首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies employing speech stimuli to investigate ‘cocktail-party’ listening have focused on entrainment of cortical activity to modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data suggest that cortical modulation filters (CMFs) are dependent on the sound-frequency channel in which modulations are conveyed, potentially underpinning a strategy for separating speech from background noise. Here, we characterize modulation filters in human listeners using a novel behavioral method. Within an ‘inverted’ adaptive forced-choice increment detection task, listening level was varied whilst contrast was held constant for ramped increments with effective modulation rates between 0.5 and 33 Hz. Our data suggest that modulation filters are tonotopically organized (i.e., vary along the primary, frequency-organized, dimension). This suggests that the human auditory system is optimized to track rapid (phonemic) modulations at high sound-frequencies and slow (prosodic/syllabic) modulations at low frequencies.  相似文献   

2.
We systematically determined which spectrotemporal modulations in speech are necessary for comprehension by human listeners. Speech comprehension has been shown to be robust to spectral and temporal degradations, but the specific relevance of particular degradations is arguable due to the complexity of the joint spectral and temporal information in the speech signal. We applied a novel modulation filtering technique to recorded sentences to restrict acoustic information quantitatively and to obtain a joint spectrotemporal modulation transfer function for speech comprehension, the speech MTF. For American English, the speech MTF showed the criticality of low modulation frequencies in both time and frequency. Comprehension was significantly impaired when temporal modulations <12 Hz or spectral modulations <4 cycles/kHz were removed. More specifically, the MTF was bandpass in temporal modulations and low-pass in spectral modulations: temporal modulations from 1 to 7 Hz and spectral modulations <1 cycles/kHz were the most important. We evaluated the importance of spectrotemporal modulations for vocal gender identification and found a different region of interest: removing spectral modulations between 3 and 7 cycles/kHz significantly increases gender misidentifications of female speakers. The determination of the speech MTF furnishes an additional method for producing speech signals with reduced bandwidth but high intelligibility. Such compression could be used for audio applications such as file compression or noise removal and for clinical applications such as signal processing for cochlear implants.  相似文献   

3.
Literature data and results of our own research suggest that amplitude of periodic modulations of heart rate may be related to the cerebral cortex activity. Verification of this assumption was accomplished by searching for correlation between the heart rate periodogram (as a measure of amplitude of periodic modulations of heart rate at different frequencies), and electroencephalographic evaluation of the level of different cortical areas activation. Positive association between levels of activation of the frontal cortex and amplitude of heart rate modulation with the period of 3 modulations per heart rate interval was discovered.  相似文献   

4.
ABSTRACT

Dove coos are known to be important for intra-specific communication in various contexts. Earlier research showed the occurrence of systematic frequency modulations for the perch- coo of the collared dove and suggested that presence or absence of these modulations might be important in communication. The present study examined the occurrence of frequency modulations and frequency use for perch-, bow- and nest-coo, as well as variation in these features between and within individuals, to assess the acoustic ‘signal space’ for this species. The occurrence of frequency modulations was high for perch- and bow-coo, but low for the nest-coo. The relative distribution of modulations over the three elements of a coo differed for the various coo types. Coo types differed also in their ‘frequency profiles’. Frequency use is correlated with the occurrence of modulations. Differences between coo- types as well as variation within a coo-type and within individuals can be described by a limited set of parameters, which may be linked to basic properties of the coo producing mechanism. As a consequence of the occurrence of modulations and their distribution over the coo-types, the acoustic differences between the coo-types are amplified. As the different coo-types serve different functions, presence of modulations increases the signal space and decreases the ambiguity of the coo types. Differences between individuals exceeded those within individuals and were largest for perch- and bow-coo, which both serve in territorial defence and mate attraction.  相似文献   

5.
Earlier we discovered that heart rate variability was associated with the level of intelligence. The purpose of this study is to confirm this association using more reliable method and to define more precisely the frequency band within which the amplitude of the heart rate modulations is related to intelligence. 13 males (aged 14 to 17) were the study subjects. The total score of the computer game Tetris was taken as a general measure of the intelligence level. Heart rate was recorded electrocardiographically both at rest and during playing Tetris. Frequency analysis of heart rate was carried out with digital Fourier transformation. Correlation analysis showed that there was positive association between the level of intelligence and the amplitude of heart rate modulation at the frequencies 0.30 and 0.15 modulations per RR interval. This association is closer for the heart rate at rest than for the heart rate during mental work and for the frequency 0.30 than for the 0.15 modulations per RR interval.  相似文献   

6.
Abstract Stationary phase, yeast-form cells of Candida albicans grown in glucose-yeast extract medium were shifted to N -acetylglucosamine (GlcNAc) and/or glucose medium, and the pattern of protein synthesized under conditions of a progressive decrease in the rate of total protein synthesis was analyzed by SDS-PAGE and autoradiography.
Marked temporal modulations in the rate of synthesis of some cytoplasmic proteins were detected both in cells forming germ-tubes (at 37°C) and in yeast cells (at 28°C). The major modulated components showed molecular weights of 63, 53, 48 and 34 kDa. These products could not be qualified as heat-shock or heat-stroke proteins, because analogous modulations were observed on shifting cells from 28°C to 37°C or from 28°C to 28°C. However, no marked modulations in the synthesis of specific proteins were detected when amino acids were added to the medium fostering germ-tube formation under conditions of unimpaired overall rate of protein synthesis.
It is suggested that the modulations observed in cells incubated in GlcNAc-glucose medium could represent a response to a nutritional stress.  相似文献   

7.
Eigenmannia can detect modulations in the time disparity of signals received by different regions of the body surface as small as several hundred nanoseconds. This study presents recordings of single units in the torus semicircularis that are sensitive to time disparities (differential-phase) between a sinusoidal signal received by the head region and a similar signal received by the body surface caudal to the fish's pectoral fins. The sensitivity of units to differential phase, measured by the change in spike rate per unit change in time disparity, was greatest when small phase modulations, rather than stationary phase differences, were presented. Thresholds of differential-phase coders ranged from 6.5 microseconds to several hundred microseconds, with approximately 20% of the units having thresholds in the 5-10 microseconds range. For most cells, sensitivity to small modulations of differential-phase was relatively unaffected by time disparity 'offsets' within a range of several hundred microseconds. A threshold of 5-10 microseconds is still an order of magnitude higher than that measured in the Jamming Avoidance Response (JAR). Neurons that were sensitive to amplitude modulations (AMs) had thresholds as low as 0.05%. This value is comparable to that observed at the behavioral level.  相似文献   

8.
K562 cells represent a classical model for the study of drug resistance. Induction of apoptosis is accompanied by concomitant distinct modulations of poly(A) polymerase (PAP) and other proteins involved in mRNA maturation. Recent data suggest the involvement of mRNA stability in the induction of specific apoptosis pathways. In this study we used a specific polyadenylation inhibitor, cordycepin (3-deoxyadenosine), to investigate the involvement of polyadenylation in K562 cell apoptosis and drug resistance. The combination of cordycepin with either 5-fluorouracil or interferon-alpha sensitized chemoresistant K562 cells to apoptosis. This sensitization was followed by distinct PAP modulations before and after the appearance of characteristic apoptosis pointers (DNA laddering, DAPI staining, mitochondrial transmembrane potential). PAP modulations appeared essential for K562 sensitization. mRNA polyadenylation therefore seemed to be involved not only in apoptosis but also in drug resistance. Polyadenylation inhibition by cordycepin under certain conditions sensitized chemoresistant K562 cells to apoptosis and thus polyadenylation could prove to be a fine target for overcoming drug resistance.  相似文献   

9.
Many electric fish species modulate their electric organ discharges (EODs) to produce transient social signals that vary in number and structure. In Apteronotus leptorhynchus, males modulate their EOD more often than females, whereas in Apteronotus albifrons, males and females produce similar numbers of modulations. Sex differences in the number of EOD modulations in A. leptorhynchus are associated with sex differences in substance P in the diencephalic nucleus that controls transient EOD modulations, the CP/PPn. These sex differences in substance P have been hypothesized to regulate sex differences in the production of EOD modulations. To comparatively test this hypothesis, we examined substance P immunoreactivity in the CP/PPn of male and female A. leptorhynchus and A. albifrons. Because the number of EOD modulations is sexually monomorphic in A. albifrons, we predicted no sex difference in substance P in the CP/PPn of this species. Contrary to this prediction, male A. albifrons had significantly more substance P in the CP/PPn than females. This suggests that sex differences in substance P are not sufficient for controlling sex differences in the number of EOD modulations. Modulation structure (frequency excursion and/or duration), however, is also sexually dimorphic in A. leptorhynchus and is another possible behavioral correlate of the sexually dimorphic distribution of substance P. The present study found pronounced sex differences in the structure of EOD modulations in A. albifrons similar to those in A. leptorhynchus. Thus, sex differences in substance P may influence sex differences in the structure, rather than the number, of EOD modulations.  相似文献   

10.
Pulsed electron paramagnetic resonance spectroscopy has been used to detect Mn(II)-ligand superhyperfine couplings in complexes with creatine kinase and in the Mn(II) metalloprotein concanavalin A. Electron spin-echo envelopes from Mn(II), bound in these complexes, are modulated by superhyperfine interactions between Mn(II) and nearby, weakly coupled nuclear spins. The characteristic frequencies of the modulations were obtained by Fourier transformation of the three-pulse, spin-echo envelopes. In transition-state analogue complexes of creatine kinase (enzyme-MnIIADP-anion-creatine), superhyperfine interactions from the directly coordinated nitrogen of the thiocyanate ligand give envelope modulations. The source of the modulations was confirmed by measurements with the 14N and 15N forms of thiocyanate. On the other hand, the nitrogen of coordinated nitrate, which is two bonds removed from the paramagnetic center, does not produce detectable modulations. In spectra for Mn(II) concanavalin A, envelope modulations are detected due to the nitrogen of the coordinated histidine residue. Complexes prepared in 2H2O give strong signals due to weakly coupled 2H. For Mn(II)-doped single crystals of sodium pyrophosphate, signals are observed in the frequency domain spectra that are due to coupling from 31P. Phosphorus signals from the ADP ligand in complexes with creatine kinase show approximately the same coupling constant but have a much broader line width.  相似文献   

11.
Natural substrate/product binding activates medium-chain acyl-CoA dehydrogenase (MCAD) to accept electrons from its substrate by inducing a positive flavin midpoint potential shift. The energy source for this activation has never been fully elucidated. If ground-state alterations of the ligand, such as polarization, are entirely responsible for enzyme activation, the ligand potential should shift equally to that of the flavin but in the opposite direction. Ligand polarization is likely responsible for only a small portion of this activation. Here, thiophenepropionoyl- and furylpropionoyl-CoA analogs were used to directly measure the redox modulations of several ligand couples upon binding to MCAD. These measurements identified the thermodynamic contribution of ligand polarization to enzyme activation. Because the ligand potential alterations are significantly smaller than modulations in the flavin potential due to binding, other phenomena such as pK(a) changes, desolvation, and charge alterations are likely responsible for the thermodynamic modulations required for MCAD's activity.  相似文献   

12.
13.
Typical features of natural sounds are amplitude changes at different time scales. In many species, amplitude modulations constitute decisive cues to recognize communication signals. Since these signals should be recognizable over a broad intensity range, we investigated how the encoding of amplitude modulations by auditory neurons depends on sound pressure level. Identified neurons that represent different processing stages in the locusts’ auditory pathway were stimulated with sinusoidal modulations of a broad band noise carrier, at different intensities, and characteristic parameters of modulation transfer functions (MTFs) were determined. The corner frequencies of temporal MTFs turned out to be independent of intensity for all neurons except one. Furthermore, for none of the neurons investigated corner frequencies were significantly correlated with spike rate, indicating a remarkable intensity invariance of the upper limits of temporal resolution. The shape of the tMTFs changed with increasing intensity from a low-pass to a band-pass for receptors and local neurons, while no consistent change was observed for ascending neurons. The best modulation frequency depended on intensity and spike rate, especially for receptors and local neurons. Remarkably, the adaptation state of some neurons turned out to be independent of the spike rate during the modulation part of the stimulus.  相似文献   

14.
Although beta oscillations (≈ 13–35 Hz) are often considered as a sensorimotor rhythm, their functional role remains debated. In particular, the modulations of beta power during preparation and execution of complex movements in different contexts were barely investigated. Here, we analysed the beta oscillations recorded with electroencephalography (EEG) in a precued grasping task in which we manipulated two critical parameters: the grip type (precision vs. side grip) and the force (high vs. low force) required to pull an object along a horizontal axis. A cue was presented 3 s before a GO signal and provided full, partial or no information about the two movement parameters. We measured beta power over the centro-parietal areas during movement preparation and execution as well as during object hold. We explored the modulations of power in relation to the amount and type of prior information provided by the cue. We also investigated how beta power was affected by the grip and force parameters.We observed an increase in beta power around the cue onset followed by a decrease during movement preparation and execution. These modulations were followed by a transient power increase during object hold. This pattern of modulations did not differ between the 4 movement types (2 grips ×2 forces). However, the amount and type of prior information provided by the cue had a significant effect on the beta power during the preparatory delay. We discuss how these results fit with current hypotheses on the functional role of beta oscillations.  相似文献   

15.
Brain activity is continuously modulated, even at “rest”. The alpha rhythm (8–12 Hz) has been known as the hallmark of the brain''s idle-state. However, it is still debated if the alpha rhythm reflects synchronization in a distributed network or focal generator and whether it occurs spontaneously or is driven by a stimulus. This EEG/fMRI study aimed to explore the source of alpha modulations and their distribution in the resting brain. By serendipity, while computing the individually defined power modulations of the alpha-band, two simultaneously occurring components of these modulations were found. An ‘induced alpha’ that was correlated with the paradigm (eyes open/ eyes closed), and a ‘spontaneous alpha’ that was on-going and unrelated to the paradigm. These alpha components when used as regressors for BOLD activation revealed two segregated activation maps: the ‘induced map’ included left lateral temporal cortical regions and the hippocampus; the ‘spontaneous map’ included prefrontal cortical regions and the thalamus. Our combined fMRI/EEG approach allowed to computationally untangle two parallel patterns of alpha modulations and underpin their anatomical basis in the human brain. These findings suggest that the human alpha rhythm represents at least two simultaneously occurring processes which characterize the ‘resting brain’; one is related to expected change in sensory information, while the other is endogenous and independent of stimulus change.  相似文献   

16.
Our purpose was to assess Hoffmann (H) reflex modulations of the soleus and fibularis longus in three body positions (prone, bipedal and unipedal stances) in subjects with and without chronic ankle instability (CAI). Sixteen subjects with unilateral CAI and 15 healthy controls participated. Maximum H-reflexes and motor (M) waves were recorded bilaterally from the soleus and fibularis longus while subjects lied prone and then stood in quiet bipedal and unipedal stances. Maximum H-reflexes were normalized to maximum M waves to obtain Hmax:Mmax ratios for the three positions. H-reflex modulations, for each muscle, were quantified as the percent change scores in Hmax:Mmax ratios between each pair of positions: prone to bipedal, bipedal to unipedal, and prone to unipedal. There were significant group by limb interactions found for all three modulations (P < 0.05) for the soleus. In the CAI group, soleus modulations in involved limbs were significantly lower than in uninvolved limbs and both limbs in the controls. For the fibularis longus, similar results were found for the bipedal to unipedal and prone to unipedal modulations. Constrained ability of the sensorimotor system to down regulate H-reflex in more demanding postures may represent a potential mechanism of postural control deficits associated with CAI.  相似文献   

17.
The influence of tonal modulation in pieces of music on the EEG parameters was studied. An EEG was recorded while subjects were listening to two series of fragments with modulations: controlled harmonic progressions and the fragments of classical musical compositions. Each series included modulations to the subdominant, the dominant, and the ascending minor sixth. The highly controlled and artistically impoverished harmonic progressions of the first series contrasted with the real music excerpts in the second series, which differed in tempo, rhythm, tessitura, duration, and style. Listening to harmonic progressions and musical fragments produced event-related synchronization in the α frequency band. Real musical fragments with modulation to the dominant generated lower synchronization in the α band as compared with other modulations. A lower decrease of synchronization in the α frequency band after listening was observed in the case of fragments of classical music compared with harmonic progressions.  相似文献   

18.
MJ Rosen  EC Sarro  JB Kelly  DH Sanes 《PloS one》2012,7(7):e41514
The acoustic rearing environment can alter central auditory coding properties, yet altered neural coding is seldom linked with specific deficits to adult perceptual skills. To test whether developmental hearing loss resulted in comparable changes to perception and sensory coding, we examined behavioral and neural detection thresholds for sinusoidally amplitude modulated (sAM) stimuli. Behavioral sAM detection thresholds for slow (5 Hz) modulations were significantly worse for animals reared with bilateral conductive hearing loss (CHL), as compared to controls. This difference could not be attributed to hearing thresholds, proficiency at the task, or proxies for attention. Detection thresholds across the groups did not differ for fast (100 Hz) modulations, a result paralleling that seen in humans. Neural responses to sAM stimuli were recorded in single auditory cortex neurons from separate groups of awake animals. Neurometric analyses indicated equivalent thresholds for the most sensitive neurons, but a significantly poorer detection threshold for slow modulations across the population of CHL neurons as compared to controls. The magnitude of the neural deficit matched that of the behavioral differences, suggesting that a reduction of sensory information can account for limitations to perceptual skills.  相似文献   

19.
In wave-type weakly electric fish, two distinct types of primary afferent fibers are specialized for separately encoding modulations in the amplitude and phase (timing) of electrosensory stimuli. Time-coding afferents phase lock to periodic stimuli and respond to changes in stimulus phase with shifts in spike timing. Amplitude-coding afferents fire sporadically to periodic stimuli. Their probability of firing in a given cycle, and therefore their firing rate, is proportional to stimulus amplitude. However, the spike times of time-coding afferents are also affected by changes in amplitude; similarly, the firing rates of amplitude-coding afferents are also affected by changes in phase. Because identical changes in the activity of an individual primary afferent can be caused by modulations in either the amplitude or phase of stimuli, there is ambiguity regarding the information content of primary afferent responses that can result in ‘phantom’ modulations not present in an actual stimulus. Central electrosensory neurons in the hindbrain and midbrain respond to these phantom modulations. Phantom modulations can also elicit behavioral responses, indicating that ambiguity in the encoding of amplitude and timing information ultimately distorts electrosensory perception. A lack of independence in the encoding of multiple stimulus attributes can therefore result in perceptual illusions. Similar effects may occur in other sensory systems as well. In particular, the vertebrate auditory system is thought to be phylogenetically related to the electrosensory system and it encodes information about amplitude and timing in similar ways. It has been well established that pitch perception and loudness perception are both affected by the frequency and intensity of sounds, raising the intriguing possibility that auditory perception may also be affected by ambiguity in the encoding of sound amplitude and timing.  相似文献   

20.
Takahashi T 《Cell calcium》2005,37(5):507-511
Ca2+ entry through voltage-gated Ca2+ channels (VGCC) triggers transmitter release. Direct recording of Ca2+ currents from the calyx of Held nerve terminal revealed that presynaptic VGCCs undergo various modulations via presynaptic G protein-coupled receptors (GPCRs), Ca2+-binding proteins and a developmental switch of their alpha1 subunits. Dynamic changes of presynaptic VGCCs alter synaptic efficacy, thereby contributing to a variety of modulations of the CNS function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号