首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. (1) Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a –CH2− group on folding contributes 1.1 ± 0.5 kcal/mol to protein stability. (2) The burial of non-polar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. (3) Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1 ± 0.8 kcal/mol to protein stability. (4) The contribution of hydrogen bonds to protein stability is strongly context dependent. (5) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (6) Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. (7) Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability.  相似文献   

2.
The results of a survey of 439 hydrogen bonds in 95 recently determined crystal structures of amino acids, peptides and related molecules suggest that the following generalizations hold true for linear (angle X-H---Y greater than 150 degrees) hydrogen bonds. (1) The charge on the acceptor group does not influence the length of a hydrogen bond. (2) For a given acceptor group, the hydrogen bond lengths increase in the order imidazolium N--H less than ammonium N-H less than guanidinium N-H; this order holds true for oxygen anion acceptor groups. Cl-ions and the uncharged oxygen of water molecules. (3) The uncharged imidazole N-H group forms shorter hydrogen than the amide N-H GROUP. (4) The carboxyl O-H groups form shorter hydrogen bonds than other hydroxyl groups. (5) The hydrogen bonds involving a halogen ion are longer than hydrogen bonds with other acceptors when corrected for their longer van der Walls radii. The observed differences between the lengths of hydrogen bonds formed by different donor and acceptor groups in amino acids and peptides, imply differences in the energetics of their formation.  相似文献   

3.
Our goal was to gain a better understanding of the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(ΔG), for a series of hydrogen bonding mutants in four proteins: villin headpiece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A, Y51F, and T95A. The structures are very similar to wild type RNase Sa and the hydrogen bonding partners form intermolecular hydrogen bonds to water in all three mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions. (1) Hydrogen bonds contribute favorably to protein stability. (2) The contribution of hydrogen bonds to protein stability is strongly context dependent. (3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. (5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein.  相似文献   

4.
The ionizable groups in proteins with the lowest pKs are the carboxyl groups of aspartic acid side-chains. One of the lowest, pK=0.6, is observed for Asp76 in ribonuclease T1. This low pK appeared to result from hydrogen bonds to a water molecule and to the side-chains of Asn9, Tyr11, and Thr91. The results here confirm this by showing that the pK of Asp76 increases to 1.7 in N9A, to 4.0 in Y11F, to 4.2 in T91V, to 4.4 in N9A+Y11F, to 4.9 in N9A+T91V, to 5.9 in Y11F+T91V, and to 6.4 in the triple mutant: N9A+Y11F+T91V. In ribonuclease Sa, the lowest pK=2.4 for Asp33. This pK increases to 3.9 in T56A, which removes the hydrogen bond to Asp33, and to 4.4 in T56V, which removes the hydrogen bond and replaces the -OH group with a -CH(3) group. It is clear that hydrogen bonds are able to markedly lower the pK values of carboxyl groups in proteins. These same hydrogen bonds make large contributions to the conformational stability of the proteins. At pH 7, the stability of D76A ribonuclease T1 is 3.8 kcal mol(-1) less than wild-type, and the stability of D33A ribonuclease Sa is 4.1 kcal mol(-1) less than wild-type. There is a good correlation between the changes in the pK values and the changes in stability. The results suggest that the pK values for these buried carboxyl groups would be greater than 8 in the absence of hydrogen bonds, and that the hydrogen bonds and other interactions of the carboxyl groups contribute over 8 kcal mol(-1) to the stability.  相似文献   

5.
For 30 years, the prevailing view has been that the hydrophobic effect contributes considerably more than hydrogen bonding to the conformational stability of globular proteins. The results and reasoning presented here suggest that hydrogen bonding and the hydrophobic effect make comparable contributions to the conformational stability of ribonuclease T1 (RNase T1). When RNase T1 folds, 86 intramolecular hydrogen bonds with an average length of 2.95 A are formed. Twelve mutants of RNase T1 [Tyr----Phe (5), Ser----Ala (3), and Asn----Ala (4)] have been prepared that remove 17 of the hydrogen bonds with an average length of 2.93 A. On the basis of urea and thermal unfolding studies of these mutants, the average decrease in conformational stability due to hydrogen bonding is 1.3 kcal/mol per hydrogen bond. This estimate is in good agreement with results from several related systems. Thus, we estimate that hydrogen bonding contributes about 110 kcal/mol to the conformational stability of RNase T1 and that this is comparable to the contribution of the hydrophobic effect. Accepting the idea that intramolecular hydrogen bonds contribute 1.3 +/- 0.6 kcal/mol to the stability of systems in an aqueous environment makes it easier to understand the stability of the "molten globule" states of proteins, and the alpha-helical conformations of small peptides.  相似文献   

6.
The dimeric interface of the leucine zipper coiled coil from GCN4 has been used to probe the contributions of hydrophobic and hydrogen bonding interactions to protein stability. We have determined the energetics of placing Ile or Asn residues at four buried positions in a two-stranded coiled coil. As expected, Ile is favored over Asn at these buried positions, but not as much as predicted by considering only the hydrophobic effect. It appears that interstrand hydrogen bonds form between the side-chains of the buried Asn residues and these contribute to the conformational stability of the coiled-coil peptides. However, these contributions are highly dependent on the locations of the Asn pairs. The effect of an Ile to Asn mutation is greatest at the N terminus of the peptide and decreases almost twofold as we move the substitution from the N to C-terminal heptads.  相似文献   

7.
Collagen is the most abundant protein in animals. The conformational stability of the collagen triple helix is enhanced by the hydroxyl group of its prevalent (2S,4R)-4-hydroxyproline residues. For 25 years, the prevailing paradigm had been that this enhanced stability is due to hydrogen bonds mediated by bridging water molecules. We tested this hypothesis with synthetic collagen triple helices containing 4-fluoroproline residues. The results have unveiled a wealth of stereoelectronic effects that contribute markedly to the stability of collagen, as well as other proteins. This new understanding is leading to synthetic collagens for a variety of applications in biotechnology and biomedicine.  相似文献   

8.
The binding of galactose-specific lectins from Erythrina indica (EIL), Erythrina arborescens (EAL), Ricinus communis (agglutinin; RCA-I), Abrus precatorius (agglutinin; APA), and Bandeiraea simplicifolia (lectin I; BSL-I) to fluoro-, deoxy-, and thiogalactoses were studied in order to determine the strength of hydrogen bonds between the hydroxyl groups of galactose and the binding sites of the proteins. The results have allowed insight into the nature of the donor/acceptor groups in the lectins that are involved in hydrogen bonding with the sugar. The data indicate that the C-2 hydroxyl group of galactose is involved in weak interactions as a hydrogen-bond acceptor with uncharged groups of EIL and EAL. With RCA-I, the C-2 hydroxyl group forms two weak hydrogen bonds in the capacity of a hydrogen-bond acceptor and a donor. On the other hand, there is a strong hydrogen bond between the C-2 hydroxyl group of galactose, which acts as a donor, and a charged group on BSL-I. The C-2 hydroxyl group of the sugar is also a hydrogen-bond donor to APA. The lectins are involved in strong hydrogen bonds through charged groups with the C-3 and C-4 hydroxyl groups of galactose, with the latter serving as hydrogen-bond donors. The C-6 hydroxyl group of the sugar is weakly hydrogen bonded with neutral groups of EIL, EAL, and APA. With BSL-I, however, a strong hydrogen bond is formed at this position with a charged group of the lectin. The C-6 hydroxyl groups is a hydrogen-bond acceptor for EIL and EAL, a hydrogen-bond donor for APA and BSL-I, and appears not to be involved in binding to RCA-I. The data with the thiosugars indicate the involvement of the C-1 hydroxyl group of galactose in binding to EIL, EAL, and BSL-I, but not to RCA-I and APA. We have also performed a similar analysis of the binding data of fluoro- and deoxysugars to concanavalin A [Poretz, R. D. and Goldstein, I. J. (1970) Biochemistry 9, 2890-2896]. This has allowed comparison of the donor/acceptor properties and free energies of hydrogen bonding of the hydroxyl groups of methyl alpha-D-mannopyranoside to concanavalin A with the results in the present study. On the basis of this analysis, new assignments are suggested for amino acid residues of concanavalin A [corrected] that may be involved in hydrogen bonding to the sugar.  相似文献   

9.
Abstract

Hydrogen bonds have been accredited with a major role historically, in the formation and stabilization of biomolecular structures. The formation of hydrogen bonds at protein-DNA interfaces in aqueous medium involves not only favorable interactions of the donor and acceptor functional groups but also a loss of interactions between these groups with the solvent water. We have investigated the energetics of about 500 potential hydrogen bonds occuring at protein-DNA interfaces incorporating some recent improvements in biomolecular force fields and solvation treatments. We present here results of our assessment of hydrogen bond contributions to the overall standard free energy of formation of protein-DNA complexes obtained with the generalized Born model and finite difference Poisson- Boltzmann methodology for solvation in conjunction with AMBER force field. Our results support the emerging view on the role of electrostatics in general and that of hydrogen bonds in particular which is that hydrogen bonds do not drive protein-DNA complex formation by virtue of the unfavourable cost of the electrostatics of desolvation. They however, act to stabilize the complex once it is formed.  相似文献   

10.
In globular proteins, there are intermolecular hydrogen bonds between protein and water molecules, and between water molecules, which are bound with the proteins, in addition to intramolecular hydrogen bonds. To estimate the contribution of these hydrogen bonds to the conformational stability of a protein, the thermodynamic parameters for denaturation and the crystal structures of five Thr to Val and five Thr to Ala mutant human lysozymes were determined. The denaturation Gibbs energy (DeltaG) of Thr to Val and Thr to Ala mutant proteins was changed from 4.0 to -5.6 kJ/mol and from 1.6 to -6.3 kJ/mol, respectively, compared with that of the wild-type protein. The contribution of hydrogen bonds to the stability (DeltaDeltaG(HB)) of the Thr and other mutant human lysozymes previously reported was extracted from the observed stability changes (DeltaDeltaG) with correction for changes in hydrophobicity and side chain conformational entropy between the wild-type and mutant structures. The estimation of the DeltaDeltaG(HB) values of all mutant proteins after removal of hydrogen bonds, including protein-water hydrogen bonds, indicates a favorable contribution of the intra- and intermolecular hydrogen bonds to the protein stability. The net contribution of an intramolecular hydrogen bond (DeltaG(HB[pp])), an intermolecular one between protein and ordered water molecules (DeltaG(HB[pw])), and an intermolecular one between ordered water molecules (DeltaG(HB[ww])) could be estimated to be 8. 5, 5.2, and 5.0 kJ/mol, respectively, for a 3 A long hydrogen bond. This result shows the different contributions to protein stability of intra- and intermolecular hydrogen bonds. The entropic cost due to the introduction of a water molecule (DeltaG(H)()2(O)) could be also estimated to be about 8 kJ/mol.  相似文献   

11.
Solid model compounds and the thermodynamics of protein unfolding.   总被引:7,自引:0,他引:7  
Analysis of thermodynamic data on the dissolution of solid cyclic dipeptides into water in terms of group additivity provides a rationale for the enthalpy and entropy convergence temperatures observed for small globular protein denaturation and the dissolution of model compounds into water. Convergence temperatures are temperatures at which the extrapolated enthalpy or entropy changes for a series of related compounds take on a common value. At these temperatures (TH* and TS*) the apolar contributions to the corresponding thermodynamic values (delta H degrees and delta S degrees) are shown to be zero. Other contributions such as hydrogen bonding and configurational effects can then be evaluated and their quantitative effects on the stability of globular proteins assessed. It is shown that the denaturational heat capacity is composed of a large positive contribution from the exposure of apolar groups and a significant negative contribution from the exposure of polar groups in agreement with previous results. The large apolar contribution suggests that a liquid hydrocarbon model of the hydrophobic effect does not accurately represent the apolar contribution to delta H degrees of denaturation. Rather, significant enthalpic stabilizing contributions are found to arise from peptide groups (hydrogen bonding). Combining the average structural features of globular proteins (i.e. number of residues, fraction of buried apolar groups and fraction of hydrogen bonds) with their specific group contributions permits a first-order prediction of the thermodynamic properties of proteins. The predicted values compare well with literature values for cytochrome c, myoglobin, ribonuclease A and lysozyme. The major thermodynamic features are described by the number of peptide and apolar groups in a given protein.  相似文献   

12.
The contribution of a specific hydrogen bond in apoflavodoxin to protein stability is investigated by combining theory, experiment and simulation. Although hydrogen bonds are major determinants of protein structure and function, their contribution to protein stability is still unclear and widely debated. The best method so far devised to estimate the contribution of side-chain interactions to protein stability is double mutant cycle analysis, but the interaction energies so derived are not identical to incremental binding energies (the energies quantifying net contributions of two interacting groups to protein stability). Here we introduce double-deletion analysis of 'isolated' residue pairs as a means to precisely quantify incremental binding. The method is exemplified by studying a surface-exposed hydrogen bond in a model protein (Asp96/Asn128 in apoflavodoxin). Combined substitution of these residues by alanines slightly destabilizes the protein due to a decrease in hydrophobic surface burial. Subtraction of this effect, however, clearly indicates that the hydrogen-bonded groups in fact destabilize the native conformation. In addition, molecular dynamics simulations and classic double mutant cycle analysis explain quantitatively that, due to frustration, the hydrogen bond must form in the native structure because when the two groups get approximated upon folding their binding becomes favorable. We would like to remark that 1), this is the first time the contribution of a specific hydrogen bond to protein stability has been measured by experiment; and 2), more hydrogen bonds need to be analyzed to draw general conclusions on protein hydrogen bond energetics. To that end, the double-deletion method should be of help.  相似文献   

13.
When localized adjacent to a Pro-kink, Thr and Ser residues can form hydrogen bonds between their polar hydroxyl group and a backbone carbonyl oxygen and thereby modulate the actual bending angle of a distorted transmembrane α-helix. We have used the homo-dimeric transmembrane cytochrome b(559)' to analyze the potential role of a highly conserved Ser residue for assembly and stabilization of transmembrane proteins. Mutation of the conserved Ser residue to Ala resulted in altered heme binding properties and in increased stability of the holo-protein, most likely by tolerating subtle structural rearrangements upon heme binding. The results suggest a crucial impact of an intrahelical Ser hydrogen bond in defining the structure of a Pro-kinked transmembrane helix dimer.  相似文献   

14.
Ankyrin repeat (AR) proteins are one of the most abundant classes of repeat proteins and are involved in numerous physiological processes. These proteins are composed of various numbers of AR motifs stacked in a nearly linear fashion to adopt an elongated and nonglobular architecture. One salient feature prevalent in such a structural unit is the TPLH tetrapeptide or a close variant, T/SxxH, which initiates the helix-turn-helix conformation and presumably contributes to conformational stability through a hydrogen-bonding network. In the present study, we investigated the roles of T/SxxH motif in the stability, structure, and function of AR proteins by a systematic and rationalized mutagenic study on, followed by biochemical and biophysical characterization of, gankyrin, an oncogenic protein composed of seven ARs and six T/SxxH tetrapeptides, and P16, a tumor suppressor with four ARs but no TPLH tetrapeptide. Our results showed that this tetrapeptide is ineffectual on global structure and function, but contributes significantly to conformational stability when its stabilizing potentials are fully realized in the local conformation, including (1) the intra-AR hydrogen bonding involving the hydroxyl group; (2) the intra-AR and inter-AR hydrogen bonds involving the imidazole ring; and (3) the hydrophobic interaction associated with the Thr-methyl group. Considering that the capping and close-to-capping units tend to have more sequence diversity and more conformational variation, it could be also generally true that a T/SxxH motif close to the terminal repeats contributes little or even negatively to stability with respect to Ala substitution, but substantially stabilizes the global conformation when located in the middle of a long stretch of ARs.  相似文献   

15.
The complexity of the interaction between major histocompatibility complex class II (MHC II) proteins and peptide ligands has been revealed through structural studies and crystallographic characterization. Peptides bind through side-chain "anchor" interactions with MHC II pockets and an extensive array of genetically conserved hydrogen bonds to the peptide backbone. Here we quantitatively investigate the kinetic hierarchy of these interactions. We present results detailing the impact of single side-chain mutations of peptide anchor residues on dissociation rates, utilizing two I-A(d)-restricted peptides, one of which has a known crystal structure, and 24 natural and non-natural amino acid mutant variants of these peptides. We find that the N-terminal P1, P4 and P6 anchor-pocket interactions can make significant contributions to binding stability. We also investigate the interactions of these peptides with four I-A(d) MHC II proteins, each mutated to disrupt conserved hydrogen bonds to the peptide backbone. These complexes exhibit kinetic behavior suggesting that binding energy is disproportionately invested near the peptide N terminus for backbone hydrogen bonds. We then evaluate the effects of simultaneously modifying both anchor and hydrogen bonding interactions. A quantitative analysis of 71 double mutant cycles reveals that there is little apparent cooperativity between anchor residue interactions and hydrogen bonds, even when they are directly adjacent (<5A).  相似文献   

16.
This paper proposes to assess hydrogen-bonding contributions to the protein stability, using a set of model proteins for which both X-ray structures and calorimetric unfolding data are known. Pertinent thermodynamic quantities are first estimated according to a recent model of protein energetics based on the dissolution of alkyl amides. Then it is shown that the overall free energy of hydrogen-bond formation accounts for a hydrogen-bonding propensity close to helix-forming tendencies previously found for individual amino acids. This allows us to simulate the melting curve of an alanine-rich helical 50-mer with good precision. Thereafter, hydrogen-bonding enthalpies and entropies are expressed as linear combinations of backbone-backbone, backbone-side-chain, side-chain-backbone, and side-chain-side-chain donor-acceptor contributions. On this basis, each of the four components shows a different free energy versus temperature trend. It appears that structural preference for side-chain-side-chain hydrogen bonding plays a major role in stabilizing proteins at elevated temperatures.  相似文献   

17.
To further examine the contribution of hydrogen bonds to the conformational stability of the human lysozyme, six Ser to Ala mutants were constructed. The thermodynamic parameters for denaturation of these six Ser mutant proteins were investigated by differential scanning calorimetry (DSC), and the crystal structures were determined by X-ray analysis. The denaturation Gibbs energy (DeltaG) of the Ser mutant proteins was changed from 2.0 to -5.7 kJ/mol, compared to that of the wild-type protein. With an analysis in which some factors that affected the stability due to mutation were considered, the contribution of hydrogen bonds to the stability (Delta DeltaGHB) was extracted on the basis of the structures of the mutant proteins. The results showed that hydrogen bonds between protein atoms and between a protein atom and a water bound with the protein molecule favorably contribute to the protein stability. The net contribution of one intramolecular hydrogen bond to protein stability (DeltaGHB) was 8.9 +/- 2.6 kJ/mol on average. However, the contribution to the protein stability of hydrogen bonds between a protein atom and a bound water molecule was smaller than that for a bond between protein atoms.  相似文献   

18.
Hydrogen bonding interactions are one of the most important single factors in protein-ligand interactions and molecular recognition. To probe the energetics of the interactions, we have analyzed the binding of 1-deoxy-, 2-deoxy- and 6-fluoro-6-deoxy- analogues of D-galactose (Gal) to a primary high-affinity periplasmic receptor for monosaccharide active transport. Kd values and atomic structures refined at 1.81 to 1.45 A resolution of the complexes have been determined and compared with those of Gal binding. With binding site residues and the bound modified sugars in nearly identical positions as found in the complex with Gal, the binding of 1-deoxy-Gal or 2-deoxy-Gal reflects the overall contribution of 1.8 kcal mol-1 per hydrogen bond (neutral-charge type) to the affinity of Gal. Neglected in these estimates is the contribution of van der Waals' forces that accompany the formation of hydrogen bonds with each sugar hydroxyl. Contrary to expectations, the 6-fluoro-6-deoxy analogue proved to be an inadequate probe of Gal OH6 as a hydrogen bond donor due to the binding of a new water molecule and structural changes arising from the electronegative fluoro group. This study sheds new light on the energetics of protein-ligand interactions and the use of engineered ligands in assessing these interactions.  相似文献   

19.
The enzyme phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 ester bond of membrane phospholipids. The highly conserved Tyr residues 52 and 73 in the enzyme form hydrogen bonds to the carboxylate group of the catalytic Asp-99. These hydrogen bonds were initially regarded as essential for the interfacial recognition and the stability of the overall catalytic network. The elimination of the hydrogen bonds involving the phenolic hydroxyl groups of the Tyr-52 and -73 by changing them to Phe lowered the stability but did not significantly affect the catalytic activity of the enzyme. The X-ray crystal structure of the double mutant Y52F/Y73F has been determined at 1.93 A resolution to study the effect of the mutation on the structure. The crystals are trigonal, space group P3(1)21, with cell parameters a = b = 46.3 A and c = 102.95 A. Intensity data were collected on a Siemens area detector, 8,024 reflections were unique with an R(sym) of 4.5% out of a total of 27,203. The structure was refined using all the unique reflections by XPLOR to a final R-factor of 18.6% for 955 protein atoms, 91 water molecules, and 1 calcium ion. The root mean square deviation for the alpha-carbon atoms between the double mutant and wild type was 0.56 A. The crystal structure revealed that four hydrogen bonds were lost in the catalytic network; three involving the tyrosines and one involving Pro-68. However, the hydrogen bonds of the catalytic triad, His-48, Asp-99, and the catalytic water, are retained. There is no additional solvent molecule at the active site to replace the missing hydroxyl groups; instead, the replacement of the phenolic OH groups by H atoms draws the Phe residues closer to the neighboring residues compared to wild type; Phe-52 moves toward His-48 and Asp-99 of the catalytic diad, and Phe-73 moves toward Met-8, both by about 0.5 A. The closing of the voids left by the OH groups increases the hydrophobic interactions compensating for the lost hydrogen bonds. The conservation of the triad hydrogen bonds and the stabilization of the active site by the increased hydrophobic interactions could explain why the double mutant has activity similar to wild type. The results indicate that the aspartyl carboxylate group of the catalytic triad can function alone without additional support from the hydrogen bonds of the two Tyr residues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号