首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is the first de novo assembly and annotation of a complete mitochondrial genome in the Ericales order from the American cranberry (Vaccinium macrocarpon Ait.). Moreover, only four complete Asterid mitochondrial genomes have been made publicly available. The cranberry mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with relatively little repetitive sequences and DNA of plastid origin. The complete mitochondrial genome of cranberry was annotated obtaining a total of 34 genes classified based on their putative function, plus three ribosomal RNAs, and 17 transfer RNAs. Maternal organellar cranberry inheritance was inferred by analyzing gene variation in the cranberry mitochondria and plastid genomes. The annotation of cranberry mitochondrial genome revealed the presence of two copies of tRNA-Sec and a selenocysteine insertion sequence (SECIS) element which were lost in plants during evolution. This is the first report of a land plant possessing selenocysteine insertion machinery at the sequence level.  相似文献   

2.
Known eukaryotic selenocysteine (Sec)-containing proteins are animal proteins, whereas selenoproteins have not been found in yeast and plants. Surprisingly, we detected selenoproteins in a member of the plant kingdom, Chlamydomonas reinhardtii, and directly identified two of them as phospholipid hydroperoxide glutathione peroxidase and selenoprotein W homologs. Moreover, a selenocysteyl-tRNA was isolated that recognized specifically the Sec codon UGA. Subsequent gene cloning and bioinformatics analyses identified eight additional selenoproteins, including methionine-S-sulfoxide reductase, a selenoprotein specific to Chlamydomonas: Chlamydomonas selenoprotein genes contained selenocysteine insertion sequence (SECIS) elements that were similar, but not identical, to those of animals. These SECIS elements could direct selenoprotein synthesis in mammalian cells, indicating a common origin of plant and animal Sec insertion systems. We found that selenium is required for optimal growth of Chlamydomonas: Finally, evolutionary analyses suggested that selenoproteins present in Chlamydomonas and animals evolved early, and were independently lost in land plants, yeast and some animals.  相似文献   

3.
Thioredoxin reductase (TR) and thioredoxin constitute a major cellular redox system present in all organisms. In contrast to a single form of thioredoxin, there are two TR types: One (bacterial type or small TR) is present in bacteria, archaea, plants, and most unicellular eukaryotes, whereas the second (animal or large TR) is only found in animals and typically contains a carboxy-terminal penultimate selenocysteine encoded by TGA. Surprisingly, we detected sequences of large TRs in various unicellular eukaryotes. Moreover, green algae Chlamydomonas reinhardtii had both small and large TRs, with the latter being a selenoprotein, but no examples of horizontal gene transfer from animals to the green algae could be detected. In addition, phylogenetic analyses revealed that large TRs formed a subgroup of lower eukaryotic glutathione reductases (GRs). The data suggest that the large TR evolved in a lower eukaryote capable of selenocysteine insertion rather than in an animal. The enzyme appeared to evolve by a carboxy-terminal extension of GR such that the resulting carboxy-terminal glutathionelike peptide became an intramolecular substrate for GR and a reductant for thioredoxin. Subsequently, small TRs were lost in an organism that gave rise to animals, large TRs were lost in plants and fungi, and selenocysteine/cysteine replacements took place in some large TRs. Our data implicate carboxy-terminal extension of proteins as a general mechanism of evolution of new protein function.  相似文献   

4.
Eukaryotic selenocysteine (Sec) protein insertion machinery was thought to be restricted to animals, but the occurrence of both Sec-containing proteins and the Sec insertion system was recently found in Chlamydomonas reinhardtii, a member of the plant kingdom. Herein, we used RT-PCR to determine the sequence of C. reinhardtii Sec tRNA[Ser]Sec, the first non-animal eukaryotic Sec tRNA[Ser]Sec sequence. Like its animal counterpart, it is 90 nucleotides in length, is aminoacylated with serine by seryl-tRNA synthetase, and decodes specifically UGA. Evolutionary analyses of known Sec tRNAs identify the C. reinhardtii form as the most diverged eukaryotic Sec tRNA[Ser]Sec and reveal a common origin for this tRNA in bacteria, archaea, and eukaryotes.  相似文献   

5.
Selenocysteine is the 21th amino acid, which occurs in all kingdoms of life. Selenocysteine is encoded by the STOP-codon UGA. For its insertion, it requires a specific mRNA sequence downstream the UGA-codon that forms a hairpin like structure (called Sec insertion sequence (SECIS)). We consider the computational problem of generating new amino acid sequences containing selenocysteine. This requires to find an mRNA sequence that is similar to the SECIS-consensus, is able to form the secondary structure required for selenocysteine insertion, and whose translation is maximally similar to the original amino acid sequence. We show that the problem can be solved in linear time when considering the hairpin-like SECIS-structure (and, more generally, when considering a structure that does not contain pseudoknots).  相似文献   

6.
Selenoprotein synthesis in archaea   总被引:9,自引:0,他引:9  
The availability of the genome sequences from several archaea has facilitated the identification of the encoded selenoproteins and also of most of the components of the machinery for selenocysteine biosynthesis and insertion. Until now, selenoproteins have been identified solely in species of the genera Methanococcus (M.) and Methanopyrus. Apart from selenophosphate synthetase, they include only enzymes with a function in energy metabolism. Like in bacteria and eukarya, selenocysteine insertion is directed by a UGA codon in the mRNA and involves the action of a specific tRNA and of selenophosphate as the selenium donor. Major differences to the bacterial system, however, are that no homolog for the bacterial selenocysteine synthase was found and, especially, that the SECIS element of the mRNA is positioned in the 3' nontranslated region. The characterisation of a homolog for the bacterial SelB protein showed that it does not bind to the SECIS element necessitating the activity of at least a second protein. The use of the genetic system of M. maripaludis allowed the heterologous expression of a selenoprotein gene from M. jannaschii and will facilitate the elucidation of the mechanism of the selenocysteine insertion process in the future.  相似文献   

7.
In eukaryotes, the specific cotranslational insertion of selenocysteine at UGA codons requires the presence of a secondary structural motif in the 3' untranslated region of the selenoprotein mRNA. This selenocysteine insertion sequence (SECIS) element is predicted to form a hairpin and contains three regions of sequence invariance that are thought to interact with a specific protein or proteins. Specificity of RNA-binding protein recognition of cognate RNAs is usually characterized by the ability of the protein to recognize and distinguish between a consensus binding site and sequences containing mutations to highly conserved positions in the consensus sequence. Using a functional assay for the ability of wild-type and mutant SECIS elements to direct cotranslational selenocysteine incorporation, we have investigated the relative contributions of individual invariant nucleotides to SECIS element function. We report the novel finding that, for this consensus RNA motif, mutations at the invariant nucleotides are tolerated to different degrees in different elements, depending on the identity of a single nonconserved nucleotide. Further, we demonstrate that the sequences adjacent to the minimal element, although not required for function, can affect function through their propensity to base pair. These findings shed light on the specific structure these conserved sequences may form within the element. This information is crucial to the design of strategies for the identification of SECIS-binding proteins, and hence the elucidation of the mechanism of selenocysteine incorporation in eukaryotes.  相似文献   

8.
The gene encoding the selenoprotein A component of glycine reductase was isolated from Clostridium purinolyticum. The nucleotide sequence of this gene (grdA) was determined. The opal termination codon (TGA) was found in-frame at the position corresponding to the location of the selenocysteine residue in the gene product. A comparison of the nucleotide sequences and secondary mRNA structures corresponding to the selenoprotein A gene and the fdhF gene of Escherichia coli formate dehydrogenase shows that there is a similar potential for regulation of the specific insertion of selenocysteine at the UGA codon.  相似文献   

9.
The translational recoding of UGA as selenocysteine (Sec) is directed by a SECIS element in the 3' untranslated region (UTR) of eukaryotic selenoprotein mRNAs. The selenocysteine insertion sequence (SECIS) contains two essential tandem sheared G.A pairs that bind SECIS-binding protein 2 (SBP2), which recruits a selenocysteine-specific elongation factor and Sec-tRNA(Sec) to the ribosome. Here we show that ribosomal protein L30 is a component of the eukaryotic selenocysteine recoding machinery. L30 binds SECIS elements in vitro and in vivo, stimulates UGA recoding in transfected cells and competes with SBP2 for SECIS binding. Magnesium, known to induce a kink-turn in RNAs that contain two tandem G.A pairs, decreases the SBP2-SECIS complex in favor of the L30-SECIS interaction. We propose a model in which SBP2 and L30 carry out different functions in the UGA recoding mechanism, with the SECIS acting as a molecular switch upon protein binding.  相似文献   

10.
Recoding of UGA from a stop codon to selenocysteine poses a dilemma for the protein translation machinery. In eukaryotes, two factors that are crucial to this recoding process are the mRNA binding protein of the Sec insertion sequence, SBP2, and the specialized elongation factor, EFsec. We sought to determine the subcellular localization of these selenoprotein synthesis factors in mammalian cells and thus gain insight into how selenoprotein mRNAs might circumvent nonsense-mediated decay. Intriguingly, both EFsec and SBP2 localization differed depending on the cell line but significant colocalization of the two proteins was observed in cells where SBP2 levels were detectable. We identify functional nuclear localization and export signals in both proteins, demonstrate that SBP2 undergoes nucleocytoplasmic shuttling, and provide evidence that SBP2 levels and localization may influence EFsec localization. Our results suggest a mechanism for the nuclear assembly of the selenocysteine incorporation machinery that could allow selenoprotein mRNAs to circumvent nonsense-mediated decay, thus providing new insights into the mechanism of selenoprotein translation.  相似文献   

11.
The UGA codon context of the Escherichia coli fdhF mRNA includes an element called the selenocysteine insertion sequence (SECIS) that is responsible for the UGA-directed incorporation of the amino acid selenocysteine into a protein. Here, we describe an extended fdhF SECIS that includes the information for an additional function: the prevention of UGA readthrough under conditions of selenium deficiency. This information is contained in a short mRNA region consisting of a single C residue adjacent to the UGA on its downstream side, and an additional segment consisting of the six nucleotides immediately upstream from it. These two regions act independently and additively, and probably through different mechanisms. The single C residue acts as itself; the upstream region acts at the level of the two amino acids, arginine and valine, for which it codes. These two codons at the 5' side of the UGA correspond to the ribosomal E and P sites. Here, we present a model for the E. coli fdhF SECIS as a multifunctional RNA structure containing three functional elements. Depending on the availability of selenium, the SECIS enables one of two alternatives for the translational machinery: either selenocysteine incorporation into a polypeptide or termination of the polypeptide chain.  相似文献   

12.
13.
Incorporation of the 21st amino acid, selenocysteine, into proteins is specified in all three domains of life by dynamic translational redefinition of UGA codons. In eukarya and archaea, selenocysteine insertion requires a cis-acting selenocysteine insertion sequence (SECIS) usually located in the 3'UTR of selenoprotein mRNAs. Here we present comparative sequence analysis and experimental data supporting the presence of a second stop codon redefinition element located adjacent to a selenocysteine-encoding UGA codon in the eukaryal gene, SEPN1. This element is sufficient to stimulate high-level (6%) translational redefinition of the SEPN1 UGA codon in human cells. Readthrough levels further increased to 12% when tested in the presence of the SEPN1 3'UTR SECIS. Directed mutagenesis and phylogeny of the sequence context strongly supports the importance of a stem loop starting six nucleotides 3' of the UGA codon. Sequences capable of forming strong RNA structures were also identified 3' adjacent to, or near, selenocysteine-encoding UGA codons in the Sps2, SelH, SelO, and SelT selenoprotein genes.  相似文献   

14.
Mammalian selenium-containing proteins identified thus far contain selenium in the form of a selenocysteine residue encoded by UGA. These proteins lack common amino acid sequence motifs, but 3'-untranslated regions of selenoprotein genes contain a common stem-loop structure, selenocysteine insertion sequence (SECIS) element, that is necessary for decoding UGA as selenocysteine rather than a stop signal. We describe here a computer program, SECISearch, that identifies mammalian selenoprotein genes by recognizing SECIS elements on the basis of their primary and secondary structures and free energy requirements. When SECISearch was applied to search human dbEST, two new mammalian selenoproteins, designated SelT and SelR, were identified. We determined their cDNA sequences and expressed them in a monkey cell line as fusion proteins with a green fluorescent protein. Incorporation of selenium into new proteins was confirmed by metabolic labeling with (75)Se, and expression of SelT was additionally documented in immunoblot assays. SelT and SelR did not have homology to previously characterized proteins, but their putative homologs were detected in various organisms. SelR homologs were present in every organism characterized by complete genome sequencing. The data suggest applicability of SECISearch for identification of new selenoprotein genes in nucleotide data bases.  相似文献   

15.
Lescure A  Allmang C  Yamada K  Carbon P  Krol A 《Gene》2002,291(1-2):279-285
Selenocysteine and selenoprotein synthesis require a complex molecular machinery in mammals. Among the key players is the RNA-protein complex formed by the selenocysteine insertion sequence (SECIS) binding protein (SBP2) and the SECIS element, an RNA hairpin in the 3' untranslated regions of selenoprotein messenger RNAs (mRNAs). We have isolated the DNA complementary to mRNA of the human SBP2, enabling us to establish that it differs from a previously reported human SBP2-like protein. Examination of the expression pattern revealed that the human SBP2 protein is encoded by a 4 kb long mRNA that is over-expressed in testis. Compared to the rat SBP2 sequence, the human SBP2 protein displays two highly conserved domains with 92 and 95% amino acid identity, the latter one containing the RNA binding domain. The inter-domain section carries 55% sequence identity, the remainder of the SBP2 sequences showing about 65% identity, values lower than expected for two mammalian proteins. Interestingly, we could show that the binding of human SBP2 to the SECIS RNA is stimulated by the selenoprotein-specialized elongation translation factor mSelB/eEFsec.  相似文献   

16.
17.
In bacteria, UGA stop codons can be recoded to direct the incorporation of selenocysteine into proteins on the ribosome. Recoding requires a selenocysteine incorporation sequence (SECIS) downstream of the UGA codon, a specialized translation factor SelB, and the non-canonical Sec-tRNASec, which is formed from Ser-tRNASec by selenocysteine synthase, SelA, using selenophosphate as selenium donor. Here we describe a rapid-kinetics approach to study the mechanism of selenocysteine insertion into proteins on the ribosome. Labeling of SelB, Sec-tRNASec and other components of the translational machinery allows direct observation of the formation or dissociation of complexes by monitoring changes in the fluorescence of single dyes or fluorescence resonance energy transfer between two fluorophores. Furthermore, the structure of SelA was studied by electron cryomicroscopy (cryo-EM). We report that intact SelA from the thermophilic bacterium Moorella thermoacetica (mthSelA) can be vitrified for cryo-EM using a controlled-environment vitrification system. Two-dimensional image analysis of vitrified mthSelA images shows that SelA can adopt the wide range of orientations required for high-resolution structure determination by cryo-EM. The results indicate that mthSelA forms a homodecamer that has a ring-like structure with five bilobed wings, similar to the structure of the E. coli complex determined previously.  相似文献   

18.
Translation of UGA as selenocysteine requires specific RNA secondary structures in the mRNAs of selenoproteins. These elements differ in sequence, structure, and location in the mRNA, that is, coding versus 3' untranslated region, in prokaryotes, eukaryotes, and archaea. Analyses of eukaryotic selenocysteine insertion sequence (SECIS) elements via computer folding programs, mutagenesis studies, and chemical and enzymatic probing has led to the derivation of a predicted consensus structural model for these elements. This model consists of a stem-loop or hairpin, with conserved nucleotides in the loop and in a non-Watson-Crick motif at the base of the stem. However, the sequences of a number of SECIS elements predict that they would diverge from the consensus structure in the loop region. Using site-directed mutagenesis to introduce mutations predicted to either disrupt or restore structure, or to manipulate loop size or stem length, we show that eukaryotic SECIS elements fall into two distinct classes, termed forms 1 and 2. Form 2 elements have additional secondary structures not present in form 1 elements. By either insertion or deletion of the sequences and structures distinguishing the two classes of elements while maintaining appropriate loop size, conversion of a form 1 element to a functional form 2-like element and of a form 2 to a functional form 1-like element was achieved. These results suggest commonality of function of the two classes. The information obtained regarding the existence of two classes of SECIS elements and the tolerances for manipulations of stem length and loop size should facilitate designing RNA molecules for obtaining high-resolution structural information about these elements.  相似文献   

19.
To investigate the stringency of the Escherichia coli selenocysteine insertion sequence (SECIS) requirements, libraries of SECIS variants were screened via a novel method in which suppression of the selenocysteine (Sec) opal codon was coupled to bacteriophage plaque formation. The SECIS variant libraries were designed with a mostly paired lower stem, so that randomization could be focused on the upper stem and loop regions. We identified 19 functional non-native SECIS sequences that violated the expected pairing requirements for the SECIS upper stem. All of the SECIS variants were shown to permit Sec insertion in phage (by chemical modification of the Sec residue) and fused to lacZα (by β-galactosidase assay). The diminished pairing of the upper stem appears to be mitigated by the overall stem stability; a given upper stem variant has significantly higher readthrough in the context of a paired, rather than unpaired, lower stem. These results suggest an unexpected downstream sequence flexibility in prokaryotic selenoprotein expression.  相似文献   

20.
In prokaryotes, the recoding of a UGA stop codon as a selenocysteine codon requires a special elongation factor (EF) SelB and a stem-loop structure within the mRNA called a selenocysteine insertion sequence (SECIS). Here, we used NMR spectroscopy to determine the solution structure of the SECIS mRNA hairpin and characterized its interaction with the mRNA-binding domain of SelB. Our structural and biochemical data identified the conserved structural features important for binding to EF SelB within different SECIS RNA sequences. In the free SECIS mRNA structure, conserved nucleotides are strongly exposed for recognition by SelB. Binding of the C-terminal domain of SelB stabilizes the RNA secondary structure. In the protein-RNA complex, a Watson-Crick loop base-pair leaves a GpU sequence accessible for SelB recognition. This GpU sequence at the tip of the capping tetraloop and a bulge uracil five Watson-Crick base-pairs apart from the GpU are essential for interaction with SelB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号