首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The corticotropin (ACTH) or cholera-toxin-induced cAMP production by cultured bovine adrenal cells increased progressively between days 0 and 7 of culture. Angiotensin II (A-II), which inhibited both basal and ACTH-stimulated adenylate cyclase of crude adrenal membranes, had no effect on ACTH-induced or cholera-toxin-induced cAMP production by fresh isolated cells (day 0) but progressively potentiated the stimulatory action of both effectors from day 0----1 to day 7 of culture. In contrast, phorbol ester had a potentiating effect on fresh isolated cells. Pretreatment of cells with pertussis toxin enhanced the potentiating effect of A-II on cells between 0 and 3 days of culture, but not after 7 days. ADP-ribosylation by cholera toxin (ribosylating alpha s proteins) or pertussis toxin (alpha i proteins), of adrenal membranes prepared from fresh isolated or cultured cells revealed an increase in alpha s and a dramatic decrease in alpha i, the ratios alpha i/alpha s on days 0, 3 and 7 of culture were 4, 0.6 and 0.1 respectively. These results indicate that (a) A-II had a double effect on ACTH-induced or cholera-toxin-induced cAMP production: one inhibitory mediated by Gi, the other stimulatory mediated by protein kinase C activation; this could explain the lack of apparent effect of A-II on fresh cells; (b) the progressive decrease of alpha i might be responsible for the appearance of the potentiating effect of A-II whereas the progressive increase of alpha s could explain the enhanced responsiveness to ACTH or cholera toxin of cultured cells.  相似文献   

2.
We studied the effect of activation of protein kinase C (PKC) by a phorbol ester on cAMP accumulation in fetal rat osteoblasts. Activation of PKC by phorbol 12-myristate 13-acetate (PMA) caused a potentiation of cAMP accumulation induced by parathyroid hormone (PTH), forskolin, and cholera toxin. The results suggest that the potentiating effect of PMA on PTH-induced cAMP accumulation was not due to an effect on the PTH-receptor nor to an effect on cAMP degradation, as the effect of PMA persisted in the presence of a phosphodiesterase inhibitor. Pretreatment of the cells with pertussis toxin did not prevent the action of PMA, indicating that PMA does not act via the inhibitory G-protein. PMA had a biphasic effect on prostaglandin E2 (PGE2)-induced cAMP accumulation; i.e., at concentrations greater than or equal to 10(-6) M, PMA potentiated the PGE2-induced cAMP response but PMA attenuated cAMP accumulation induced by concentrations of PGE2 less than or equal to 5.10(77) M. From our data we conclude that PKC can interact with a stimulated cAMP pathway in a stimulatory and inhibitory manner. Potentiation of cAMP accumulation is probably due to modification of the adenylate cyclase complex, whereas attenuation of stimulated cAMP accumulation appears to be due to an effect on a different site of the cAMP generating pathway, which may be specific to PGE2-induced cAMP accumulation.  相似文献   

3.
Neurotensin, bradykinin and somatostatin inhibited in a time- and concentration-dependent manner prostaglandin E1- or forskolin-stimulated cAMP production in neuroblastoma N1E115 cells. Cell treatment with 1 microgram/ml pertussis toxin for 6 hours reversed the inhibition elicited by peptides after short incubation periods (less than or equal to 1 min) but, in contrast, had no effect after longer incubation periods (greater than or equal to 3 min). Fluoroaluminate also inhibited prostaglandin E1-stimulated cAMP production in N1E115 cells, and this effect was not reversed by pertussis toxin. The 6 hour treatment with pertussis toxin was shown to be sufficient to ADP ribosylate virtually all of the 41 kD protein substrate corresponding to the alpha subunit of Gi. Protein kinase C activation with phorbol ester did not inhibit basal or stimulated cAMP production. Our data point to the existence of both pertussis toxin sensitive and insensitive mechanisms of neuropeptide-mediated inhibition of cAMP formation in N1E115 cells. The toxin insensitive response is not mediated by protein kinase C. The possibility is discussed that it results from the activation of a pertussis toxin insensitive G protein.  相似文献   

4.
Although the corpus luteum (CL) is not known as a target tissue for thyrotropin (TSH), this hormone increases progesterone production by porcine luteal cells cultured in vitro. In this study we investigated the optimal conditions for TSH-stimulated progesterone secretion as well as the involvement of protein kinase A (PKA) and protein kinase C (PKC) in the mechanism of TSH action on porcine luteal cells. To study the PKA and PKC signaling mechanisms, luteal cells collected from mature CL were incubated with the inhibitor of PKA and potent activators of both kinases: PKA-forskolin and PKC-phorbol ester 12-myriistate-13-acetate (PMA). The PKA inhibitor totally suppressed progesterone production in TSH alone, forskolin alone and in TSH plus forskolin-stimulated luteal cells. Forskolin increased basal (P < 0.05) and TSH-stimulated (P < 0.05) progesterone secretion and cAMP accumulation (P < 0.05). Forskolin and PMA added together to control (non-TSH-treated) luteal cells had an additive effect on progesterone production. In TSH-treated cells, the effect of PMA was statistically significant but did not show an additive effect with forskolin. Further PMA did not affect cAMP accumulation in control and TSH-treated luteal cells. Treatment of control and TSH-treated luteal cells with forskolin and PMA together showed the same increase in cAMP accumulation as with forskolin alone. This is the first demonstration that TSH acts on luteal cell steroidogenesis by activation of the cAMP/PKA second messenger system and also that the PKC signaling pathway may be involved in luteal TSH action on the corpus luteum.  相似文献   

5.
The effect of Angiotensin II (AII) on ACTH-induced cyclic AMP production was studied in bovine adrenocortical cells cultured in a chemically defined serum-free medium. Immediately after collagenase dispersion, AII did not modify either the basal or the ACTH-induced cAMP production by the isolated cells. During cell culture, AII alone did not affect cAMP production. But 2 days after plating, AII increased significantly the ACTH-induced cAMP production by the culture. This potentiating effect increased with the age of culture. Sar1Ala8AII (Saralasin), a potent AII antagonist, inhibited the AII potentiating effect indicating an AII specific action.  相似文献   

6.
Using primary cultures of striatal neurones from the mouse embryo, we showed that treatment of intact cells with cholera toxin (5 micrograms/ml, 22 h) decreases the subsequent ADP-ribosylation of the alpha subunit of the guanine-nucleotide-binding regulatory protein Go (Go alpha) and the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory protein (Gi alpha) of adenylate cyclase, which is catalyzed in vitro on neuronal membranes by pertussis toxin. The inhibitory effect of cholera toxin could not only be attributed to an increased production of cAMP in neurones. Treatment of cells with 0.1 microM 8-bromoadenosine 3',5'-(cyclic)phosphate (BrcAMP) for 16 h, or with 0.1 mM BrcAMP for 5 min, mimicked the effect of cholera toxin on the ADP-ribosylation of Go alpha and Gi alpha in vitro. However, the two agents seem to act through distinct mechanisms. The protein kinase inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine prevented the action of Br8cAMP but not that of cholera toxin. In addition, measurements of the pI of the Go alpha deduced from immunoblots of two-dimensional gels performed using a specific antibody directed against Go alpha suggest that treatment of neurones with cholera toxin induces ADP-ribosylation of Go alpha in intact cells, while BrcAMP does not.  相似文献   

7.
Cells of the Y-1 corticoadrenal line are: (a) functional, (b) cell cycle-arrested by adrenocorticotropic hormone (ACTH), (c) tumorigenic, and (d) c-Ki-ras overexpressing. We here report that the phorbol ester phorbol 12-myristate 13-acetate (PMA) mimics all ACTH-specific effects in Y-1 cells, namely: (a) steroid-ogenesis stimulation, (b) cell cycle block, and (c) cell shape change. In addition, both ACTH and PMA caused a rapid and transient induction of the c-fos proto-oncogene while having no effect on c-Ki-ras mRNA steady state levels. Dibutyryl cAMP, known to elicit ACTH effects in Y-1 cells, was a poor inducer of the c-fos gene. PMA pretreatment rendered Y-1 cells unresponsive to ACTH. These results suggest that protein kinase C is likely to be involved in the mechanisms of action of ACTH.  相似文献   

8.
Basic fibroblast growth factor (FGF) has no effect alone on the basal cAMP synthesis in Chinese hamster fibroblasts (CCL39) but it potentiates (by up to 50%) the stimulation of adenylate cyclase by prostaglandin E1, cholera toxin or forskolin. This potentiating effect is not abolished by pretreatment of the cells with pertussis toxin, which indicates that it is not due to the withdrawal of a tonic inhibition of adenylate cyclase by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi). Therefore, we conclude that FGF enhances the activation of adenylate cyclase by the stimulatory GTP-binding protein (Gs). Although activation of protein kinase C in CCL39 cells results in a similar potentiation of cAMP production, we provide evidence that the effect of FGF is not mediated by protein kinase C, since (1) the potentiating effects of FGF and phorbol esters are additive and (2) FGF effect persists after down-regulation of protein kinase C. A role of FGF-induced rise in cytoplasmic Ca2+ can also be ruled out because the FGF effect is not mimicked by a Ca2+ ionophore and it persists in Ca2(+)-free medium. Since a similar potentiating effect on cAMP production is elicited by epidermal growth factor, a mitogen known to activate a receptor tyrosine kinase, we suggest that the FGF effect on adenylate cyclase might be mediated by the tyrosine kinase activity that is very likely to be associated with FGF receptors.  相似文献   

9.
We studied the action of the alpha 2 adrenergic agonist adrenaline on the platelet responses evoked by the activation of protein kinase C or by the ionophore induced increase of cytosolic Ca2+. Both the phorbol ester and ionomycin-induced aggregation are strongly potentiated by adrenaline which per se does not behave as an activating agonist. The potentiation by adrenaline is observed both when added before and after the aggregating agent; in the latter case the effect increases on increasing the delay of adrenaline addition. Adrenaline also reverses the inhibition by cAMP of the PMA (or ionomycin) induced aggregation. It also has a strong potentiating effect (over 100%) on the phorbol ester induced ATP secretion and a weaker effect on the secretion induced by ionomycin. The effect on secretion is visible only when adrenaline is added prior to the stimulus. The inhibition by cAMP of the PMA or ionomycin induced secretion is also counteracted by adrenaline. In no case adrenaline modifies the pattern of platelet phosphoproteins. Ionomycin induces some platelet aggregation also in the presence of the protein kinase inhibitor staurosporine; also this phosphoprotein independent aggregation is strongly stimulated by adrenaline.  相似文献   

10.
The capacity of PGE2 to inhibit human T cell responses was examined by investigating its effect on mitogen-induced IL-2 production and proliferation of highly purified CD4+ T cells. PGE2 inhibited both PHA and anti-CD3 induced proliferation and IL-2 production by an action directly on the responding T cell. Inhibition of IL-2 production reflected decreased accumulation of mRNA for IL-2. A variety of other cAMP elevating agents exerted similar inhibitory effects. Inhibition of proliferation could be overcome by supplemental IL-2, PMA, or the anti-CD28 mAb 9.3. Although PMA and 9.3 markedly increased the amount of IL-2 produced by mitogen-stimulated T cells, the percentage inhibition of IL-2 secretion caused by PGE2 and other cAMP elevating agents remained comparable in these costimulated cultures. Rescue of T cell DNA synthesis by these agents appeared to reflect the finding that, although PGE2 markedly inhibited IL-2 production, the absolute amount of IL-2 produced was increased sufficiently to sustain mitogen-induced proliferation. As anticipated, PGE2, forskolin, and cholera toxin increased T cell cAMP levels. The quantity of cellular cAMP generated in response to PGE2, cholera toxin, and forskolin could be inhibited by PMA or 2',5'-dideoxyadenosine. Using these reagents, the inhibitory effects of PGE2 were found to reflect intracellular cAMP levels, but only within a very narrow range. The results indicate that by elevating cAMP levels, PGE2 inhibits human T cell IL-2 production at a point that is common to both the CD3 and CD28 signaling pathways.  相似文献   

11.
HL60 and EL4 cells incubated with tumor necrosis factor-alpha (TNF-alpha) plus staurosporin, a potent inhibitor of protein kinases, showed at least 2-fold increased levels of nuclear factor-kappa B (NF-kappa B) activity compared with TNF-alpha alone both during rapid NF-kappa B activation from the cytosolic pool and protein synthesis-dependent NF-kappa B activation. NF-kappa B activation by phorbol 12-myristate 13-acetate (PMA) and interleukin-1 was inhibited by staurosporin. Staurosporin treatment hardly affected the TNF-alpha-induced increase in mRNA for the p51 subunit of NF-kappa B but interfered with any phorbol ester (PMA)-induced increase in p51 mRNA. Thus, induction of NF-kappa B and p51 mRNA by TNF-alpha was not mediated by a staurosporin-sensitive factor, but NF-kappa B activation by TNF-alpha was even reduced by action of a staurosporin-sensitive factor. Decreased levels of phosphorylation of TNF-R alpha (TNF receptor type alpha) after staurosporin-treatment correlated with increased induction of NF-kappa B by TNF-alpha. Staurosporin-treatment did not affect TNF-R levels. Although protein kinase C stimulation by PMA inhibited NF-kappa B activation by TNF-alpha, its action mechanism may be different from that of the staurosporin-sensitive factor. PMA induced disappearance of TNF-R alpha by shedding into the surrounding medium, with kinetics similar to those of its inhibition of NF-kappa B activation by TNF-alpha. Phosphorylation may not mediate receptor shedding, since PMA treatment did not detectably affect TNF-R alpha phosphorylation.  相似文献   

12.
The aim of the present study was to assess whether glucocorticoids could be directly involved in the maturation of adrenocortical cells from 120-138 days old ovine fetuses. The cAMP response to ACTH1-24 of cells cultured for 24 hours in the presence of ACTH1-24 was 2 fold higher than that of control cells. However, the response of cells cultured in the presence of ACTH1-24 plus metyrapone or aminoglutethimide was lower than that of cells cultured in the presence of ACTH1-24 alone. Cells cultured for 48 hours in the presence of dexamethasone or cortisol released more cAMP than control cells when stimulated by ACTH1-24, but not in response to forskolin. However corticosteroid production stimulated by ACTH1-24, forskolin or dibutyryl cAMP was enhanced by dexamethasone treatment. These results suggest that glucocorticoids can affect the maturation of ovine fetal adrenocortical cells by an auto and/or a paracrine process, and that this effect is exerted, at least, at two different levels in the cell.  相似文献   

13.
Treatment of HT29 cells with the tumor promoting phorbol ester PMA resulted in an attenuation of VIP-stimulated cAMP production in intact cells and VIP-stimulated adenylate cyclase activity in cell membranes. PMA did not decrease the ability of cholera toxin and forskolin to elevate cAMP levels in intact cells. Fluoride-stimulated adenylate cyclase activity in HT29 cells homogenates was not affected by PMA. The maximal VIP binding capacity of homogenates prepared from HT29 cells treated with PMA was decreased by 50%. It is concluded that protein kinase C regulates VIP receptor function possibly through phosphorylation of the VIP receptor.  相似文献   

14.
The present study examined the effects of both insulin and insulin-like growth factor-I (IGF-I) on cell division and specific functions of cultured adrenocortical cells from 100- to 122-day-old ovine fetuses. When culture was performed in a serum-free medium containing transferrin and ascorbic acid, the number of cells increased only slightly (1.2-fold) over a 4-day period. Addition of insulin or IGF-I in the culture medium enhanced the number of cells counted on Day 5. The effect of both peptides was dose-dependent, but 10 ng/ml IGF-I was as potent as 10 micrograms/ml insulin. The acute cyclic adenosine 3',5'-monophosphate (cAMP) and steroidogenic responses to adrenocorticotropin (ACTH1-24) decreased in fetal cells cultured in the absence of insulin or ACTH. Insulin at micromolar concentrations not only prevented this decrease but enhanced the acute ACTH1-24-induced cAMP output on Day 5 over that observed on Day 2. Treatment of fetal cells for 4 days with increasing concentrations of insulin or IGF-I enhanced the acute cAMP and steroidogenic responses (3- to 4-fold) to ACTH1-24 over that of control cells. The ED50 of IGF-I was about 3 ng/ml (congruent to 0.4 nM) whereas that of insulin was about 10 ng/ml (1.7 nM). However, a second plateau was apparent at concentrations of insulin above 1 microgram/ml. The acute cholera toxin stimulation of cAMP production of cells cultured in the absence of insulin or ACTH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Preincubation of human platelets with activators of protein kinase C such as phorbol 12-myristate 13-acetate (PMA) has been shown previously to attenuate the ability of agonists both to suppress formation of cAMP and to stimulate hydrolysis of phosphoinositides. In the present study, we have examined whether the attenuation caused by PMA can be attributed to the phosphorylation of the alpha subunit(s) of Gi, a GTP-binding regulatory protein implicated in several pathways of signal transduction. PMA was found to promote the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with [gamma-32P]ATP and [32P]H3PO4, respectively. None of the phosphoproteins, however, was precipitated by either of two antisera containing antibodies differing in specificities for epitopes within Gi alpha, despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently described Gz alpha or both Gz alpha and Gi alpha, precipitated a 40-kDa phosphoprotein. Phosphorylation of this protein occurred not only in response to PMA, but to thrombin and the thromboxane A2 analog U46619. These data suggest that activators of protein kinase C lead to the phosphorylation within platelets of a select population of G alpha subunits. The identified phosphoprotein is not Gi alpha, but is similar or identical to Gz alpha. Because Gz alpha does not contain the consensus site for ADP-ribosylation by the Bordetella pertussis toxin islet-activating protein, the data also suggest that effects of PMA on processes otherwise sensitive to this toxin are not exerted at the level of G proteins responsible for transduction.  相似文献   

17.
Among the biochemical processes associated with the atherogenic process are increased aortic cholesteryl ester (CE) accumulation and altered prostaglandin (PG) production. The precise physiological role of PG, particularly prostacyclin (PGI2), in the control of CE metabolism in intact aortic smooth muscle cells remains to be fully elucidated. We report here that cytosolic neutral cholesteryl ester hydrolytic activity (NCEH) in intact cultured aortic smooth muscle cells is significantly increased by 75-250 nM PGI2 at the end of a 2-hr incubation period. The effect was mediated by increased intracellular cAMP levels since the effect of PGI2 on NCEH activity was abolished in the presence of an inhibitor of adenylate cyclase activity, viz., dideoxyadenosine (DDA0. Although the addition of 20-100 microM dibutyryl cAMP (Bt2cAMP) and 50-100 microM sodium arachidonate also increased NCEH activity twofold, 6-keto PGF1 alpha, PGE1, and PGE2 did not increase the activity of this enzyme. In contrast to these findings, 75-250 nM PGE2 significantly inhibited CE synthetic activity (ACAT) approximately 60%. Arachidonate or Bt2cAMP did not affect ACAT activity. This decrease in ACAT activity induced by PGE2 does not appear to be mediated by cAMP. Taken together, these findings suggest that PGI2, a well known potent vasodilator and inhibitor of platelet aggregation, and PGE2 may have an important regulatory role in aortic CE metabolism.  相似文献   

18.
Li HW  Geng QM  Zhang YY  Han QD 《生理学报》1998,50(3):349-354
本文探讨了α1a,α1b,α1d三种亚型肾上腺素受体激动时细胞内Ca62+浓度升高的信号转导途径。在稳定表达三亚型α1-AR的HEK293细胞2系中,用fura-2方法细胞内Ca^2+信号强弱的变化。结果显示,百日咳毒素对去甲肾上腺素激动三亚型α1-AR而引起的「Ca^2+」i升高无影响,U-73122和PMA明显抑制「Ca^2+」i升高.  相似文献   

19.
M Sekiya  E D Frohlich  F E Cole 《Life sciences》1991,48(11):1067-1073
In the present study, we investigated the effects of calmodulin, adenosine 5'-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) (a protein kinase C activator) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation. In conclusion, these results demonstrated that PMA (activated protein kinase C) inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.  相似文献   

20.
In quiescent rat thyroid (FRTL-5) cells, the B subunit of cholera toxin, which binds to cell surface ganglioside GM1 specifically, alone induced DNA synthesis and markedly enhanced that induced by insulin in serum-free medium. On the other hand, the B subunit inhibited DNA synthesis induced by thyrotropin (TSH). The B subunit did not activate adenylate cyclase and had no effect on the TSH-induced cyclic adenosine 3',5'-monophosphate (cAMP) production. Moreover, the B subunit inhibited DNA synthesis induced by dibutyryl cAMP (Bt2cAMP) or phorbol-12-myristate-13-acetate (PMA). These data demonstrate that the B subunit has both stimulatory and inhibitory effects on DNA synthesis in FRTL-5 cells depending on the presence of other growth factors and that these effects on cell proliferation by the interaction of the B subunit, possibly with cell surface ganglioside GM1, may involve a mechanism independent from the modulation of membrane receptor function through interaction with growth factor receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号