首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical label free DNA hybridization discrimination of the brain tumor sequence CK20 has been made at the gold-thiol and thiol diluent binary and ternary mixed monolayer interfaces in presence of the [Fe(CN)6](3-) and double stranded DNA (dsDNA) specific cationic intercalators, proflavine (PF) and methylene blue (MB), respectively. Thiol hexane labeled single stranded DNA (HS-ssDNA) and thiol diluents such as 6-mercapto-1-hexanol (MCH) and 3-mercaptopropionic acid (MPA) are used to construct the mixed monolayers. Change in the peak-to-peak separation (Delta Ep) for the [Fe(CN)6](3-) redox reaction indicates the efficiency of the diluents in removing the randomly oriented HS-ssDNA. Smaller Delta Ep 248 mV noticed for the HS-ssDNA/MPA compared to the HS-ssDNA/MCH mixed monolayers (812 mV) indicates the less influence of the MCH diluent on the arrangement of HS-ssDNA layer. However, the hybridization discrimination effect negotiated in presence of both the [Fe(CN)6](3-) and PF intercalator showed zero effect for the HS-ssDNA/MPA interface, and approximately 20-30% effect for the HS-ssDNA/MCH interface. The discrimination effect at the HS-ssDNA/MPA interface further increased to 80% by inserting the MCH at the local defects to form a multicomponent ternary HS-ssDNA/MPA/MCH layer interface. These differential discrimination effects are attributed to the formation of compact and/or defective layer structures, evidenced from their reductive desorption voltammetry in 0.5M KOH. The presence of single base (C-A) mismatch in the hybrid is diagnosed by a decrease in coulometric charge compared to the perfect dsDNA. The target concentration of 10 pM is detected selectively and sensitively.  相似文献   

2.
A highly sensitive and attractive antifouling impedimetric aptasensor for the determination of thrombin in undiluted serum sample was developed. The aptasensor was fabricated by co-assembling thiol-modified anti-thrombin binding aptamer, dithiothreitol and mercaptohexanol on the surface of gold electrode. The performance of aptasensor was characterized by atomic force microscopy, contact angle and electrochemical impedance spectroscopy. In the measurement of thrombin, the change in interfacial electron transfer resistance of aptasensor was monitored using a redox couple of Fe(CN)(6)(3-/4-). The increase in the electron transfer resistance was linearly proportional to the concentration of thrombin in the range from 1.0 to 20ng/mL and a detection limit of 0.3ng/mL thrombin was achieved. The fabricated aptasensor displayed attractive antifouling properties and allowed direct quantification of extrinsic thrombin down to 0.08ng/mL in undiluted serum sample. This work provides a promising strategy for clinical application with impressive sensitivity and antifouling characteristics.  相似文献   

3.
We carried out molecular dynamics simulations and free energy calculations for a series of ternary and diplex models for the HipA protein, HipB dimer, and DNA molecule to address the mechanism of HipA sequestration and the binding order of events from apo HipB/HipA to 2HipA + HipB dimer + DNA complex. The results revealed that the combination of DNA with the HipB dimer is energetically favorable for the combination of HipB dimer with HipA protein. The binding of DNA to HipB dimer induces a long‐range allosteric communication from the HipB2‐DNA interface to the HipA–HipB2 interface, which involves the closeness of α1 helices of HipB dimer to HipA protein and formations of extra hydrogen bonds in the HipA–HipB2 interface through the extension of α2/3 helices in the HipB dimer. These simulated results suggested that the DNA molecule, as a regulative media, modulates the HipB dimer conformation, consequently increasing the interactions of HipB dimer with the HipA proteins, which explains the mechanism of HipA sequestration reported by the previous experiment. Simultaneously, these simulations also explored that the thermodynamic binding order in a simulated physiological environment, that is, the HipB dimer first bind to DNA to form HipB dimer + DNA complex, then capturing strongly the HipA proteins to form a ternary complex, 2HipA + HipB dimer + DNA, for sequestrating HipA in the nucleoid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Ultrasensitive molecular beacon (MB) DNA biosensors, with micrometer to submicrometer sizes, have been developed for DNA/RNA analysis. The fluorescence-based biosensors have been applied in DNA/ RNA detection without the need for a dye-labeled target molecule or an intercalation reagent in the testing solution. Molecular beacons are hairpin-shaped oligonucleotides that report the presence of specific nucleic acids. We have designed a surface-immobilizable biotinylated ssDNA molecular beacon for DNA hybridization at a liquid-solid interface. The MBs have been immobilized onto ultrasmall optical fiber probes through avidin-biotin binding. The MB DNA biosensor has been used directly to detect, in real time, its target DNA molecules without the need for a competitive assay. The biosensor is stable and reproducible. The MB DNA biosensor has selectivity with single base-pair mismatch identification capability. The concentration detection limits and mass detection limits are 0.3 nM and 15 amol for a 105-microm biosensor, and 10 nM and 0.27 amol for a submicrometer biosensor, respectively. We have also prepared molecular beacon DNA biosensor arrays for simultaneous analysis of multiple DNA sequences in the same solution. The newly developed DNA biosensors have been used for the precise quantification of a specific rat gamma-actin mRNA sequence amplified by the polymerase chain reaction.  相似文献   

5.
A disposable electrochemical biosensor for the detection of DNA sequences related to the human cytomegalovirus (HCMV) is described. The sensor relies on the adsorption of an amplified human cytomegalovirus DNA strand onto the sensing surface of a screen-printed carbon electrode, and to its hybridization to a complementary single-stranded biotinylated DNA probe. The extent of hybrids formed was determined with streptavidin conjugated to horseradish peroxidase. The peroxidase label was indirectly quantified by measuring the amount of the chromophore and electroactive product 2,2'-diaminoazobenzene generated from the o-phenylenediamine substrate. The intensity of differential pulse voltammetric peak currents resulting from the reduction of the enzyme-generated product was related to the number of target HCMV-amplified DNA molecules present in the sample, and the results were compared to those obtained with standard methods, i.e., agarose gel electrophoresis quantification and colorimetric hybridization assay in a microtiter plate. A detection limit of 0.6 amol/ml of HCMV-amplified DNA fragment was obtained with the electrochemical DNA biosensor. The electrochemical method was 23,000-fold more sensitive than the gel electrophoresis technique and 83-fold more sensitive than the colorimetric hybridization assay in a microtiter plate.  相似文献   

6.
A sensitive homogenous time-resolved fluorescence DNA hybridization assay method based on the formation of an EDTA-Eu(3+)-beta-diketonate ternary complex in the DNA hybrid was developed. The new approach combined the use of two DNA probes whose sequences compose the whole complementary strand to the target DNA, in which one probe was labeled with an EDTA-Eu(3+) complex on the 5'-terminus and the other, labeled with a bidentate beta-diketone on the 3'-terminus. After hybridization of two DNA probes with target DNA, EDTA-Eu(3+) and beta-diketone come close to each other, and an EDTA-Eu(3+)-beta-diketonate ternary complex with a strong and long-lived fluorescence was formed; thus the target DNA was detected sensitively with a detection limit of 6 pM (0.6 fmol per assay) by time-resolved fluorescence measurement. In the absence of the target DNA, due to the poor stability of bidentate beta-diketonate-Eu(3+) complex in very diluted solution, only a small amount of ternary fluorescence complex was formed.  相似文献   

7.
Asymmetric dimethylarginine (ADMA; N(G),N(G)-dimethyl-L-arginine) is the most important endogenous inhibitor of nitric oxide synthase and a potential risk factor for cardiovascular diseases. This article describes a gas chromatographic-tandem mass spectrometric (GC-tandem MS) method for the accurate quantification of ADMA in human plasma or serum and urine using de novo synthesized [2H(3)]-methyl ester ADMA (d(3)Me-ADMA) as the internal standard. Aliquots (100 microl) of plasma/serum ultrafiltrate or native urine and of aqueous solutions of synthetic ADMA (1 microM for plasma and serum; 20 microM for urine) are evaporated to dryness. The residue from plasma/serum ultrafiltrate or urine is treated with a 100 microl aliquot of 2M HCl in methanol, whereas the residue of the ADMA solution is treated with a 100 microl aliquot of 2M HCl in tetradeuterated methanol. Methyl esters are prepared by heating for 60 min at 80 degrees C. After cooling to room temperature, the plasma or urine sample is combined with the d(3)Me-ADMA sample, the mixture is evaporated to dryness, the residue treated with a solution of pentafluoropropionic (PFP) anhydride in ethyl acetate (1:4, v/v) and the sample is incubated for 30 min at 65 degrees C. Solvent and reagents are evaporated under a stream of nitrogen gas, the residue is treated with a 200 microl aliquot of 0.4M borate buffer, pH 8.5, and toluene (0.2 ml for plasma, 1 ml for urine). Reaction products are extracted by vortexing for 1 min, the toluene phase is decanted, and a 1 microl aliquot is injected into the GC-tandem MS instrument. Quantitation is performed by selected reaction monitoring (SRM) of the common product ion at m/z 378 which is produced by collision-induced dissociation of the ions at m/z 634 for endogenous ADMA and m/z 637 for d(3)Me-ADMA. In plasma and urine of healthy humans ADMA was measured at concentrations of 0.39+/-0.06 microM (n=12) and 3.4+/-1.1 micromol/mmol creatinine (n=9), respectively. The limits of detection and quantitation of the method are approximately 10 amol and 320 pM of d(3)Me-ADMA, respectively.  相似文献   

8.
In this study, we developed an ultrasensitive label-free aptamer-based electrochemical biosensor, featuring a highly specific anti-human immunoglobulin E (IgE) aptamer as a capture probe, for human IgE detection. Construction of the aptasensor began with the electrodeposition of gold nanoparticles (AuNPs) onto a graphite-based screen-printed electrode (SPE). After immobilizing the thiol-capped anti-human IgE aptamer onto the AuNPs through self-assembly, we treated the electrode with mercaptohexanol (MCH) to ensure that the remaining unoccupied surfaces of the AuNPs would not undergo nonspecific binding. We employed a designed complementary DNA featuring a guanine-rich section in its sequence (cDNA G1) as a detection probe to bind with the unbound anti-human IgE aptamer. We measured the redox current of methylene blue (MB) to determine the concentration of human IgE in the sample. When the aptamer captured human IgE, the binding of cDNA G1 to the aptamer was inhibited. Using cDNA G1 in the assay greatly amplified the redox signal of MB bound to the detection probe. Accordingly, this approach allowed the linear range (coefficient of determination: 0.996) for the analysis of human IgE to extend from 1 to 100,000pM; the limit of detection was 0.16pM. The fabricated aptasensor exhibited good selectivity toward human IgE even when human IgG, thrombin, and human serum albumin were present at 100-fold concentrations. This method should be readily applicable to the detection of other analytes, merely by replacing the anti-human IgE aptamer/cDNA G1 pair with a suitable anti-target molecule aptamer and cDNA.  相似文献   

9.
Two methods, phenol-ether and magnetic capture-hybridization (MCH), were developed and compared with regard to their sensitivities and abilities to extract the DNA of the insect baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) from soil and to produce DNA amplifiable by PCR. Laboratory experiments were performed with 0. 25 g of autoclaved soil inoculated with different viral concentrations to optimize both methods of baculovirus DNA extraction and to determine their sensitivities. Both procedures produced amplifiable DNA; however, the MCH method was 100-fold more sensitive than the phenol-ether procedure. The removal of PCR inhibitors from the soil appeared to be complete when MCH was used as the viral DNA isolation method, because undiluted aliquots of the DNA preparations could be amplified by PCR. The phenol-ether procedure probably did not completely remove PCR inhibitors from the soil, since PCR products were observed only when the AgMNPV DNA preparations were diluted 10- or 100-fold. AgMNPV DNA was detected in field-collected soil samples from 15 to 180 days after virus application when the MCH procedure to isolate DNA was coupled with PCR amplification of the polyhedrin region.  相似文献   

10.
In this study, a novel DNA electrochemical probe (locked nucleic acid, LNA) was designed and involved in constructing an electrochemical DNA biosensor for detection of promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion gene in acute promyelocytic leukemia for the first time. This biosensor was based on a 'sandwich' sensing mode, which involved a pair of LNA probes (capture probe immobilized at electrode surface and biotinyl reporter probe as an affinity tag for streptavidin-horseradish peroxidase (streptavidin-HRP). Since biotin can be connected with streptavidin-HRP, this biosensor offered an enzymatically amplified electrochemical current signal for the detection of target DNA. In the simple hybridization system, DNA fragment with its complementary DNA fragment was evidenced by amperometric detection, with a detection limit of 74 fM and a linear response range of 0.1-10 pM for synthetic PML/RARα fusion gene in acute promyelocytic leukemia (APL). Otherwise, the biosensor showed an excellent specificity to distinguish the complementary sequence and different mismatch sequences. The new pattern also exhibited high sensitivity and selectivity in mixed hybridization system.  相似文献   

11.
Two methods, phenol-ether and magnetic capture-hybridization (MCH), were developed and compared with regard to their sensitivities and abilities to extract the DNA of the insect baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) from soil and to produce DNA amplifiable by PCR. Laboratory experiments were performed with 0.25 g of autoclaved soil inoculated with different viral concentrations to optimize both methods of baculovirus DNA extraction and to determine their sensitivities. Both procedures produced amplifiable DNA; however, the MCH method was 100-fold more sensitive than the phenol-ether procedure. The removal of PCR inhibitors from the soil appeared to be complete when MCH was used as the viral DNA isolation method, because undiluted aliquots of the DNA preparations could be amplified by PCR. The phenol-ether procedure probably did not completely remove PCR inhibitors from the soil, since PCR products were observed only when the AgMNPV DNA preparations were diluted 10- or 100-fold. AgMNPV DNA was detected in field-collected soil samples from 15 to 180 days after virus application when the MCH procedure to isolate DNA was coupled with PCR amplification of the polyhedrin region.  相似文献   

12.
In this study, neutravidin-coated screen-printed carbon sensors were fully characterized and further used for the amperometric detection of specific DNA sequences of human cytomegalovirus (HCMV DNA). For this purpose, we took advantage of an earlier established relationship between the amount of HRP affinity immobilized on the surface of the electrode and the steady-state current recorded in the presence of H2O2 as substrate and the single electron donor [OsIII(bpy)2pyCl]2+ as cosubstrate. After incubating a saturating concentration of biotinylated horseradish peroxidase (Bio-HRP) onto the neutravidin-modified sensors, a surface concentration of active HRP of 3.6 pmol cm−2 was calculated from the measurement of the electrocatalytic plateau current value. This result indicates that monolayers of neutravidin were adsorbed on the screen-printed carbon sensors. These neutravidin-covered platforms were then used to immobilize biotinylated nucleic acid targets. After hybridization with a complementary digoxigenin-labeled detection probe, the extent of hybrids formed was determined with an anti-digoxigenin HRP conjugate. The biosensor assay was applied to the detection of a synthetic oligonucleotide target, and then to the determination of an amplified viral DNA sequence. Monolayers of HRP-labeled oligonucleotide hybrids were immobilized onto the sensing surface whereas one third of the surface was covered with HCMV DNA hybrids. On the other hand, detection limits of 200 pM and 1 nM were obtained for the short oligonucleotide and the longer DNA targets, respectively. Finally, we demonstrated that the sensitivity of the electrochemical assay could be significantly improved by using high concentrations of the reduced form of the mediator [OsII(bpy)2pyCl]+, thus allowing one to detect as low as 30 pM of amplified HCMV DNA fragment.  相似文献   

13.
An electrochemical genosensor for the detection of specific sequences of DNA has been developed using disposable screen-printed gold electrodes. Screen-printed gold electrodes were firstly modified with a mixed monolayer of a 25-mer thiol-tethered DNA probe and a spacer thiol, 6-mercapto-1-hexanol (MCH). The DNA probe sequence was internal to the sequence of the 35S promoter, which sequence is inserted in the genome of GMOs regulating the transgene expression. An enzyme-amplified detection scheme, based on the coupling of a streptavidin-alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalysed the hydrolysis of the electroinactive alpha-naphthyl phosphate to alpha-naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. The assay was, firstly, characterised using synthetic oligonucleotides. Relevant parameters, such as the probe concentration and the immobilisation time, the use of the MCH and different enzymatic conjugates, were investigated and optimised. The genosensor response was found to be linearly related to the target concentration between 0 and 25 nmol/L; the detection limit was 0.25 nmol/L. The analytical procedure was then applied for the detection of the 35S promoter sequence, which was amplified from the pBI121 plasmid by polymerase chain reaction (PCR). Hybridisation conditions (i.e., hybridisation buffer and hybridisation time) were further optimised. The selectivity of the assay was confirmed using biotinylated non-complementary amplicons and PCR blanks. The results showed that the genosensor enabled sensitive (detection limit: 1 nmol/L) and specific detection of GMO-related sequences, thus providing a useful tool for the screening analysis of bioengineered food samples.  相似文献   

14.
In electrochemical DNA hybridization assays target or probe DNAs end-labeled with electroactive compounds have been frequently used. We show that multiple osmium labels yielding faradaic (at carbon or mercury electrodes) and catalytic signals (at mercury electrodes) can be easily covalently bound to DNA molecules. We use (GAA)(7) (T)(n) oligodeoxynucleotides (ODNs) with n ranging between 5 and 50. (T)(n) tails are selectively modified with osmium tetroxide,2,2'-bipyridine leaving the (GAA)(7) repeat intact for the DNA hybridization. These ODNs are applied as reporter probes (RP's) in DNA hybridization double-surface (DS) assay using magnetic beads for the DNA hybridization and pyrolytic graphite (PGE) or hanging mercury drop (HMDE) electrodes for the electrochemical detection. We show that in difference to the usual single-surface methods (where the RP has to be bound to target DNA near to the surface to communicate with the electrode) in the DS assay the RP can be bound to DNA regardless of its position and can used for the determination of the length of DNA repetitive sequences. Several fmols or about a hundred of amol of a RP with osmium-labeled (T)(50) tail can be detected at PGE and HMDE, respectively, at 1-2 min accumulation time.  相似文献   

15.
This work describes the use of the combination of carbon black as an antibody label, a membrane-based immunochromatographic device, and a flatbed scanner as a quantitative test system. The scanner detected 0.4-345 ng carbon black/mm(2) on a nitrocellulose membrane (0.2-170 amol carbon black/mm(2)) with an imprecision (coefficient of variation, CV) lower than 2% for the carbon black determination and a detection limit of 0.04 ng carbon black/mm(2) (0.02 amol/mm(2)). The detection ability was compared to that obtained with alkaline phosphatase (ALP) using a substrate yielding a chemiluminescent signal (0.02 amol ALP/well), beta-galactosidase using a substrate yielding a fluorescent signal (0.3 amol beta-galactosidase/well), and horseradish peroxidase (HRP) using a substrate yielding a colored signal (5 amol HRP/microtiter well). The carbon black immunochromatographic test for immunoglobulin E (IgE) showed a detection limit of 0.13 pM IgE (0.01 kU/L) after a testing time of 10 min. The scanner detection imprecision for the IgE determination was 0.6% CV in the range 1-10 kU IgE/L when 2.3 mm(2) was used for detection and 1% CV when 0.19 mm(2) was used. A flatbed scanner is an inexpensive instrument with multiple uses, which now also includes the sensitive evaluation of immunoassays.  相似文献   

16.
We herein report a folding-based electrochemical DNA aptasensor for the detection of vascular endothelial growth factor (VEGF) directly in complex biological samples, including blood serum and whole blood. The electrochemical signal generation is coupled to a large, target-induced conformational change in a methylene blue-modified and surface immobilized anti-VEGF aptamer. The sensor is sensitive, selective and essentially reagentless: we can readily detect VEGF down to 5 pM (190 pg/mL) directly in 50% blood serum. Similar to other aptasensors of this class, the VEGF sensor is also regenerable and reusable. In addition, the sensor performs comparably well even when fabricated on a gold-plated screen-printed carbon electrode and can potentially be implemented as a cost-effective, single-use biosensor for diseases diagnosis and therapy monitoring. The exceptional sensitivity, selectivity, and reusability of this electrochemical aptasensor platform suggest it may be a promising strategy for a wide variety of sensing applications.  相似文献   

17.
A model utilizing 25 degree head-down tilt (HDT) and incorporated with chronic catheterization and renal micropuncture techniques in rats was employed to study alterations in renal function induced by HDT. Renal function and extracellular volume measurements were performed after 24 h, 4 days, and 7 days of HDT in conscious rats and compared with their own control measurements and to nontilted but similarly restrained rats. After 24 h HDT, glomerular filtration rate (GFR) increased 19 +/- 8% and renal plasma flow (RPF) increased 18 +/- 8% with increases in urine flow rate, Na+, and K+ excretion in conscious rats. These increases after 24 h were associated with an increase in extracellular volume of 16 +/- 3% (P less than 0.01). In the nontilted controls, there was a decrease in extracellular volume after 24 h of suspension. After 7 days of HDT, GFR was decreased by 7 +/- 1% (P less than 0.01), but RPF and extracellular fluid volume were not different from control values. However, RPF and GFR increased in the nontilted rats after 7 days. After 7 days of HDT renal micropuncture studies demonstrated that single-nephron filtration rate was also decreased from 43 +/- 2 to 31 +/- 3 nl/min (P less than 0.05) due solely to reductions in the glomerular ultrafiltration coefficient (0.11 +/- 0.01 to 0.07 +/- 0.01 nl.s-1 X mmHg-1, P less than 0.05). There was a dissociation between GFR and water and Na+ excretion at days 4 and 7 of HDT not observed in the nontilt restraint controls.  相似文献   

18.
The present work was aimed to evaluate the protective effects of alpha‐tocopherol (α‐toco) and/or Lactobacillus plantarum (LCB) against testicular atrophy induced by mercuric chloride (MCH). Rats were injected with 5 mg/kg MCH for 5 days consecutively, then treated with 100 mg/kg α‐toco and 6 × 1010 CFU 1.8701/kg LCB alone or together for 3 weeks. The MCH elevated serum TNF‐α, IL‐ 6, caspase‐3, and testicular malondialdehyde. However, serum testosterone, dehydroepiandrosterone, testicular messenger RNA of a steroidogenic acute regulatory protein, 17‐β‐hydroxysteroid dehydrogenase, 3β‐hydroxysteroid dehydrogenase, glutathione level, and superoxide dismutase activity were decreased. Protein expression of Nrf2 was downregulated whereas that of Bax and DNA fragmentation was upregulated in the testicular tissues. Treatment with α‐toco and LCB ameliorated the deviated biochemical parameters and improved tissue injury. It was concluded that the combination of LCB and α‐toco achieved promising results in the amelioration of MCH‐induced testicular atrophy. Nrf2, Bax expressions, and DNA fragmentation are involved in the testicular atrophy induced by MCH.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号