首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Molt phenology plays an important role in the annual cycles and energetic budgets of migratory birds. The timing and sequence of molt of Nearctic‐Neotropical migratory passerines is generally known for species that undergo a complete prebasic molt on or near the breeding grounds. However, for the few passerine species such as Bobolinks (Dolichonyx oryzivorus) that undergo a complete prealternate molt, the phenology of this molt on the wintering grounds has received little attention. Most studies evaluate prebasic molt, often carried out in conjunction with a different set of competing energetic demands and under dramatically different conditions (e.g., climate and food availability). The prebasic molt of Bobolinks has been described based on limited museum collections, but the sequence and phenology of the prealternate molt have not been examined. We collected molt data from 242 Bobolinks captured from January to March in Bolivia (2005–2007) and Argentina (2008). We quantified prealternate molt sequence and used a maximum likelihood approach to estimate molt initiation date and duration. We used AIC model selection to evaluate the potential effects of region, year, and sex on prealternate molt phenology. Onset and duration of molt did not differ among years or between males and females. Estimated molt duration was 13 d longer at Bolivia sites than at sites 1200 km further southeast in Argentina, but molt duration in Argentina varied and the difference was not statistically significant. Molt sequence was consistent among populations, and showed only slight deviations from what has been previously reported for Bobolinks. Our results suggest that regional wintering populations of Bobolinks do not mix in a given year, and local factors such as climate and food availability may influence molt phenology.  相似文献   

2.
Molt strategies have received relatively little attention in current ornithology, and knowledge concerning the evolution, variability and extent of molt is sparse in many bird species. This is especially true for East Asian Locustella species where assumptions on molt patterns are based on incomplete information. We provide evidence indicating a complex postbreeding molt strategy and variable molt extent among the Pallas's Grasshopper Warbler Locustella certhiola, based on data from six ringing sites situated along its flyway from the breeding grounds to the wintering areas. Detailed study revealed for the first time that in most individuals wing feather molt proceeds from the center both toward the body and the wing‐tip, a molt pattern known as divergent molt (which is rare among Palearctic passerines). In the Russian Far East, where both breeding birds and passage migrants occur, a third of the adult birds were molting in late summer. In Central Siberia, at the northwestern limit of its distribution, adult individuals commenced their primary molt partly divergently and partly with unknown sequence. During migration in Mongolia, only descendantly (i.e., from the body toward the wing‐tip) molting birds were observed, while further south in Korea, Hong Kong, and Thailand the proportion of potential eccentric and divergent feather renewal was not identifiable since the renewed feathers were already fully grown as expected. We found an increase in the mean number of molted primaries during the progress of the autumn migration. Moderate body mass levels and low‐fat and muscle scores were observed in molting adult birds, without any remarkable increase in the later season. According to optimality models, we suggest that an extremely short season of high food abundance in tall grass habitats and a largely overland route allow autumn migration with low fuel loads combined with molt migration in at least a part of the population. This study highlights the importance of further studying molt strategy as well as stopover behavior decisions and the trade‐offs among migratory birds that are now facing a panoply of anthropogenic threats along their flyways.  相似文献   

3.
4.
Phenotypic quality may determine the development and expressionof secondary sexual characters. We studied the relationshipbetween molt and several measures of phenotypic quality in thesexually size-dimorphic barn swallow (Hirundo rustica) in itswinter quarters in Namibia. Males were in a more advanced stageof molt than females and juveniles, and the speed of molt asdetermined from the residual of the regression of the size ofthe gap in wings caused by missing and growing feathers on wingmolt score (residual wing raggedness) was also higher in malesthan in females and juveniles. Male barn swallows with longand symmetric tail feathers had a more advanced stage of moltand molted at a higher speed than males with short and asymmetrictails. Long-tailed females had a delayed molt, and females withasymmetric tails had less advanced molt and lower rates of feathergrowth than females with symmetric tails. Molt of secondariesin juveniles also appeared to be less advanced if they had longtails. Adult barn swallows molted their tail feathers in anirregular sequence with the longest, outermost tail featherusually replaced before the second or the third outermost feathers.Good body condition was positively associated with a high moltscore for some feather tracts and a rapid wing molt in adultfemales and tail molt in juveniles. Mallophaga were only weaklynegatively associated with primary and secondary molt scorein adult females and speed of wing molt in adult males. In conclusion,phenotypic quality of adult male barn swallows as reflectedby the expression of their secondary sexual character duringthe previous molt reliably reflected stage and speed of currentmolt.  相似文献   

5.
The scheduling of molt in migratory birds   总被引:2,自引:0,他引:2  
Summary We model the yearly cycle of small migratory birds to explain the variation in scheduling of complete molt, in particular why some birds molt immediately after breeding on the breeding grounds (summer molt) whereas others migrate to their wintering grounds before molt is initiated (winter molt). We employ the method of dynamic programming, because of its suitability for modelling life history traits. Feather quality and latitude entered the model as state variables and were assumed to affect survival rate and reproductive success. Migration and molt were assumed to be associated with increased mortality risks. By changing the parameters in the model we were able to generate most existing molt patterns, including summer and winter molt, biannual (summer and winter) molt, and molt migration. Our model suggests that the scheduling of molt is basically a result of a trade-off between having a high feather quality during breeding versus during the non-breeding period. A high impact of feather quality on survival rate in combination with low costs of molt resulted in biannual molt. Winter molt became more likely as the survival rateper se increased. A low seasonal amplitude in survival rate is a prerequisite for the occurrence of molt migration. Molt duration, migration costs and reproductive successper se were found to have no impact on the timing of molt. We also investigated the effect of benefits from prior occupancy at breeding and winter grounds.  相似文献   

6.
Baseline and stress-induced corticosterone (CORT), heart rate (fH), and energy expenditure were measured in eight captive European starlings Sturnus vulgaris during and following a prebasic molt. The fH and oxygen consumption (V O2 ) were measured simultaneously across a range of heart rates, and energy expenditure (kJ/d) was then calculated from data. Energy expenditure and fH were strongly and positively correlated in each individual. Baseline fH and energy expenditure were significantly higher during molt. Molting starlings expended 32% more energy over 24 h than nonmolting birds, with the most significant increase (60%) occurring at night, indicating a substantial energetic cost to molt. Furthermore, the cardiac and metabolic responses to stress during molt were different than during nonmolt. Birds were subjected to four different 30-min acute stressors. The fH and CORT responses to these stressors were generally lower during molt. Although restraint caused a 64% increase in daily energy expenditure during nonmolt, no other stressor caused a significant increase in energy expenditure. Overall, our data suggest that molt is not only energetically expensive but that it also alters multiple stress response pathways. Furthermore, most acute stressors do not appear to require a significant increase in energy expenditure.  相似文献   

7.
Because growth of new hairs entails energetic costs, individual condition and access to food should determine the timing of molt. Previous studies on the timing of molt in ungulates have mostly focused on the influence of age class and reproductive status, but the effects of body condition and environmental phenology have not been evaluated. Our goal was to assess how intrinsic traits and environmental conditions determine the timing of winter coat shedding in a mountain goat population monitored for 27 years. The date of molt completion followed a U shape with age, suggesting that senescence occurs in terms of the molting process in mountain goats. Juveniles of both sexes delayed molting in a similar fashion, but molt timing differed between sexes during adulthood. Males molted progressively earlier until reaching age when reproduction peaked, after which they started delaying molting again. Females reached earliest molt dates at age of first reproduction and then progressively delayed molt date. Lactating females molted 10 days later than barren females on average, but this only occurred in females in good condition. Thus, although it has been shown that reproduction delays molt in ungulates, our results indicate that body condition can override this effect. Overall, our results revealed that access to both extrinsic and intrinsic resources is one of the key mechanisms driving molting processes in a mammalian herbivore.  相似文献   

8.
ABSTRACT In some passerines, the extent of preformative molt varies among individuals. Wrentits (Chamaea fasciata) undergo either a complete preformative molt or an eccentric (i.e., incomplete) preformative molt where some juvenile remiges are retained through the first cycle. Factors that influence the incidence and extent of molt are largely unknown. Using a 10‐yr data set from the Palomarin Field Station in central coastal California, we quantified the incidence of eccentric molt and the degree to which variation in the incidence was associated with fledging date and weather. From 1999 to 2009, 159 Wrentits were banded as nestlings and subsequently recaptured. Of these, 21% of first‐year Wrentits underwent eccentric molt. We used logistic regression and an information theoretic approach to compare models with fledging date, weather (annual precipitation and breeding‐season temperature), and a random effect of year as predictors of the incidence of eccentric molt. Our top model included a random intercept term for year and a fixed effect for the effect of fledging date; birds that fledged later in the season were more likely to undergo eccentric molt. Although the proportion of individuals that underwent eccentric molt varied among years, models with breeding‐season temperature and annual rainfall showed little to no support. Our results suggest that the incidence of eccentric molt is more strongly associated with fledging date than with annual variation in weather. The absence of a correlation with weather suggests that weather does not impose an energetic constraint on molt or, if it does, that birds are constrained in their ability to respond to changes in weather by adjusting the extent of their preformative molt. Other factors, such as nestling condition, may provide alternative explanations for year‐to‐year variability in the incidence of eccentric molt.  相似文献   

9.
The onset of molting in all stages of Hemicycliophora arenaria was preceded by the appearance of numerous, discrete globular structures which were termed "molting bodies" because they were present in the hypodermis only during the production of the new cuticle. In all parasitic stages the molt commenced with the separation of the cuticle from the hypodermis from which the new sheath and cuticle were differentiated. Following completion of the new sheath and cuticle most of the old outer covering was apparently absorbed before ecdysis. Electronmicrographs of body wall cross sections in molting L4 male specimens revealed the final molt to be a double molt in which an additional sixth cuticle was produced. Since both a new sheath and cuticle were produced during the molt of each stage, the sheath must be considered as an integral part of the cuticle and not as a residual cuticle or the result of an incomplete additional molt. Molting in Aphelenchus avenae and Hirschmanniella gracilis was less complex and "molting bodies" were not observed. After cuticle separation the hypodermis gave rise to a new trilaminate zone, the future cortex, and (later) the matrix and striated basal layers.  相似文献   

10.
Molt is energetically demanding and various molt strategies (i.e., molt series, duration, intensity, timing, and location) have evolved to reduce the negative fitness consequences of this process. As such, molt varies considerably among species. Identifying where and when specific feathers are molted is also crucial to inform species‐specific studies using stable isotope markers to assign individuals to geographical regions where they molt. Using museum specimens, we examined the molt of three species of migratory swallows in the Americas: Bank Swallows (Riparia riparia), Barn Swallows (Hirundo rustica), and Cliff Swallows (Petrochelidon pyrrhonota). All three species have one primary and two secondary molt series. Bank and Cliff swallows had one rectrix molt series, and Barn Swallows molted the outer rectrix (R6) separately from the inner five rectrices (R1‐5). All three species have a relatively long flight feather molt duration (i.e., 140–183 days) and low molt intensity. Barn Swallows initiated flight feather molt in the fall, about 2 months later than Bank and Cliff swallows. Barn Swallows likely delay molt because of constraints associated with double brooding. For all three species, molt started with the primaries and inner secondaries and was closely followed by the rectrices and, finally, the outer secondaries. For those that began and then interrupted molt either in breeding areas or during fall migration, the first feathers molted were predominantly S8 and P1. All three species underwent body molt throughout the year, but most individuals molted their body plumage in wintering areas. We recommend that the most appropriate feathers for stable isotope research examining migratory connectivity and habitat use are either R2‐R4 or S2‐S4.  相似文献   

11.
During the pupal molt of the tobacco hornworm, Manduca sexta, the percentage of active fat body glycogen phosphorylase increased from 5–10 to 20%, but only for a period of 5 h prior to the molt. From the time of the appearance of two sclerotized dorsal bars to the time of the molt, the concentration of total hemolymph carbohydrates doubled to 100 mM trehalose. Initially, the glucose level was high (16 mM) when compared with feeding larvae (approximately 1 mM) but decreased to zero just prior to the molt. The amount of cuticular chitosan decreased from approximately 100 mg to 10 mg at pupation; the exuvia contained approximately 7 mg. While the levels of total lipids in hemolymph were not affected, the lipid content of the fat body decreased significantly prior to the molt but increased sharply thereafter. Fat body glycogen phosphorylase in pharate pupae and pupae of M. sexta was substantially activated by the Manduca adipokinetic peptide hormone, which in pharate pupae, produced the same response at 2 and 20 pmol per insect as in ligated larval abdomens. In pupae the response was clearly reduced. Using chilling to stimulate glycogen phosphorylase, it was found that the enzyme in pharate pupae and pupae responded both in vivo and in vitro as in ligated abdomens of larvae. Thus, a transition to the adult response seems to occur during the pupal and pharate adult development. © 1995 Wiley-Liss, Inc.  相似文献   

12.
We examined feather molt progress of northern fulmars (Fulmarus glacialis) at Cape Vera in the Canadian High Arctic through opportunistic observation of individuals in flight from 2003 to 2006, and examination of bodies and wings of 127 individuals collected at the site, from 2003 to 2005. We found no evidence suggesting that fulmars shed primary feathers during breeding. Prebasic molt was initiated in the head, neck, sides, belly and back approximately 1 week before hatch. We failed to detect a sex effect on molt progress, but molt among breeders was delayed compared to molt in non- or failed breeders. This study constitutes a baseline we feel may be useful to: (1) researchers interested in feather replacement chronology, wherein feathers are used as sources of biological information; and (2) researchers interested in eventual assessment of relationships among large-scale environmental processes and molt progress in this species, especially in light of predicted changes to Arctic regions.  相似文献   

13.
14.
Thyroxine increases during a molt in wild and captive birds, and thyroidectomy prevents induction of molt. This trial examined the effect of dietary thyroxine on molt induction molt in chickens (laying hens, 59 weeks of age). In a completely randomized design (n=15 hens/replication; 6 replications/treatment), hens were randomly assigned to either a traditional molting program consisting of feed withdrawal (FWD), or to diets containing 40 mg thyroxine/kg diet (HT), 20 mg thyroxine/kg diet (LT), or 40 mg thyroxine from thyroactive iodinated casein/kg diet (TIC). The molting treatment lasted 7-13 d, until egg production reached 0%. After molt induction, birds had ad libitum access to the same diet, until egg production was re-initiated and maximized ( approximately 56 d). All treatments induced molt, based upon cessation of egg laying and regression of ovary and oviduct. Birds on FWD treatment lost more body weight during the molting period, but gained more after molt compared to thyroxine treatments (P<0.01 for each), although all body weights were similar when egg production was maximized. Data demonstrate that oral thyroxine, in purified or non-purified form, induces a molt and may enhance animal well-being by reducing the need for FWD.  相似文献   

15.
ABSTRACT On the breeding grounds, migratory birds have limited time to breed and molt before autumn migration. However, few studies of long‐distance migrants have examined the phenology of these events to determine what life‐history trade‐offs might result if these activities overlap. From 2000 to 2007, I used banding data to determine the timing of migration, breeding, and primary molt for Yellow Warblers (Dendroica petechia), Yellow‐rumped Warblers (D. coronata coronata), American Redstarts (Setophaga ruticilla), Ovenbirds (Seiurus aurocapilla), and Canada Warblers (Wilsonia canadensis) at a study site in Alberta, Canada. Hatching date did not differ among species (P= 0.63), with means ranging from 27 June to 3 July. All species began primary molt between 12 July and 18 July, near the expected fledging date of offspring, and therefore all species exhibited overlap between postfledging parental care and molt. The duration of primary molt ranged from 28 d for Canada Warblers to 69 d for Yellow‐rumped Warblers. Yellow Warblers, Yellow‐rumped Warblers, and American Redstarts began autumn migration having completed about 50% of their primary molt. However, Ovenbirds departed when 21% of molt was complete, and Canada Warblers departed 2 d after completing molt. For all five species of warblers, molt did not overlap with nest‐bound breeding activities. However, molt did overlap with both postfledging care and migration. This suggests that initiating migration as soon as possible is important, possibly because earlier arrival on the wintering grounds may improve access to high quality winter habitat. Overall, warblers may maximize individual fitness by combining life‐history events that result in overlapping portions of the breeding cycle, molt, and migration.  相似文献   

16.
Testosterone (T) is a key hormone regulating behavioral trade-offs in male birds, shifting investment towards sexual and competitive behaviors. However, the role of T in regulating male behavior during the molt has received very little attention, although this is a crucial life-history stage. Since the effect of T on behavior may be condition-dependent, particularly during the costly molt period, we studied the effects of T and condition in a two-way design. We manipulated T under two dietary regimes (standard and improved, resulting in an enhanced condition) in captive blue tits (Cyanistes caeruleus) undergoing the first pre-basic molt. T treatment increased song frequency, indicating that song is T-dependent also at this time of year. Males on the improved diet sang less than males in relatively worse condition, providing no support for song as an indicator of male condition. T-treated males exhibited greater locomotor activity than control males, but only when fed the standard diet. Neither T- nor diet-treatment affected plumage maintenance (preening). Although T treatment resulted in a delay in molt progress all birds completed the molt. Taken together our results show that during the molt male birds are sensitive to relatively small fluctuations in T. Similar to its commonly observed effects during the breeding season, T stimulated an increase in song and locomotion. While there might be some benefits associated with such T effects, these must be traded-off against costs associated with conspicuous behavior and increased molt duration.  相似文献   

17.
Molt is an energetically costly process, and songbirds (Order Passeriformes) exhibit a diversity of strategies to maximize their survival and reproductive success while meeting the energetic demands of the annual prebasic molt. Nearctic‐Neotropic migrants in western North America commonly exhibit one of three strategies: (1) remain in breeding areas to molt, (2) migrate long distances to molt before continuing to wintering areas, or (3) migrate to wintering areas and then molt. Among species that molt in or near breeding areas, the nature of small‐scale movements to undergo molt remains largely unknown. We used banding data collected over a period of 27 yr and across an elevational gradient to examine the propensity of Wilson's Warblers (Cardellina pusilla) to molt and breed at the same or different locations in northern California and southern Oregon. We found that individual adult Wilson's Warblers were more likely to breed at lower elevations and molt at higher elevations, suggesting that some individuals move altitudinally after breeding to complete the definitive prebasic molt. Such altitudinal movements may be more common among Nearctic‐Neotropic migrants in western North America than previously thought.  相似文献   

18.
In many species, territoriality is expressed only during the breeding season, when plasma testosterone (T) is elevated. In contrast, in song sparrows (Melospiza melodia morphna), males are highly territorial during the breeding (spring) and nonbreeding (autumn) seasons, but not during molt (late summer). In autumn, plasma sex steroids are basal, and castration has no effect on aggression. However, inhibition of aromatase reduces nonbreeding aggression, suggesting that neural steroid metabolism may regulate aggressive behavior. In wild male song sparrows, we examined the neural distribution of aromatase mRNA and seasonal changes in the activities of aromatase, 5 alpha-, and 5 beta-reductase, enzymes that convert T to 17 beta-estradiol, 5 alpha-dihydrotestosterone (5 alpha-DHT, a potent androgen), or 5 beta-DHT (an inactive metabolite), respectively. Enzyme activities were measured in the diencephalon, ventromedial telencephalon (vmTEL, which includes avian amygdala), caudomedial neostriatum (NCM), and the hippocampus of birds captured during spring, molt, or autumn. Aromatase and 5 beta-reductase changed seasonally in a region-specific manner. Aromatase in the diencephalon was higher in spring than in molt and autumn, similar to seasonal changes in male sexual behavior. Aromatase activity in the vmTEL was high in both spring and autumn but significantly reduced at molt, similar to seasonal changes in aggression. 5 beta-Reductase was not elevated during molt, suggesting that low aggression during molt is not a result of increased inactivation of androgens. These data highlight the relevance of neural steroid metabolism to the expression of natural behaviors by free-living animals.  相似文献   

19.
Hoye BJ  Buttemer WA 《PloS one》2011,6(2):e16230
The majority of bird species studied to date have molt schedules that are not concurrent with other energy demanding life history stages, an outcome assumed to arise from energetic trade-offs. Empirical studies reveal that molt is one of the most energetically demanding and perplexingly inefficient growth processes measured. Furthermore, small birds, which have the highest mass-specific basal metabolic rates (BMRm), have the highest costs of molt per gram of feathers produced. However, many small passerines, including white-plumed honeyeaters (WPHE; Lichenostomus penicillatus), breed in response to resource availability at any time of year, and do so without interrupting their annual molt. We examined the energetic cost of molt in WPHE by quantifying weekly changes in minimum resting metabolic rate (RMRmin) during a natural-molt period in 7 wild-caught birds. We also measured the energetic cost of feather replacement in a second group of WPHEs that we forced to replace an additional 25% of their plumage at the start of their natural molt period. Energy expenditure during natural molt revealed an energy conversion efficiency of just 6.9% (±0.57) close to values reported for similar-sized birds from more predictable north-temperate environments. Maximum increases in RMRmin during the molt of WPHE, at 82% (±5.59) above individual pre-molt levels, were some of the highest yet reported. Yet RMRmin maxima during molt were not coincident with the peak period of feather replacement in naturally molting or plucked birds. Given the tight relationship between molt efficiency and mass-specific metabolic rate in all species studied to date, regardless of life-history pattern (Efficiency (%)  = 35.720•10−0.494BMRm; r2 = 0.944; p = <0.0001), there appears to be concomitant physiological costs entrained in the molt period that is not directly due to feather replacement. Despite these high total expenditures, the protracted molt period of WPHE significantly reduces these added costs on a daily basis.  相似文献   

20.
The energetically challenging periods of molting and breeding are usually temporally separated in temperate birds, but can occur simultaneously in tropical birds, a condition known as molt–breeding overlap. Here, we document great variation in the timing and duration of molting and breeding, and in the extent of molt–breeding overlap, among 87 species of understory passerines in central Amazonia. We analyzed molt and breeding from 26 871 birds captured over a 30‐yr period near Manaus, Brazil. Although most species typically bred during the late dry season (about October through January), many thamnophilids apparently bred year‐round, whereas a few other species from a variety of families bred mainly during the wet season (about January through May). Of all breeding birds with an active brood patch, 12.7% were simultaneously molting. Molt–breeding overlap was more frequently observed among suboscines (13.3%), especially thamnophilids (23.0%), than oscines (6.4%). Some families had <5% molt–breeding overlap frequency, including Tyrannidae (4.4%), Tityridae (0.0%), Pipridae (1.5%), Turdidae (0.0%), and Thraupidae (0.0%), indicating that not all tropical species exhibit molt–breeding overlap. Among 31 well‐sampled species (n ≥15 brood patches), variation in molt–breeding overlap frequency was positively correlated with each species’ average duration of flight feather replacement (range 98–301 d). We also measured feather growth rates of individual birds in nine species; in five of these, slower‐growing feathers increased with an individual's probability of having molt–breeding overlap. Among furnariids, molt–breeding overlap occurred either at the beginning or end of the molt cycle, suggesting that physiological mechanisms typically separate molting from breeding. Thamnophilids showed a much different pattern; molt–breeding overlap occurred at any stage of feather replacement, apparently not regulated to be independent of breeding. These results reveal substantial life‐history variation among Amazonian birds. Future work to resolve the physiological regulation of molting and breeding in tropical birds will greatly contribute to understanding these patterns and their relevance to avian diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号