首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Sequences related to mouse intracisternal A-particle (IAP) genes have been isolated from rat and Syrian hamster gene libraries as recombinants in lambda phage. The sequences are moderately reiterated in both these genomes but their sequence organization in the hamster genome is different from that in the rat genome. Restriction analysis and electron microscopy indicate that the Syrian hamster IAP sequences represent a family of relatively homogeneous well-conserved units; in this, they resemble the mouse IAP genes. The rat sequences, in contrast, are heterogeneous. Both the hamster and rat IAP sequences contain regions homologous to mouse IAP genes interspersed with regions of apparent non-homology. The interspersed regions range in size from 0.5-1.0 kilobases (Kb). The regions of homology among the mouse, rat and Syrian hamster IAP sequences have been mapped to a 5-6 Kb internal region on the mouse IAP genes. Mouse IAP long terminal repeat (LTR) sequences were not detected in the rat and Syrian hamster genomes. We used the thermal stability of hybrids between cloned and genomic IAP sequences to measure family homogeneity. Mouse and Syrian hamster IAP sequences are homogeneous by this criterion, but the rat IAP sequences are heterogeneous with a Tm 6 degrees C below the self-hybrid. The contrasting organization of IAP-related elements in the genomes of these rodents indicates that amplification or homogenization of this sequence family has occurred independently and at different periods of time during their evolution.  相似文献   

3.
Short interspersed nuclear elements (SINEs) are non‐autonomous non‐long terminal repeat retrotransposons which are widely distributed in eukaryotic organisms. While SINEs have been intensively studied in animals, only limited information is available about plant SINEs. We analysed 22 SINE families from seven genomes of the Amaranthaceae family and identified 34 806 SINEs, including 19 549 full‐length copies. With the focus on sugar beet (Beta vulgaris), we performed a comparative analysis of the diversity, genomic and chromosomal organization and the methylation of SINEs to provide a detailed insight into the evolution and age of Amaranthaceae SINEs. The lengths of consensus sequences of SINEs range from 113 nucleotides (nt) up to 224 nt. The SINEs show dispersed distribution on all chromosomes but were found with higher incidence in subterminal euchromatic chromosome regions. The methylation of SINEs is increased compared with their flanking regions, and the strongest effect is visible for cytosines in the CHH context, indicating an involvement of asymmetric methylation in the silencing of SINEs.  相似文献   

4.
Sporadic amplification of ID elements in rodents   总被引:8,自引:0,他引:8  
ID sequences are members of a short interspersed element (SINE) repetitive DNA family within the rodent genome. The copy number of individual ID elements varies by up to three orders of magnitude between species. This amplification has been highly sporadic in the order Rodentia and does not follow any phylogenetic trend. Using library screening and dot-blot analysis, we estimate there are 25,000 copies of ID elements in the deer mouse, 1,500 copies in the gerbil (both cricetid rodents), and 60,000 copies of either ID or ID-like elements in a sciurid rodent (squirrel). By dot-blot analysis, we estimate there are 150,000, 4,000, 1,000, and 200 copies of ID elements in the rat, mouse, hamster, and guinea pig, respectively (which is consistent with previous reports) and 200 copies in the hystricognath rodent, nutria. Therefore, a rapid amplification took place not only after the divergence of rat and mouse but also following the deer mouse (Peromyscus) and hamster split, with no evidence of increased amplifications in hystricognath rodents. No notable variations of sequences from the BC1 genes of several myomorphic rodents were observed that would possibly explain the varied levels of ID amplification. We did observe subgenera and species-group-specific variation in the ID core sequence of the BC1 gene within the genus Peromyscus. Sequence analysis of cloned ID elements in Peromyscus show most ID elements in this genus arose prior to Peromyscus subgenus divergence. Correspondence of the consensus sequence of individual ID elements in gerbil and deer mouse further confirms BC1 as a master gene in ID amplification. Several possible mechanisms responsible for the quantitative variations are explored.The nucleotide sequences reported in this paper have been submitted to the GenBank/EMBL Data Bank with accession numbers: U33850, U33851, U33852 (BC1 sequences); and U33853, U33854, U33855, U33856, U33857, U33858, U33859, U33860, U33861, U33862, U33863, U33864, U33865, U33866, U33867 (ID sequences) Correspondence to: D.H. Kass  相似文献   

5.
Based on previous observations that newly inserted LINEs and SINEs have particularly long 3' A-tails, which shorten rapidly during evolutionary time, we have analyzed the rat and mouse genomes for evidence of recently inserted SINEs and LINEs. We find that the youngest predicted subfamilies of rodent identifier (ID) elements, a rodent-specific SINE derived from tRNA(Ala), are preferentially associated with A-tails over 50 bases in the rat genome, as predicted. Furthermore, these studies detected a subfamily of ID elements that has made over 15,000 copies that is younger than any previously reported ID subfamily. We use PCR analysis of genomic loci to demonstrate that all subfamily members tested inserted after the divergence of Rattus norvegicus from Rattus rattus. We also found evidence that the rodent B1 family of elements is much more active currently in mouse than in rat. These data provide useful estimates of recent activity from all of the mammalian retrotransposons, as well as allowing identification of the most recent insertions for use as population and speciation markers in those species. Both the current rat ID and mouse B1 elements that are active have small, specific interruptions in their 3' A-tail sequences. We suggest that these interruptions stabilize the length of the A-tails and contribute to the activity of these subfamilies. We present a model in which the dynamics of the 3' A-tail may be a central controlling factor in SINE activity.  相似文献   

6.
Using computer-based methods we determined the global distribution of short interspersed nuclear elements (SINEs) in the human and mouse X chromosomes. It has been shown that this distributions is similar to the distributions of CpG islands and genes but is different from the distribution of LINE1 elements. Since SINEs (human Alu and mouse B2) may have binding sites for Polycomb protein YY1, we suggest that these repeats can serve as additional signals ("boosters") in Polycomb-dependent silencing of gene rich segments during X inactivation.  相似文献   

7.
8.
Extensive digestion of Chinese hamster metaphase chromosomes with Alu I, Hae III and Hinf I released up to 40 distinct chromosomal proteins. Some of the proteins released by Hae III or Hinf I were enriched in the protein moiety liberated by Alu I but several proteins released by Hae III were not released by Alu I digestion. The amount of chromosomal protein released by deoxyribonuclease I (DNase I) was comparable to that liberated by the three restriction enzymes so far tested, while only four abundant protein species were detectable in the protein moiety released by DNase I. Two of them with molecular weights of 58,000 and 50,000 were also released by the three restriction enzymes and are similar in size to those found previously in the core-like structure of histone-depleted chromosomes.  相似文献   

9.
Gene for parathyroid hormone-like peptide is on mouse chromosome 6   总被引:2,自引:0,他引:2  
The single-copy parathyroid hormone-like peptide gene (Pthlh) was assigned to mouse chromosome 6 using a rat PTHLH cDNA as hybridization probe in the Southern blot analysis of DNAs isolated from a panel of mouse x Chinese hamster cell hybrids. The mouse parathyroid hormone gene (Pth) has previously been assigned to mouse chromosome 7 and the PTHLH and PTH genes have also been shown to be on different chromosomes in human and rat. Therefore, despite significant amino-terminal sequence homology between the PTHLH and PTH peptides, as well as similarities in the structural organization of the human PTHLH and PTH genes, the genes encoding these peptides have discrete chromosomal locations in the mouse, rat, and man.  相似文献   

10.
Deoxycoformycin (dCF)-resistant mutants of rat hepatoma, mouse LMTK-, and Chinese hamster ovary (CHO) cells have been isolated and shown to overproduce adenosine deaminase (ADA). The overproduction of ADA was found to be due to ADA-gene amplification in rat and mouse cells but not in CHO cells. Deoxycoformycin-resistant rat hepatoma cells have large HSRs (homogeneously staining regions), mouse cells carry DMs (Double minutes), and CHO cells do not appear to have any gross chromosomal anomalies. When dCF-resistant rat hepatoma and mouse cells are selected by increasing the concentration of the inhibitor in small increments, there is a good correlation between the increase in ADA gene copy number and the increase in the level of expression of ADA, suggesting that all of the amplified genes are equally active in the expression of ADA.  相似文献   

11.
Two types (MIR and Alu) of short interspersed repeated DNA sequences (SINEs) were used for analysis of genetic relationships among higher primates, and for detection of polymorphism in human genomic DNA. The DNA regions located between the neighboring copies of these SINEs were amplified in polymerase chain reaction with primers complementary to the MIR and Alu consensus sequences (inter-SINE PCR). Comparison of the sets of amplified DNA fragments for different species or individuals provides evaluation of the relationships among them. Using inter-MIR PCR technique, the relationships among the higher primates of the infraorder Catarrhini reported elsewhere were confirmed, pointing to the efficiency of the method for phylogenetic studies. No human DNA polymorphism was revealed with the help of inter-MIR PCR. This polymorphism was detected by means of inter-Alu PCR, which is probably associated with the continuing amplification of Alu elements in human genome.  相似文献   

12.
Two types (MIR and Alu) of short interspersed repeated DNA sequences (SINEs) were used for analysis of genetic relationships among higher primates, and for detection of polymorphism in human genomic DNA. The DNA regions located between the neighboring copies of these SINEs were amplified in polymerase chain reaction with primers complementary to the MIR and Alu consensus sequences (inter-SINE PCR). Comparison of the sets of amplified DNA fragments for different species or individuals provides evaluation of the relationships among them. Using inter-MIR PCR technique, the relationships among the higher primates of the infraorder Catarrhini reported elsewhere were confirmed, pointing to the efficiency of the method for phylogenetic studies. No human DNA polymorphism was revealed with the help of inter-MIR PCR. This polymorphism was detected by means of inter-Alu PCR, which is probably associated with the continuing amplification of Alu elements in human genome.  相似文献   

13.
B2 repeats are a group of short interspersed elements (SINEs) specific for rodent genomes. Copy numbers were determined for different rodent genera. All the Muroid (rat, mouse, deer mouse, hamster, gerbil) rodent genomes analyzed exhibited 80,000–100,000 copies per haploid genome, whereas the squirrel genome contains only 2,500 copies, and fewer than 100 (if any) copies were observed for the Hystricognath rodents (guinea pig and nutria). These findings demonstrate that there was an explosion of amplification of B2 elements within muroid rodents. The similar copy number of B2 elements within the different muroid species could be explained by formation of a high proportion of the B2 elements prior to the divergence of the different muroid species. However, the 3-end of the B2 sequence is unique between murid and cricetid rodents suggesting that the majority of elements amplified after the divergence of these species. Also consistent with recent amplification of these elements in parallel within the muroid genomes is the finding that within mouse and rat there are distinct subfamilies of B2 repeats. The pattern of consistent parallel amplification of B2 elements in muroid species contrasts with the sporadic nature of ID repeat amplification in the same genomes. The consensus of the young mouse subfamily of elements corresponds to the B2 RNA that is preferentially transcribed in embryonic, tumor, and normal liver cells. The subfamily is young based on both its low divergence from the subfamily consensus sequence and the finding that the most recent B2 element insertions in the mouse genome are members of this subfamily.  相似文献   

14.
Summary The morphologic changes occurring in human chromosomes during R-banding by Ba(OH)2 treatment were followed with the aid of bright-field and Nomarski interference contrast microscopy. It was found that the hot Ba(OH)2 pretreatment alone, i.e., without staining, caused a pattern of transverse ridges in the chromosomes that clearly corresponded to positive R-band regions. No chromosomal collapse could be seen during any stage of the R-banding procedure. Thus these events contrast with those observed in G-band formation with trypsin, where complete chromosomal collapse occurs after pretreatment and where staining is necessary to induce G-band ridges. The possible mechanism of R-band induction by Ba(OH)2 is discussed. It is proposed that the R-band ridges arise as a result of chromatin loss from the interband regions during the hot alkaline pretreatment.  相似文献   

15.
16.
Alu Elements and the Human Genome   总被引:13,自引:0,他引:13  
Rowold DJ  Herrera RJ 《Genetica》2000,108(1):57-72
  相似文献   

17.
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology as a mammalian host cell platform for expressing genes of interest. Previously, we constructed a detailed physical chromosomal map of the CHO DG44 cell line by fluorescence in situ hybridization (FISH) imaging using 303 bacterial artificial chromosome (BAC) clones as hybridization probes (BAC-FISH). BAC-FISH results revealed that the two longest chromosomes were completely paired. However, other chromosomes featured partial deletions or rearrangements. In this study, we determined the end sequences of 303 BAC clones (BAC end sequences), which were used for BAC-FISH probes. Among 606 BAC-end sequences (BESs) (forward and reverse ends), 558 could be determined. We performed a comparison between all determined BESs and mouse genome sequences using NCBI BLAST. Among these 558 BESs, 465 showed high homology to mouse chromosomal sequences. We analyzed the locations of these BACs in chromosomes of the CHO DG44 cell line using a physical chromosomal map. From the obtained results, we investigated the regional similarities among CHO chromosomes (A–T) and mouse chromosomes (1–19 and sex) about 217 BESs (46.7% of 465 high homologous BESs). Twenty-three specific narrow regions in 13 chromosomes of the CHO DG44 cell line showed high homology to mouse chromosomes, but most of other regions did not show significant correlations with the mouse genome. These results contribute to accurate alignments of chromosomes of Chinese hamster and its genome sequence, analysis of chromosomal instability in CHO cells, and the development of target locations for gene and/or genome editing techniques.  相似文献   

18.
19.
SINEs     
SINEs with internal promoters for RNA polymerase III are ubiquitous in the genomes of the animal kingdom, including invertebrates. Although the human Alu family, and related families, originates from 7SL RNA, all other SINEs originate from tRNA. SINEs have been amplified many times, altered in genomic organization and fixed in the population at certain stages of evolution. They can therefore be regarded as time-landmarks of evolution. It is proposed that both population genetics and molecular biology are required for understanding the expansion of SINEs.  相似文献   

20.
Porcine SINEs: Characterization and use in species-specific amplification   总被引:1,自引:0,他引:1  
A porcine repetitive DNA sequence has been isolated from an intron of the glucose phosphate isomerase gene. The copy number of this and related sequences was estimated to be approximately 10(5) copies per genome. The sequence possesses all the characteristics of short interspersed elements (SINEs) described in other mammals: The repeat is 300 bp in length, has an poly(A)stretch, and contains insertion duplication sites. Homology to seven other porcine sequences, which also have the characteristics of SINEs, has been demonstrated. Primer oligonucleotides, based on conserved regions in the SINE sequences, have been synthesized. Using these primers, PCR-mediated specific amplification of porcine sequences was demonstrated from pig x mouse and pig x hamster hybrid cell lines. Cloning and sequencing of some amplified porcine sequences verify that the sites of priming are SINE sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号