共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton pumping in closed vesicular systems containing bacteriorhodopsin that is initiated by an orange flash, is diminished by a subsequent blue flash. This blue light effect is due to light absorbed by the photocycle intermediate M412 (M), which was formed by the orange flash. A kinetic analysis of the blue-light-induced reduction of proton pumping shows that of the two components of M, only the slowly decaying component is involved in the reduction of proton movement. This may be the first correlation between a proton movement and a specific photochemical intermediate of bacteriorhodopsin. Furthermore, we report that blue light, acting on the slowly decaying intermediate, probably causes a movement of the protons in a direction opposite to that normally seen for light absorbed by bacteriorhodopsin. 相似文献
2.
3.
The voltage-dependent proton pumping in bacteriorhodopsin is characterized by optoelectric behavior 下载免费PDF全文
The light-driven proton pump bacteriorhodopsin (bR) was functionally expressed in Xenopus laevis oocytes and in HEK-293 cells. The latter expression system allowed high time resolution of light-induced current signals. A detailed voltage clamp and patch clamp study was performed to investigate the DeltapH versus Deltapsi dependence of the pump current. The following results were obtained. The current voltage behavior of bR is linear in the measurable range between -160 mV and +60 mV. The pH dependence is less than expected from thermodynamic principles, i.e., one DeltapH unit produces a shift of the apparent reversal potential of 34 mV (and not 58 mV). The M(2)-BR decay shows a significant voltage dependence with time constants changing from 20 ms at +60 mV to 80 ms at -160 mV. The linear I-V curve can be reconstructed by this behavior. However, the slope of the decay rate shows a weaker voltage dependence than the stationary photocurrent, indicating that an additional process must be involved in the voltage dependence of the pump. A slowly decaying M intermediate (decay time > 100 ms) could already be detected at zero voltage by electrical and spectroscopic means. In effect, bR shows optoelectric behavior. The long-lived M can be transferred into the active photocycle by depolarizing voltage pulses. This is experimentally demonstrated by a distinct charge displacement. From the results we conclude that the transport cycle of bR branches via a long-lived M(1)* in a voltage-dependent manner into a nontransporting cycle, where the proton release and uptake occur on the extracellular side. 相似文献
4.
5.
Comparative analysis of the photoelectric response of dried films of purple membranes (PM) depending on their degree of orientation
is presented. Time dependence of the photo-induced protein electric response signal (PERS) of oriented and non-oriented films
to a single laser pulse in the presence of the external electric field (EEF) was experimentally determined. The signal does
not appear in the non-oriented films when the EEF is absent, whereas the PERS of the oriented PM films demonstrates the variable
polarity on the microsecond time scale. In the presence of the EEF the PERS of the non-oriented film rises exponentially preserving
the same polarization. The polarization of the PERS changes by changing the polarity of the EEF with no influence on the time
constant of the PERS kinetics. The EEF effect on the PERS of the oriented films is more complicated. By subtracting the PERS
when EEF ≠ 0 from the PERS when EEF = 0 the resulting signal is comparable to that of the non-oriented films. Generalizing
the experimental data we conclude that the EEF influence is of the same origin for the films of any orientation. To explain
the experimental results the two-state model is suggested. It assumes that the EEF directionally changes the pKa values of the Schiff base (SB) and of the proton acceptor aspartic acid D85 in bacteriorhodopsin. Because of that the SB→D85
proton transfer might be blocked and consequently the L→M intermediate transition should vanish. Thus, on the characteristic
time scale τ
L → M
≈ 30 μs; both intermediates, the M intermediate, appearing under normal conditions, and the L intermediate as persisting
under the blocked conditions when D85 is protonated, should coexist in the film. The total PERS is a result of the potentials
corresponding to the electrogenic products of intermediates L and M that are of the opposite polarity. It is concluded that
the ratio of bacteriorhodopsin concentrations corresponding to the L and M intermediates is driven by the EEF and, consequently,
it should define the PERS of the non-oriented films. According to this model the orientation degree of the film could be evaluated
by describing the PERS. 相似文献
6.
Mutation of Thr90 to Ala has a profound effect on bacteriorhodopsin properties. T90A shows about 20% of the proton pumping efficiency of wild type, once reconstituted into liposomes. Mutation of Thr90 influences greatly the Schiff base/Asp85 environment, as demonstrated by altered lambda(max) of 555 nm and pK(a) of Asp85 (about 1.3 pH units higher than wild type). Hydroxylamine accessibility is increased in both dark and light and differential scanning calorimetry and visible spectrophotometry show decreased thermal stability. These results suggest that Thr90 has an important structural role in both the unphotolysed bacteriorhodopsin and in the proton pumping mechanism. 相似文献
7.
The actinic light effect on the bacteriorhodopsin (BR) photocycle kinetics led to the assumption of a cooperative interaction between the photocycling BR molecules. In this paper we report the results of the actinic light effect and pH on the proton release and uptake kinetics. An electrical method is applied to detect proton release and uptake during the photocycle [E. Papp, G. Fricsovszky, J. Photochem. Photobiol. B: Biol. 5 (1990) 321]. The BR photocycle kinetics was also studied by absorption kinetics measurements at 410 nm and the data were analyzed by the local analysis of the M state kinetics [E. Papp, V.H. Ha, Biophys. Chem. 57 (1996) 155]. While at high pH and ionic strength, we found a similar behavior as reported earlier, at low ionic strength the light effect proved to be more complex. The main conclusions are the following: Though the number of BR excited to the photocycle (fraction cycling, fc) goes to saturation with increasing laser pulse energy, the absorbed energy by BR increases linearly with pulse energy. From the local analysis we conclude that the light effect changes the kinetics much earlier, already at the L intermediate state decay. The transient electric signal, caused by proton release and uptake, can be decomposed into two components similarly to the absorption kinetic data of the M intermediate state. The actinic light energy affects mainly the ratio of the two components and the proton movements inside BR while pH has an effect on the kinetics of the proton release and uptake groups at the membrane surface. 相似文献
8.
Single-turnover kinetics of the bacteriorhodopsin photocycle and proton-pumping capabilities of whole cells were studied. It was found that the Delta mu (tilde)H+ of the cell had a profound influence on the kinetics and components of the cycle. For example, comparing the photocycle in whole cells to that seen in PM preparations, we found that (1) the single-turnover time of the cycle was increased approximately 10-fold, (2) the mole fraction of M-fast (at high actinic light) decreased from 50 to 20%, and (3) the time constant for M-slow increased significantly. The level of Delta mu(tilde)H+ was dependent on respiration, ATP formation and breakdown, and the magnitude of a pre-existing K+ diffusion gradient. The size of the Delta mu(tilde)H+ could be manipulated by additions of HCN, nigericin, and DCCD (N,N'-dicyclohexylcarbodamide). At higher levels of Delta mu(tilde)H+, further changes in the photocycle were seen. (4) Two slower components of M-decay appeared as major components. (5) The apparent conversion of the M-fast to the O intermediate disappeared. (6) A partial reversal of an early photocycle step occurred. The photocycle of intact cells could be changed to that seen in purple membrane suspensions by the energy-uncoupler CCCP or by lysis of the cells. In fresh whole cells, light-induced proton pumping was not seen until the K+ diffusion potential was dissipated and proton accumulation facilitated by use of a K+-H+ exchanger (nigericin), respiration was inhibited by HCN, and ATP synthesis and breakdown were inhibited by DCCD. In stored cells, the pre-existing K+ diffusion gradient was diminished through slow diffusion, and only DCCD and HCN were required to elicit proton extrusion. 相似文献
9.
Site-specific mutagenesis has identified amino acids involved in bR proton transport. Biophysical studies of the mutants have elucidated the roles of two membrane-embedded residues: Asp-85 serves as the acceptor for the proton from the isomerized retinylidene Schiff base, and Asp-96 participates in reprotonation of this group. The functions of Arg-82, Leu-93, Asp-212, Tyr-185, and other residues that affect bR properties when substituted are not as well understood. Structural characterization of the mutant proteins will clarify the effects of substitutions at these positions. Current efforts in the field remain directed at understanding how retinal isomerization is coupled to proton transport. In particular, there has been more emphasis on determining the structures of bR and its photointermediates. Since well-ordered crystals of bR have not been obtained, continued electron diffraction studies of purple membrane offer the best opportunity for structure refinement. Other informative techniques include solid-state nuclear magnetic resonance of isotopically labeled bR (56) and electron paramagnetic resonance of bR tagged with nitroxide spin labels (2, 3, 13, 15). Site-directed mutagenesis will be essential in these studies to introduce specific sites for derivatization with structural probes and to slow the decay of intermediates. Thus, combining molecular biology and biophysics will continue to provide solutions to fundamental problems in bR. 相似文献
10.
Deprotonation of the Schiff base of bacteriorhodopsin is obligate in light-induced proton pumping 总被引:2,自引:0,他引:2
Bacteriorhodopsin (bR) in purple membranes was permethylated with formaldehyde and pyridine-borane with the incorporation of approximately 12 methyl groups. This new pigment, PMbR, absorbed light in the dark-adapted state with a lambda max at 558 nm, virtually the same as that of bR. Light adaptation of PMbR produced a lambda max of 564 nm with a slightly elevated epsilon. Similar changes occurred with bR. When incorporated into asolectin vesicles, PMbR was able to pump protons in the light with an efficiency similar to that of bR itself. Bleaching of PMbR exposed its active site lysine residue, which was monomethylated to form active site methylated bR (AMbR) after regeneration with all-trans-retinal. This blue pigment, which is a cyanopsin rather than a rhodopsin, showed an extraordinary red shift, absorbing light with a lambda max of 620 nm in the dark-adapted state. Light adaptation of AMbR resulted in a spectral shift to 616 nm with a decrease in epsilon. This change was completely reversible in the dark. This shift was interpreted to mean that an L-like intermediate was accumulating, as would be expected if deprotonation of the protonated Schiff base could not occur to produce the M intermediate. Furthermore, when incorporated into asolectin vesicles, AMbR proved incapable of pumping protons in the light. It was concluded from these experiments that deprotonation of the Schiff base of bR is obligate for light-induced proton pumping. 相似文献
11.
pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: comparison with bacteriorhodopsin 下载免费PDF全文
The pH-dependence of photocycle of archaerhodopsin 4 (AR4) was examined, and the underlying proton pumping mechanism investigated. AR4 is a retinal-containing membrane protein isolated from a strain of halobacteria from a Tibetan salt lake. It acts as a light-driven proton pump like bacteriorhodopsin (BR). However, AR4 exhibits an "abnormal" feature--the time sequence of proton release and uptake is reversed at neutral pH. We show here that the temporal sequence of AR4 reversed to "normal"--proton release preceding proton uptake--when the pH is increased above 8.6. We estimated the pK(a) of the proton release complex (PRC) in the M-intermediate to be approximately 8.4, much higher than 5.7 of wide-type BR. The pH-dependence of the rate constant of M-formation shows that the pK(a) of PRC in the initial state of AR4 is approximately 10.4, whereas it is 9.7 in BR. Thus in AR4, the chromophore photoisomerization and subsequent proton transport from the Schiff base to Asp-85 is coupled to a decrease in the pK(a) of PRC from 10.4 to 8.4, which is 2 pK units less than in BR (4 units). This weakened coupling accounts for the lack of early proton release at neutral pH and the reversed time sequence of proton release and uptake in AR4. Nevertheless the PRC in AR4 effectively facilitates deprotonation of primary proton acceptor and recovery of initial state at neutral pH. We found also that all pK(a)s of the key amino acid residues in AR4 were elevated compared to those of BR. 相似文献
12.
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning α-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of “the cation” in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation<monovalent amine anesthetic cation<divalent metal cation. We found that organic cations such as the amine anesthetics can also regenerate the proton pump in the bR protein. The inhibition of proton transport in the bR protein by the anesthetic cations was elucidated using the wild type, the E204Q and the D96N mutated bRs. The hydrophobic interaction of the amine anesthetics with the bR protein plays an important part in inhibiting the bR proton pump. 相似文献
13.
Shibata A Sakata A Ueno S Hori T Minami K Baba Y Kamo N 《Biochimica et biophysica acta》2005,1669(1):17-25
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning alpha-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of "the cation" in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation相似文献
14.
Voltage dependence of proton pumping by bacteriorhodopsin is regulated by the voltage-sensitive ratio of M1 to M2. 下载免费PDF全文
The voltage dependence of light-induced proton pumping was studied with bacteriorhodopsin (bR) from Halobacterium salinarum, expressed in the plasma membrane of oocytes from Xenopus laevis in the range -160 mV to +60 mV at different light intensities. Depending on the applied field, the quenching effect by blue light, which bypasses the normal photo and transport cycle, is drastically increased at inhibiting (negative) potentials, and is diminished at pump current increasing (positive) potentials. At any potential, two processes with different time constants for the M --> bR decay of approximately 5 ms (tau1) and approximately 20 ms (tau2) are obtained. At pump-inhibiting potentials, a third, long-lasting process with tau3 approximately 300 ms at neutral pH is observed. The fast processes (tau1, tau2) can be assigned to the decay of M2 in the normal pump cycle, i.e., to the reprotonation of the Schiff base via the cytoplasmic side, whereas tau3 is due to the decay of M1 without net pumping, i.e., the reprotonation of the Schiff base via the extracellular side. The results are supported by determination of photocurrents induced by bR on planar lipid films. The pH dependence of the slow decay of M1 is fully in agreement with the interpretation that the reprotonation of the Schiff base occurs from the extracellular side. The results give strong evidence that an externally applied electrical field changes the ratio of the M1 and the M2 intermediate. As a consequence, the transport cycle branches into a nontransporting cycle at negative potentials. This interpretation explains the current-voltage behavior of bR on a new basis, but agrees with the isomerisation, switch, transfer model for vectorial transport. 相似文献
15.
Hayakawa N Kasahara T Hasegawa D Yoshimura K Murakami M Kouyama T 《Journal of molecular biology》2008,384(4):812-823
To understand the functional role of apolar cavities in bacteriorhodopsin, a light-driven proton pump found in Halobacterium salinarum, we investigated the crystal structure in pressurized xenon or krypton. Diffraction data from the P622 crystal showed that one Xe or Kr atom binds to a preexisting hydrophobic cavity buried between helices C and D, located at the same depth from the membrane surface as Asp96, a key residue in the proton uptake pathway. The occupation fraction of Xe or Kr was calculated as approximately 0.32 at a pressure of 1 MPa. In the unphotolyzed state, the binding of Xe or Kr caused no large deformation of the cavity. However, the proton pumping cycle was greatly perturbed when an aqueous suspension of purple membrane was pressurized with xenon gas; that is, the decay of the M state was accelerated significantly (~5 times at full occupancy), while the decay of an equilibrium state of N and O was slightly decelerated. A similar but much smaller perturbation in the reaction kinetics was observed upon pressurization with krypton gas. In a glycerol/water mixture, xenon-induced acceleration of M decay became less significant in proportion to the water activity. Together with the structure of the xenon-bound protein, these observations suggest that xenon binding helps water molecules permeate into apolar cavities in the proton uptake pathway, thereby accelerating the water-mediated proton transfer from Asp96 to the Schiff base. 相似文献
16.
A E McDermott L K Thompson C Winkel M R Farrar S Pelletier J Lugtenburg J Herzfeld R G Griffin 《Biochemistry》1991,30(34):8366-8371
Solid-state 13C NMR spectra were employed to characterize the protonation state of tyrosine in the light-adapted (bR568) and M states of bacteriorhodopsin (bR). Difference spectra (isotopically labeled bR minus natural-abundance bR) were obtained for [4'-13C]Tyr-labeled bR, regenerated with [14-13C]retinal as an internal marker to identify the photocycle states. The [14-13C]retinal has distinct chemical shifts for bR555, for bR568, and for the M intermediate generated and thermally trapped at pH 10 in the presence of 0.3 M KCl or 0.5 M guanidine. Previous work has demonstrated that tyrosine and tyrosinate are easily distinguished on the basis of the chemical shift of the 4'-13C label and that both NMR signals are detectable in dark-adapted bR, although the tyrosinate signal is only present at pH values greater than 12. In the present work, we show that neither the light-adapted form of bR prepared at pH 7 or 10 nor the M state thermally trapped at -80 degrees C in 0.3 M KCl pH 10, or in 0.5 M guanidine pH 10, shows any detectable tyrosinate. In addition, after the M samples were briefly warmed (approximately 30 s), no tyrosinate was observed. However, small (1-2 ppm) changes in the structure or dispersion in the Tyr peak were observed in the M state phototrapped by either method. These changes were reversible when the sample was warmed, although on a time scale slower than the relaxation of the retinal back to the bR568 conformer.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Trans/13-cis isomerization is essential for both the photocycle and proton pumping of bacteriorhodopsin. 总被引:2,自引:1,他引:2 下载免费PDF全文
C H Chang R Govindjee T Ebrey K A Bagley G Dollinger L Eisenstein J Marque H Roder J Vittitow J M Fang et al. 《Biophysical journal》1985,47(4):509-512
We studied an analogue of bacteriorhodopsin whose chromophore is based on all-trans retinal. A five-membered ring was built around the 13-14 double bond so as to prohibit trans to 13-cis isomerization. No light-induced photochemical changes were seen, other than those due to a small amount (approximately 5%) of unbleached bacteriorhodopsin remaining in the apomembrane used for regeneration. The techniques used included flash photolysis at room and liquid nitrogen temperatures and Fourier-transform infrared difference spectroscopy. When the trans-fixed pigment was incorporated into phospholipid vesicles, no evidence of light-initiated proton pumping could be found. The results indicate that trans to 13-cis isomerization is essential for the photochemical transformation and function of bacteriorhodopsin. 相似文献
18.
Proteoliposomes were prepared by sonication of phospholipids and blue membranes (cation-free purple membranes carrying little activity of light-driven proton pumping) in an acidic medium of very low ionic strength. The majority of the bacteriorhodopsin population in these proteoliposomes was in the right-side-out (as in living cells) orientation as judged from the resultant polypeptides after papain digestion. By raising the pH of sonication, the population of right-side-out oriented bacteriorhodopsin decreased, and consequently that of the inversely oriented one increased. In KCl and NaCl up to certain concentrations or in choline chloride even at high concentrations, in the light, the proteoliposomes with right-side-out bacteriorhodopsin did not pump protons, whereas those with inversely oriented bacteriorhodopsin did. The former began to pump only after cations were likely incorporated/permeated into the proteoliposome and reached the carboxyl terminal (cytosol) side of bacteriorhodopsin/purple membrane. 相似文献
19.
A proton channel in bacteriorhodopsin 总被引:1,自引:0,他引:1
20.
K. C. Chou 《Amino acids》1994,7(1):1-17
Summary In this review the proton-pumping mechanism proposed recently for bacteriorhodopsin [Chou, K. C. (1993) Journal of Protein Chemistry, 12: 337–350] is illustrated in terms of a phenomenological model. According to the model, the-ionone of the retinal chromophore in bacteriorhodopsin can be phenomenologically imagined as a molecular piston. The photon capture by bacteriorhodopsin would pull it up while the spontaneous decrease in potential energy would push it down so that it would be up and down alternately during the photocycle process. When it is pulled up, the gate of pore is open and the water channel for the proton translocation is through; when it is pushed down, the gate of pore is closed and the water channel is shut up. Such a model not only is quite consistent with experimental observations, but also provides useful insights and a different view to elucidate the protonpumping mechanism of bacteriorhodopsin. The essence of the model might be useful in investigating the mechanism of ion-channels of other membrane proteins.Abbreviations bR
bacteriorhodopsin
- All-trans bR
bacteriorhodopsin with all-trans retinal chromophore
- 13-cis bR
bacteriorhodopsin with 13-cis retinal chromophore
- All-trans bundle
the 7-helix bundle in the all-trans bR
- 13-cis bundle
the 7-helix bundle in the 13-cis bR
- rms
root-mean-square 相似文献