to the migrating T-cell uropod and the distal pole complex (DPC) opposite the immunological synapse via association with the ezrin-radixin-moesin (ERM) family of actin regulatory proteins. CD43 regulates multiple T-cell functions, including T-cell activation, proliferation, apoptosis, and migration. We recently demonstrated that CD43 regulates T-cell trafficking through a phosphorylation site at Ser-76 (S76) within its cytoplasmic tail. Using a phosphorylation-specific antibody, we now find that CD43 phosphorylation at S76 is enhanced by migration signals. We further show that CD43 phosphorylation and normal T-cell trafficking depend on CD43 association with ERM proteins. Interestingly, mutation of S76 to mimic phosphorylation enhances T-cell migration and CD43 movement to the DPC while blocking ERM association, showing that CD43 movement can occur in the absence of ERM binding. We also find that protein kinase CΘ can phosphorylate CD43. These results show that while CD43 binding to ERM proteins is crucial for S76 phosphorylation, CD43 movement and regulation of T-cell migration can occur through an ERM-independent, phosphorylation-dependent mechanism.  相似文献   

4.
Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip) of T lymphotropic Herpesvirus saimiri (HVS) is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip''s transmembrane (TM) domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip''s lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.  相似文献   

5.
The latent membrane protein 1 (LMP-1) oncoprotein of Epstein-Barr virus (EBV) is a constitutively active, CD40-like cell surface signaling protein essential for EBV-mediated human B-cell immortalization. Like ligand-activated CD40, LMP-1 activates NF-kappaB and Jun kinase signaling pathways via binding, as a constitutive oligomer, to tumor necrosis factor receptor-associated factors (TRAFs). LMP-1's lipid raft association and oligomerization have been linked to its activation of cell signaling pathways. Both oligomerization and lipid raft association require the function of LMP-1's polytopic multispanning transmembrane domain, a domain that is indispensable for LMP-1's growth-regulatory signaling activities. We have begun to address the sequence requirements of the polytopic hydrophobic transmembrane domain for LMP-1's signaling and biochemical activities. Here we report that transmembrane domains 1 and 2 are sufficient for LMP-1's lipid raft association and cytostatic activity. Transmembrane domains 1 and 2 support NF-kappaB activation, albeit less potently than does the entire polytopic transmembrane domain. Interestingly, LMP-1's first two transmembrane domains are not sufficient for oligomerization or TRAF binding. These results suggest that lipid raft association and oligomerization are mediated by distinct and separable activities of LMP-1's polytopic transmembrane domain. Additionally, lipid raft association, mediated by transmembrane domains 1 and 2, plays a significant role in LMP-1 activation, and LMP-1 can activate NF-kappaB via an oligomerization/TRAF binding-independent mechanism. To our knowledge, this is the first demonstration of an activity's being linked to individual membrane-spanning domains within LMP-1's polytopic transmembrane domain.  相似文献   

6.
The association of the prion protein (PrP) with sphingolipid- and cholesterol-rich lipid rafts is instrumental in the pathogenesis of the neurodegenerative prion diseases. Although the glycosylphosphatidylinositol (GPI) anchor is an exoplasmic determinant of raft association, PrP remained raft-associated in human neuronal cells even when the GPI anchor was deleted or substituted for a transmembrane anchor indicating that the ectodomain contains a raft localization signal. The raft association of transmembrane-anchored PrP occurred independently of Cu(II) binding as it failed to be abolished by either deletion of the octapeptide repeat region (residues 51-90) or treatment of cells with a Cu(II) chelator. Raft association of transmembrane-anchored PrP was only abolished by the deletion of the N-terminal region (residues 23-90) of the ectodomain. This region was sufficient to confer raft localization when fused to the N terminus of a non-raft transmembrane-anchored protein and suppressed the clathrin-coated pit localization signal in the cytoplasmic domain of the amyloid precursor protein. These data indicate that the N-terminal region of PrP acts as a cellular raft targeting determinant and that residues 23-90 of PrP represent the first proteinaceous raft targeting signal within the ectodomain of a GPI-anchored protein.  相似文献   

7.
Upon interaction with cholesterol, perfringolysin O (PFO) inserts into membranes and forms a rigid transmembrane (TM) β-barrel. PFO is believed to interact with liquid ordered lipid domains (lipid rafts). Because the origin of TM protein affinity for rafts is poorly understood, we investigated PFO raft affinity in vesicles having coexisting ordered and disordered lipid domains. Fluorescence resonance energy transfer (FRET) from PFO Trp to domain-localized acceptors indicated that PFO generally has a raft affinity between that of LW peptide (low raft affinity) and cholera toxin B (high raft affinity) in vesicles containing ordered domains rich in brain sphingomyelin or distearoylphosphatidylcholine. FRET also showed that ceramide, which increases exposure of cholesterol to water and thus displaces it from rafts, does not displace PFO from ordered domains. This can be explained by shielding of PFO-bound cholesterol from water. Finally, FRET showed that PFO affinity for ordered domains was higher in its non-TM (prepore) form than in its TM form, demonstrating that the TM portion of PFO interacts unfavorably with rafts. Microscopy studies in giant unilamellar vesicles confirmed that PFO exhibits intermediate raft affinity, and showed that TM PFO (but not non-TM PFO) concentrated at the edges of liquid ordered domains. These studies suggest that a combination of binding to raft-associating molecules and having a rigid TM structure that is unable to pack well in a highly ordered lipid environment can control TM protein domain localization. To accommodate these constraints, raft-associated TM proteins in cells may tend to locate within liquid disordered shells encapsulated within ordered domains.  相似文献   

8.
Neutral endopeptidase 24.11 (NEP) is a cell surface peptidase expressed by numerous tissues including prostatic epithelial cells. We reported that NEP inhibits prostate cancer cell proliferation and cell migration by enzymatic inactivation of neuropeptide substrates and through protein-protein interaction independent of catalytic function. The cytoplasmic domain of NEP contains a positively charged amino acid cluster, previously identified as a binding site for ezrin/radixin/moesin (ERM) proteins. We report here that NEP co-immunoprecipitates with ERM proteins in NEP-expressing LNCaP prostate cancer cells and MeWo melanoma cells. Co-immunoprecipitation showed that ERM proteins associate with wild-type NEP protein but not NEP protein containing a truncated cytoplasmic domain or point mutations replacing the positively charged amino acid cluster. In vitro binding assays showed that NEP binds directly to recombinant N terminus fragments of ERM proteins at the positively charged amino acid cluster within the NEP cytoplasmic domain. Binding of ERM proteins to NEP results in decreased binding of ERM proteins to the hyaluronan receptor CD44, a main binding partner of ERM proteins. Moreover, cells expressing wild-type NEP demonstrate decreased adhesion to hyaluronic acid and cell migration. These data suggest that NEP can affect cell adhesion and migration through direct binding to ERM proteins.  相似文献   

9.
Podoplanin (aggrus), a transmembrane sialoglycoprotein, is involved in tumor cell-induced platelet aggregation, tumor metastasis, and lymphatic vessel formation. However, the mechanism by which podoplanin induces these cellular processes including its receptor has not been elucidated to date. Podoplanin induced platelet aggregation with a long lag phase, which is dependent upon Src and phospholipase Cgamma2 activation. However, it does not bind to glycoprotein VI. This mode of platelet activation was reminiscent of the snake toxin rhodocytin, the receptor of which has been identified by us as a novel platelet activation receptor, C-type lectin-like receptor 2 (CLEC-2) (Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., Gartner, T. K., Hughan, S. C., Pearce, A. C., Laing, G. D., Theakston, R. D., Schweighoffer, E., Zitzmann, N., Morita, T., Tybulewicz, V. L., Ozaki, Y., and Watson, S. P. (2006) Blood 107, 542-549). Therefore, we sought to evaluate whether CLEC-2 serves as a physiological counterpart for podoplanin. Association between CLEC-2 and podoplanin was confirmed by flow cytometry. Furthermore, their association was dependent on sialic acid on O-glycans of podoplanin. Recombinant CLEC-2 inhibited platelet aggregation induced by podoplanin-expressing tumor cells or lymphatic endothelial cells, suggesting that CLEC-2 is responsible for platelet aggregation induced by endogenously expressed podoplanin on the cell surfaces. These findings suggest that CLEC-2 is a physiological target protein of podoplanin and imply that it is involved in podoplanin-induced platelet aggregation, tumor metastasis, and other cellular responses related to podoplanin.  相似文献   

10.
EWI-2 and EWI-F, two members of a novel subfamily of Ig proteins, are direct partners of tetraspanins CD9 (Tspan29) and CD81 (Tspan28). These EWI proteins contain a stretch of basic charged amino acids in their cytoplasmic domains that may act as binding sites for actin-linking ezrin-radixin-moesin (ERM) proteins. Confocal microscopy analysis revealed that EWI-2 and EWI-F colocalized with ERM proteins at microspikes and microvilli of adherent cells and at the cellular uropod in polarized migrating leukocytes. Immunoprecipitation studies showed the association of EWI-2 and EWI-F with ERM proteins in vivo. Moreover, pulldown experiments and protein-protein binding assays with glutathione S-transferase fusion proteins containing the cytoplasmic domains of EWI proteins corroborated the strong and direct interaction between ERMs and these proteins. The active role of ERMs was further confirmed by double transfections with the N-terminal domain of moesin, which acts as a dominant negative form of ERMs, and was able to delocalize EWIs from the uropod of polarized leukocytes. In addition, direct association of EWI partner CD81 C-terminal domain with ERMs was also demonstrated. Functionally, silencing of endogenous EWI-2 expression by short interfering RNA in lymphoid CEM cells augmented cell migration, cellular polarity, and increased phosphorylation of ERMs. Hence, EWI proteins, through their direct interaction with ERM proteins, act as linkers to connect tetraspanin-associated microdomains to actin cytoskeleton regulating cell motility and polarity.  相似文献   

11.
Podoplanin (Aggrus) is a mucin-type sialoglycoprotein that plays a key role in tumor cell-induced platelet aggregation. Podoplanin possesses a platelet aggregation-stimulating (PLAG) domain, and Thr52 in the PLAG domain of human podoplanin is important for its activity. Endogenous or recombinant human podoplanin were purified, and total glycosylation profiles were surveyed by lectin microarray. Analyses of glycopeptides produced by Edman degradation and mass spectrometry revealed that the disialyl-corel (NeuAc alpha2-3Gal beta l-3(NeuAc alpha2-6)GalNAc alpha l-O-Thr) structure was primarily attached to a glycosylation site at residue Thr52. Sialic acid-deficient podoplanin recovered its activity after additional sialylation. These results indicated that the sialylated Corel at Thr52 is critical for podoplanin-induced platelet aggregation.  相似文献   

12.
13.
Podoplanin (PDPN), a mucin-type transmembrane glycoprotein specific to the lymphatic system is expressed in a variety of human cancers, and is regarded as a factor promoting tumor progression. The purpose of this study was to elucidate the molecular role of PDPN in the biology of thyroid cancer cells. PDPN expression was evaluated in primary thyroid carcinomas and thyroid carcinoma cell lines by RT-qPCR, Western blotting, IF and IHC. To examine the role of podoplanin in determining a cell''s malignant potential (cellular migration, invasion, proliferation, adhesion, motility, apoptosis), a thyroid cancer cell line with silenced PDPN expression was used. We observed that PDPN was solely expressed in the cancer cells of 40% of papillary thyroid carcinoma (PTC) tissues. Moreover, PDPN mRNA and protein were highly expressed in PTC-derived TPC1 and BcPAP cell lines but were not detected in follicular thyroid cancer derived cell lines. PDPN knock-down significantly decreased cellular invasion, and modestly reduced cell migration, while proliferation and adhesion were not affected. Our results demonstrate that PDPN mediates the invasive properties of cells derived from papillary thyroid carcinomas, suggesting that podoplanin might promote PTC progression.  相似文献   

14.
To explore the association of the Newcastle disease virus (NDV) fusion (F) protein with cholesterol-rich membrane domains, its localization in detergent-resistant membranes (DRMs) in transfected cells was characterized. After solubilization of cells expressing the F protein with 1% Triton X-100 at 4 degrees C, ca. 40% of total, cell-associated F protein fractionated with classical DRMs with densities of 1.07 to l.14 as defined by flotation into sucrose density gradients. Association of the F protein with this cell fraction was unaffected by the cleavage of F(0) to F(1) and F(2) or by coexpression of the NDV attachment protein, the hemagglutinin-neuraminidase protein (HN). Furthermore, elimination by mutation, of potential palmitate addition sites in and near the F-protein transmembrane domain had no effect on F-protein association with DRMs. Rather, specific deletions of the cytoplasmic domain of the F protein eliminated association with classical DRMs. Comparisons of deletions that affected fusion activity of the protein and deletions that affected DRM association suggested that there is no direct link between the cell-cell fusion activity of the F protein and DRM association. Furthermore, depletion of cholesterol from cells expressing F and HN protein, while eliminating DRM association, had no effect on the ability of these cells to fuse with avian red blood cells. These results suggest that specific localization of the F protein in cholesterol-rich membrane domains is not required for cell-to-cell fusion. Paramyxovirus F-protein cytoplasmic domains have been implicated in virus assembly. The results presented here raise the possibility that the cytoplasmic domain is important in virus assembly at least in part because it directs the protein to cholesterol-rich membrane domains.  相似文献   

15.
The association of gangliosides with specific proteins in the central nervous system was examined by coimmunoprecipitation with an anti‐ganglioside antibody. The monoclonal antibody to the ganglioside GD3 (R24) immunoprecipitated the Csk (C‐terminal src kinase)‐binding protein (Cbp). Sucrose density gradient analysis showed that Cbp of rat cerebellum was detected in detergent‐resistant membrane (DRM) raft fractions. R24 treatment of the rat primary cerebellar cultures induced Lyn activation and tyrosine phosphorylation of Cbp. Treatment with anti‐ganglioside GD1b antibody also induced tyrosine phosphorylation. Furthermore, over‐expressions of Lyn and Cbp in Chinese hamster ovary (CHO) cells resulted in tyrosine 314 phosphorylation of Cbp, which indicates that Cbp is a substrate for Lyn. Immunoblotting analysis showed that the active form of Lyn and the Tyr314‐phosphorylated form of Cbp were highly accumulated in the DRM raft fraction prepared from the developing cerebellum compared with the DRM raft fraction of the adult one. In addition, Lyn and the Tyr314‐phosphorylated Cbp were highly concentrated in the growth cone fraction prepared from the developing cerebellum. Immunoelectron microscopy showed that Cbp and GAP‐43, a growth cone marker, are localized in the same vesicles of the growth cone fraction. These results suggest that Cbp functionally associates with gangliosides on growth cone rafts in developing cerebella.  相似文献   

16.
Normal fibroblast subpopulations have differential surface expression of the GPI-linked raft protein Thy-1, which correlates with differences in cellular adhesion and migration in vitro. Thrombospondin-1 (TSP-1) induces an intermediate state of adhesion in fibroblasts and other cells which facilitates migration. TSP-1 and the hep I peptide derived from the amino-terminal/heparin-binding domain of TSP-1 induce disassembly of cellular focal adhesions. Our lab previously reported that the induction of focal adhesion disassembly in fibroblasts by TSP-1 or by hep I requires surface expression of Thy-1, as well as lipid raft integrity and Src family kinase (SFK) signaling. We now report that TSP-1/hep I-induced fibroblast migration requires Thy-1 expression and FAK phosphorylation, and that following TSP-1/hep I stimulation, Thy-1 associates with FAK and SFK in a lipid raft-dependent manner. Furthermore, the GPI anchor of Thy-1, which localizes the protein to specific lipid raft microdomains, is necessary for hep I-induced FAK and SFK phosphorylation, focal adhesion disassembly, and migration. This is the first report of an association between Thy-1 and FAK. Thy-1 modulates SFK and FAK phosphorylation and subcellular localization, promoting focal adhesion disassembly and migration in fibroblasts, following exposure to TSP-1/hep I.  相似文献   

17.
Deregulation of c‐MYC occurs in a variety of human cancers. Overexpression of c‐MYC promotes cell growth, proliferation, apoptosis, transformation and genomic instability. MYC target 1 (MYCT1) is a direct target gene of c‐MYC, and its murine homologue MT‐MC1 recapitulated multiple c‐Myc‐related phenotypes. However, the molecular mechanism of MYCT1 remains unclear. Here, we identified the transmembrane (TM) domain of MYCT1, not the nuclear localization sequence, is indispensable to the vesicle‐associated localization of MYCT1 protein in the cytoplasmic membrane vesicle. Overexpression of MYCT1, not MYCT1 (ΔTM), decreased cell viability under serum deprivation and increased tumour cell migration ability. We further identified CKAP4 interacted with MYCT1 and contributed to the function of MYCT1. In addition, we found that a mutation, A88D, which is observed in patient sample, changed the localization, and abolished the effect on cell viability and cell migration, suggesting that the TM domain is critical to MYCT1.  相似文献   

18.
Fibrosis of the lung is characterized by the accumulation of myofibroblasts, a key mediator in the fibrogenic reaction. Cumulative evidence indicates that epithelial-mesenchymal transition (EMT), a process whereby epithelial cells become mesenchyme-like, is an important contributing source for the myofibroblast population. Underlying this phenotypical change is a dramatic alteration in cellular structure. The receptor for advanced glycation end-products (RAGE) has been suggested to maintain lung homeostasis by mediating cell adhesion, while the family of ezrin/radixin/moesin (ERM) proteins, on the other hand, serve as an important cross-linker between the plasma membrane and cytoskeleton. In the present investigation, we tested the hypothesis that RAGE and ERM interact and play a key role in regulating EMT-associated structural changes in alveolar epithelial cells. Exposure of A549 cells to inflammatory cytokines resulted in phosphorylation and redistribution of ERM to the cell periphery and localization with EMT-related actin stress fibers. Simultaneously, blockade of Rho kinase (ROCK) signaling attenuated these cytokine-induced structural changes. Additionally, RAGE expression was diminished after cytokine stimulation, with release of its soluble isoform via a matrix metalloproteinase (MMP)-9-dependent mechanism. Immunofluorescence microscopy and coimmunoprecipitation revealed association between ERM and RAGE under basal conditions, which was disrupted when challenged with inflammatory cytokines, as ERM in its activated state complexed with membrane-linked CD44. Dual-fluorescence immunohistochemistry of patient idiopathic pulmonary fibrosis (IPF) tissues highlighted marked diminution of RAGE in fibrotic samples, together with enhanced levels of CD44 and double-positive cells for CD44 and phospho (p)ERM. These data suggest that dysregulation of the ERM-RAGE complex might be an important step in rearrangement of the actin cytoskeleton during proinflammatory cytokine-induced EMT of human alveolar epithelial cells.  相似文献   

19.
We have recently shown that the C-type lectin-like receptor, CLEC-2, is expressed on platelets and that it mediates powerful platelet aggregation by the snake venom toxin rhodocytin. In addition, we have provided indirect evidence for an endogenous ligand for CLEC-2 in renal cells expressing HIV-1. This putative ligand facilitates transmission of HIV through its incorporation into the viral envelope and binding to CLEC-2 on platelets. The aim of the present study was to identify the ligand on these cells which binds to CLEC-2 on platelets. Recombinant CLEC-2 exhibits specific binding to HEK-293T (human embryonic kidney) cells in which the HIV can be grown. Furthermore, HEK-293T cells activate both platelets and CLEC-2-transfected DT-40 B-cells. The transmembrane protein podoplanin was identified on HEK-293T cells and was demonstrated to mediate both binding of HEK-293T cells to CLEC-2 and HEK-293T cell activation of CLEC-2-transfected DT-40 B-cells. Podoplanin is expressed on renal cells (podocytes). Furthermore, a direct interaction between CLEC-2 and podoplanin was confirmed using surface plasmon resonance and was shown to be independent of glycosylation of CLEC-2. The interaction has an affinity of 24.5+/-3.7 microM. The present study identifies podoplanin as a ligand for CLEC-2 on renal cells.  相似文献   

20.
Galectin-3 binding to cell surface glycoproteins, including branched N-glycans generated by N-acetylglucosaminyltransferase V (Mgat5) activity, forms a multivalent, heterogeneous, and dynamic lattice. This lattice has been shown to regulate integrin and receptor tyrosine kinase signaling promoting tumor cell migration. N-cadherin is a homotypic cell-cell adhesion receptor commonly overexpressed in tumor cells that contributes to cell motility. Here we show that galectin-3 and N-cadherin interact and colocalize with the lipid raft marker GM1 ganglioside in cell-cell junctions of mammary epithelial cancer cells. Disruption of the lattice by deletion of Mgat5, siRNA depletion of galectin-3, or competitive inhibition with lactose stabilizes cell-cell junctions. It also reduces, in a p120-catenin-dependent manner, the dynamic pool of junctional N-cadherin. Proteomic analysis of detergent-resistant membranes (DRMs) revealed that the galectin lattice opposes entry of many proteins into DRM rafts. N-cadherin and catenins are present in DRMs; however, their DRM distribution is not significantly affected by lattice disruption. Galectin lattice integrity increases the mobile fraction of the raft marker, GM1 ganglioside binding cholera toxin B subunit Ctb, at cell-cell contacts in a p120-catenin-independent manner, but does not affect the mobility of either Ctb-labeled GM1 or GFP-coupled N-cadherin in nonjunctional regions. Our results suggest that the galectin lattice independently enhances lateral molecular diffusion by direct interaction with specific glycoconjugates within the adherens junction. By promoting exchange between raft and non-raft microdomains as well as molecular dynamics within junction-specific raft microdomains, the lattice may enhance turnover of N-cadherin and other glycoconjugates that determine junctional stability and rates of cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号