首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In 30 experiments performed on 5 pregnant sheep, the rate of glucose transfer from the placenta to fetus via the umbilical circulation was measured while varying uterine blood flow by means of a cuff-type occluder and while maintaining a constant maternal glucose concentration by means of a 'glucose clamp'. Over the range of uterine blood flows obtained, there was no significant effect on the simultaneously measured umbilical blood flow. Fetal glucose uptake and arterial glucose concentration remained normal as the uterine blood flow rate decreased from 600 to 300 ml per min per kg of fetus. At blood flow rates less than 300 ml.min-1.kg-1, the fetal glucose uptake decreased and became negative in one instance while the arterial glucose concentration became variable and markedly increased in 2 animals. This increase in fetal glucose concentration was associated with a decrease in the uterine oxygen delivery rate, a decrease in fetal oxygen content and a decrease in fetal oxygen uptake. These observations support the concept that fetal glucose metabolism is altered by severe hypoxia and demonstrate that there is little effect of uterine blood flow on fetal glucose uptake in the normal physiological range.  相似文献   

2.
Although the administration of 100% O2 alone or combined with umbilical cord occlusion induces continuous breathing and arousal in the fetal sheep (Baier, Hasan, Cates, Hooper, Nowaczyk & Rigatto, 1990a), the individual contribution of O2 and cord occlusion to the response have not been determined. We hypothesized that if O2 is an important factor in the induction of continuous breathing, administration of O2 low enough (10%) to bring fetal arterial PO2 to about 20 torr while the fetus is breathing continuously should reverse these changes. Thus we subjected 12 chronically instrumented fetal sheep to 10% O2 for 10 minutes after the establishment of continuous breathing by O2 (4 fetuses; 137 +/- 1 days) or by O2 plus umbilical cord occlusion (8 fetuses; 134 +/- 1 days). Arterial PO2 decreased from about 250 torr to 20 torr during 10% O2. This induced a significant decrease in breathing output (EMGdi x f) related primarily to a decrease in frequency (f). In 3/5 experiments in 4 fetuses, with O2 alone, apnoea developed within 4 +/- 0.6 min; in 12/13 experiments in 8 fetuses, with added cord occlusion it developed at 5 +/- 0.6 min. With the decrease in PaO2, electrocortical activity (ECoG) switched from low to high-voltage within 6 minutes in 5/5 experiments (O2 alone) and in 11/13 (O2 plus cord occlusion). The findings suggest that umbilical cord occlusion alone is not sufficient to maintain breathing continuously and an increased PaO2 is needed. We speculate that in the fetus there is a vital link between PaO2, breathing and ECoG with low PaO2 inhibiting and high PaO2 favouring breathing and arousal.  相似文献   

3.
This study examined the hypothesis that repeated episodes of brief but severe hypoxia would not attenuate the chemoreflex-mediated rapid initial fall in fetal heart rate (FHR) and, further, that greater hypoxic stress, as shown by hypotension and metabolic acidosis, would be associated with an enhanced chemoreflex response. Chronically instrumented, near-term fetal sheep received 1 min total umbilical cord occlusion either every 5 min for 4 h (1:5 group; n = 8) or every 2.5 min (1:2.5 group; n = 8) until mean arterial blood pressure fell to <20 mmHg on two successive occlusions. Umbilical cord occlusion caused variable decelerations, with sustained hypertension in the 1:5 group and little change in acid-base status (pH 7.34 +/- 0.03 after 4 h). In contrast, the 1:2.5 group showed progressive hypotension and metabolic acidemia (pH 6.92 +/- 0.04 after the last occlusion). The 1:2.5 group showed a significant increase in the rate of initial fall in FHR during the occlusion series, which was greater than the 1:5 group in the last 30 min of the occlusion series (9.4 +/- 1.4 vs. 3.5 +/- 0.3 beats.min(-1).s(-1); P < 0.01), with a greater fall in FHR (71.9 +/- 6.5 vs. 47.0 +/- 8.7 beats/min; P < 0.05). In summary, this study demonstrated that repetitive laborlike cord occlusions, which led to severe fetal compromise, were associated with an increase in the slope and magnitude of the initial FHR deceleration. These findings support the concept of the chemoreflex as a central, robust component of fetal adaptation to severe hypoxia.  相似文献   

4.
There is limited information about whether preexisting fetal hypoxia alters hemodynamic responses and changes in T/QRS ratio and ST waveform shape during subsequent severe asphyxia. Chronically instrumented near-term sheep fetuses (124 +/- 1 days) were identified as either normoxic Pa(O(2)) > 17 mmHg (n = 9) or hypoxic Pa(O(2)) < or = 17 mmHg (n = 5); then they received complete occlusion of the umbilical cord for 15 min. Umbilical cord occlusion led to sustained bradycardia, severe acidosis, and transient hypertension followed by profound hypotension in both groups. Preexisting hypoxia did not affect changes in mean arterial blood pressure but was associated with a more rapid initial fall in femoral blood flow and vascular conductance and with transiently higher fetal heart rate at 2 min and from 9 to 11 min of occlusion compared with previously normoxic fetuses. Occlusion was associated with a significant but transient rise in T/QRS ratio; preexisting hypoxia was associated with a significant delay in this rise (maxima 3.7 +/- 0.4 vs. 6.2 +/- 0.5 min), but a slower rate of fall. There was a similar elevation in troponin-T levels 6 h after occlusion in the two groups [median (range) 0.43 (0.08, 1.32) vs. 0.55 (0.16, 2.32) microg/l, not significant]. In conclusion, mild preexisting hypoxia in normally grown singleton fetal sheep is associated with more rapid centralization of circulation after umbilical cord occlusion and delayed elevation of the ST waveform and slower fall, suggesting that chronic hypoxia alters myocardial dynamics during asphyxia.  相似文献   

5.
There is evidence that preterm fetuses have blunted chemoreflex-mediated responses to hypoxia. However, the preterm fetus has much lower aerobic requirements than at term, and so moderate hypoxia may not be sufficient to elicit maximal chemoreflex responses; there are only limited quantitative data on the ontogeny of chemoreflex and hemodynamic responses to severe asphyxia. Chronically instrumented fetal sheep at 0.6 (n = 12), 0.7 (n = 12), and 0.85 (n = 8) of gestational age (GA; term = 147 days) were exposed to 30, 25, or 15 min of complete umbilical cord occlusion, respectively. At all ages, occlusion was associated with early onset of bradycardia, profoundly reduced femoral blood flow and conductance, and hypertension. The 0.6-GA fetuses showed a significantly slower and lesser fall in femoral blood flow and conductance compared with the 0.85-GA group, with a correspondingly reduced relative rise in mean arterial blood pressure. As occlusion continued, the initial adaptation was followed by loss of peripheral vasoconstriction and progressive development of hypotension in all groups. The 0.85-GA fetuses showed significantly more sustained reduction in femoral conductance but also more rapid onset of hypotension than either of the younger groups. Electroencephalographic (EEG) activity was suppressed during occlusion in all groups, but the degree of suppression was less at 0.6 GA than at term. In conclusion, the near-midgestation fetus shows attenuated initial (chemoreflex) peripheral vasomotor responses to severe asphyxia compared with more mature fetuses but more sustained hemodynamic adaptation and reduced suppression of EEG activity during continued occlusion of the umbilical cord.  相似文献   

6.
This study examined the hypothesis that the development of hydrops fetalis after asphyxia in the 0.6 gestation sheep fetus would be associated with activation of the fetal renin-angiotensin system (RAS). Fetuses were randomly assigned to either sham occlusion (n = 7) or to 30 min of asphyxia induced by complete umbilical cord occlusion for 30 min (n = 8). Asphyxia led to severe bradycardia and hypotension that resolved after release of occlusion. After occlusion, plasma renin concentration was significantly increased in the asphyxia group compared with controls (P < 0.005) after 3 min (16.3 +/- 5.3 vs. 4.1 +/- 1.3 ng. ml(-1). h(-1)), and 72 h (30.6 +/- 6.3 vs. 3.7 +/- 1.2 ng. ml(-1). h(-1)). Renal renin concentrations and mRNA levels were significantly greater in the asphyxia group after 72 h of recovery. All fetuses in the asphyxia group showed generalized tissue edema, ascites, and pleural effusions after 72 h of recovery. In conclusion, asphyxia in the preterm fetus caused sustained activation of the RAS, which was associated with hydrops fetalis.  相似文献   

7.
To study the effects of reduced uterine blood flow on fetal and placental metabolism, adrenaline has been infused at physiological doses (0.5 microgram/min per kg) into the circulation of the pregnant sheep. This gives a reduction of about one third of uterine blood flow at days 120-143 of pregnancy, but causes no significant change in umbilical blood flow. In contrast to the effects of constricting the uterine artery to reduce blood flow to a similar degree, placental oxygen consumption was reduced and that, together with a large increase in lactate production, indicated the placenta became hypoxic. The fetal blood gas status and hence oxygen consumption was not affected significantly. A consistent arterio-venous difference for glucose across the umbilical or uterine circulations was not detected unless the uterine blood flow was comparatively high. Glucose balance across the uterus showed a close linear relationship with uterine blood flow and more particularly with the supply of glucose to the uterus. There was clear evidence for glucose uptake by the placenta and fetus and also glucose output by both. The latter was more common when uterine blood flow was comparatively low or reduced by adrenaline infusion. The results are consistent with the concept that glucose supply has to be maintained to the placenta even at the expense of fetal stores, although lactate can substitute if there is enhanced output because of fetal hypoxia. They indicate that placental mobilisation of glycogen can lead to a net output of glucose to the mother. The manner of communicating to the fetus changes in placental state that occur during maternal adrenaline infusion is not clear. However towards the end of the 60 min infusion, elevation of fetal plasma adrenaline, probably resulting from a breakdown of the placental permeability barrier, may be an important signal.  相似文献   

8.
This study was undertaken to determine the mechanisms mediating changes in fetal heart rate variability (FHRV) during and after exposure to asphyxia in the premature fetus. Preterm fetal sheep at 0.6 of gestation (91 +/- 1 days, term is 147 days) were exposed to either sham occlusion (n = 10) or to complete umbilical cord occlusion for either 20 (n = 7) or 30 min (n = 10). Cord occlusion led to a transient increase in FHRV with abrupt body movements that resolved after 5 min. In the 30 min group there was a marked increase in FHRV in the final 10 min of occlusion related to abnormal atrial activity. After reperfusion, FHRV in both study groups was initially suppressed and progressively increased to baseline levels over the first 4 h of recovery. In the 20 min group this improvement was associated with return of normal EEG activity and movements. In contrast, in the 30 min group the EEG was abnormal with epileptiform activity superimposed on a suppressed background, which was associated with abnormal fetal movements. As the epileptiform activity resolved, FHRV fell and became suppressed for the remainder of the study. Histological assessment after 72 h demonstrated severe brain stem injury in the 30 min group but not in the 20 min group. In conclusion, during early recovery from asphyxia, epileptiform activity and associated abnormal fetal movements related to evolving neural injury can cause a confounding transient increase in FHRV, which mimics the normal pattern of recovery. However, chronic suppression of FHRV was a strong predictor of severe brain stem injury.  相似文献   

9.
Experiments were conducted in unanesthetized, chronically catheterized pregnant sheep to determine the fetal behavioral response to prolonged hypoxemia produced by restricting uterine blood flow. Uterine blood flow was reduced by adjusting a vascular occluder placed around the maternal common internal iliac artery to decrease fetal arterial O2 content from 6.1 +/- 0.3 to 4.1 +/- 0.3 ml/dl for 48 h. Associated with the decrease in fetal O2 content, there was a slight increase in fetal arterial PCO2 and decrease in pH, which were both transient. There was an initial inhibition of both fetal breathing movements and eye movements but no change in the pattern of electrocortical activity. After this initial inhibition there was a return to normal incidence of both fetal breathing movements and eye movements by 16 h of the prolonged hypoxemia. These studies indicate that the chronically catheterized sheep fetus is able to adapt behaviorally to a prolonged decrease in arterial O2 content secondary to the restriction of uterine blood flow.  相似文献   

10.
Fetal hypoglycaemia consequent on food withdrawal for 48 h in sheep in late pregnancy is accompanied by an increase in fetal PGE2 plasma concentrations and myometrial contractility. To assess the contribution of fetal hypoglycaemia and related cellular glucopenia in the increased production of fetal PGE2 we studied the effect of 48 h insulin infusion to the fetus. Fetal whole blood glucose was lowered from 19 +/- 2 to 9 +/- 1 mg.dl-1. This experimental regimen maintains glucose availability to those fetal cells in which insulin increases glucose uptake. Fetal umbilical venous and femoral arterial PGE2 concentrations and umbilical veno-arterial PGE2 difference were unchanged, but maternal uterine veno-arterial difference for PGFM increased during the insulin induced fetal hypoglycaemia. Myometrial activity was also unchanged. We conclude that the increased fetal PGE concentration previously reported during food withdrawal is due to a deficiency of glucose to specific insulin dependent cells within vascular beds served by the fetal cardiovascular system. In addition, the findings suggest a need for a supply of glucose of fetal origin for cells that are responsible for increased PGFM concentrations in the maternal uteroplacental circulation.  相似文献   

11.
Total serum calcium (Ca), ionic calcium (Ca++), phosphorus, magnesium, total protein, immunoreactive parathyroid hormone (iPTH), calcitonin (iCT) and prolactin (iPRL) were measured in 30 paired samples of cord and maternal blood obtained at term delivery. In the cord blood, the concentrations of Ca, Ca++, phosphorus, magnesium, albumin, iCT and iPRL were all higher, and the concentrations of total protein and iPTH lower than in the maternal blood. The calcium binding capacity of albumin assessed with the equation (Ca-Ca++)/albumin, was similar at a given concentration of Ca in both the maternal and fetal circulations. There was a significant positive correlation between cord Ca++ and maternal Ca or Ca++, and a significant negative correlation between Ca++ and iPRL in cord blood. These data suggest that there is an active system transporting calcium from mother to fetus through the placenta, and PRL is the only one of the three hormones which was correlated with ionic calcium values in the fetus. The negative relationship between Ca++ and iPRL in the cord blood suggests an inhibitory effect of the relative hypercalcemia on PRL secretion in the fetus.  相似文献   

12.
The goal of this study was to assess the response of fetal brown fat in vivo to hypothermia and norepinephrine infusion. In 10 unanaesthetized, chronically-prepared fetal sheep (133 +/- 2 days of gestation) cold water was passed through tubing encircling the fetus in utero and plasma glycerol concentration was measured as an indicator of brown fat activity. Following cooling for 60 min, amniotic fluid temperature fell 7.79 degrees C to 31.66 +/- 1.73 degrees C (n = 8, P less than 0.001) and maternal temperature fell 0.63 degree C to 38.63 +/- 0.08 degrees C (n = 9, P less than 0.001). Eight of the fetuses were subjected to a second experiment in which norepinephrine was infused intravenously for 15 min. During infusion fetal arterial temperature fell 0.38 degrees C to 39.05 +/- 0.25 degrees C (n = 7, P less than 0.05). Amniotic fluid temperature (n = 7, NS) and maternal arterial temperature (n = 7, NS) remained constant. Glycerol concentration during the infusion increased from 0.73 to 1.27 mg/dl, a 74% increase over control (n = 8, P less than 0.001). Although clearly detectable, these glycerol responses to hypothermia and norepinephrine stimulation are one-third or less of those achieved after birth, indicating that thermogenesis remains quiescent in the near-term fetal sheep, despite powerful stimuli for activation.  相似文献   

13.
The present study aimed to determine the relationship among changes in the number of preantral follicles and concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P4), androstenedione (A) and estradiol-17beta (E2) in the fetal heart, umbilical cord and maternal blood. Primordial follicles had already appeared in a 20 cm fetus and primary follicles were observed in a 50 cm fetus. In a 70 cm fetus, the number of primordial and primary follicles increased rapidly and secondary follicles were present. The concentrations of LH and FSH did not change between 20 cm and 160 cm in fetal length. When the fetal length became > 70 cm, serum levels in the fetus, umbilical cord and mothers, and E2 levels in umbilical cord increased synchronously (p < 0.05). These results showed increases in the number of preantral follicles in the Antarctic minke whale fetal ovary along with fetal growth during the early gestation period. These findings suggest that the change in preantral follicles was associated with changes in the concentration of steroids in early gestation periods. The changes in steroid concentrations in the fetal and umbilical cord blood and the increased number of preantral follicles were coincident at around 70 cm in fetal length, whereas the growth and differentiation of primordial and primary follicles appeared to be independent of FSH and LH.  相似文献   

14.
The administration of glyceryl trinitrate (GTN; nitroglycerin) is increasing during preterm pregnancies, yet its disposition and, importantly, the extent of fetal exposure remain to be elucidated. When used as a tocolytic (pharmacological agent that stops uterine contractions), it is administered transdermally (24-48 h). Here, we quantified the maternal and fetal steady-state plasma concentrations of maternal intravenous GTN in preterm sheep and continuously monitored maternal and fetal vascular parameters to observe possible dose-dependent vascular effects. Preterm (120 days gestation) pregnant sheep (n = 6) were instrumented with maternal femoral arterial (MA) and venous (MV) and fetal femoral arterial (FA) and umbilical venous (UV) polyethylene blood-sampling catheters. During maternal GTN infusion (3.0 micro g.kg-1.min-1, 60-min duration) the steady-state GTN concentrations ([GTN]) were as follows: MA, 98.6 +/- 9.0 nM; UV, 17.4 +/- 7.6 nM; and FA, <5 nM. There were no changes in maternal and fetal mean arterial pressure and heart rate or in uterine activity. Overall, the steady-state [GTN] was established by 5 min, and the UV/MA ratio of [GTN] was 0.18. The FA [GTN] (<5 nM) indicates that the fetus cleared essentially all GTN in the UV, and the maternal and fetal heart rate and mean arterial pressure appear to be independent of maternal GTN infusion.  相似文献   

15.
We tested the hypothesis that the continuous breathing response to oxygen or oxygen plus umbilical cord occlusion, in the fetal sheep, could be modified by gestational age or labour. We studied 35 chronically instrumented fetal sheep on 84 occasions during late gestation (124 to 141 days), using our window model (Rigatto, 1984). After a resting cycle (1 low-voltage followed by 1 high-voltage electrocortical activity epoch), the fetal lung was distended via an endotracheal tube using mean airway pressure of about 30 cm H2O. Inspired nitrogen, and 100% O2 were given to the fetus during one cycle each. While on 100% O2 the umbilical cord was occluded using a balloon cuff. We found that: (1) the continuous breathing response to 100% O2 occurring in 8% of the experiments at a gestational age less than 130 days, in 25% from 130 to 134 days and in 45% at gestational ages greater than 134 days (P < 0.01); (2) at similar gestational age intervals the breathing responses to umbilical cord occlusion were 67%, 84%, and 100% (P < 0.01); and (3) in the presence of labour, 45% of the experiments responded to O2 with continuous breathing as compared to 23% in the absence of labour (P < 0.01). Cord occlusion did not affect these values. Because the highest PaO2 achieved increased significantly to 128 days but not thereafter it is unlikely that these results can be explained on the basis of an increase in PaO2 alone. We speculate that there is an age related maturation of the inhibition of breathing normally present in the fetus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In the unanaesthetized fetal sheep, long-term suprarenal aortic blood flow reduction will cause upper body arterial blood pressure to increase. To see if the response to this procedure was entirely due to the concomitant increase in plasma renin activity, we gave an angiotensin I infusion of several days to 7 fetal sheep and compared their responses to those of 4 fetal sheep undergoing partial occlusion of the aorta above the renal arteries. Both protocols caused upper body arterial blood pressure to increase to comparable levels. Angiotensin I infusion had no effect upon venous blood pressure while suprarenal aortic blood flow reduction caused a significant increase in venous blood pressure as early as 1 day after blood flow reduction. Haematocrits were unchanged in the fetuses with flow restriction but increased in the infused fetuses. We conclude that long-term angiotensin I infusion in the fetus does not mimic the entire complex of responses to suprarenal aortic blood flow reduction.  相似文献   

17.
The metabolic adaptation of the hindlimb in the fetus to a reversible period of adverse intrauterine conditions and, subsequently, to a further episode of acute hypoxemia has been examined. Sixteen sheep fetuses were chronically instrumented with vascular catheters and transit-time flow probes. In nine of these fetuses, umbilical blood flow was reversibly reduced by 30% from baseline for 3 days (umbilical cord compression), while the remaining fetuses acted as sham-operated, age-matched controls. Acute hypoxemia was subsequently induced in all fetuses by reducing maternal fractional inspired oxygen concentration for 1 h. Paired hindlimb arteriovenous blood samples were taken at appropriate intervals during cord compression and acute hypoxemia, and by using femoral blood flow and the Fick principle, substrate delivery, uptake, and output were calculated. Umbilical cord compression reduced blood oxygen content and delivery to the hindlimb and increased hindlimb oxygen extraction and blood glucose and lactate concentration in the fetus. However, hindlimb glucose and oxygen consumption were unaltered during umbilical cord compression. In contrast, hindlimb oxygen delivery and uptake were significantly reduced in all fetuses during subsequent acute hypoxemia, but glucose extraction, oxygen extraction, and hindlimb lactate output significantly increased in sham-operated control fetuses only. Preexposure of the fetus to a temporary period of adverse intrauterine conditions alters the metabolic response of the fetal hindlimb to subsequent acute stress. Additional data suggest that circulating blood lactate may be derived from sources other than the fetal hindlimb under these circumstances. The lack of hindlimb lactate output during acute hypoxemia in umbilical cord-compressed fetuses, despite a significant fall in oxygen delivery to and uptake by the hindlimb, suggests that the fetal hindlimb may not respire anaerobically after exposure to adverse intrauterine conditions. hypoxia  相似文献   

18.
Cortisol induces perinatal hepatic gluconeogenesis in the lamb.   总被引:1,自引:0,他引:1  
To examine the influence of a prenatal increase in plasma cortisol concentration on perinatal initiation of hepatic gluconeogenesis, we infused cortisol into seven fetal sheep at 137-140 days gestation. 14C-Lactate provided tracer substrate for estimation of gluconeogenesis. We measured hepatic blood flow using radionuclide-labeled microspheres. After delivery, fetal arterial blood glucose concentration (1.33 +/- 0.4 mmol/l) increased transiently, but returned to fetal levels within 1 h after delivery. Substantial hepatic gluconeogenesis was induced in the fetus after cortisol infusion, averaging 23.4 +/- 12.2 mumol/min/100 g liver (7.8 +/- 4.4 mumol/min/kg fetal weight). Fetal hepatic glucose output was 44.4 +/- 17.7 mumol/min/100 g liver. Hepatic glucose output did not change after delivery; estimated gluconeogenesis decreased immediately, then increased by 6 h after delivery. Lactate supply to the liver fell substantially, from 1.1 +/- 0.4 mmol/min/100 g in the fetus to 0.24 +/- 0.09 at 1 h after delivery. Lactate flux across the liver decreased from 75.3 +/- 23 mumol/min/100 g in the fetus to 20.2 +/- 15.7 at 1 h after delivery. Hepatic lactate flux was significantly related to gluconeogenesis (r = 0.734, P = 0.0001). We conclude that cortisol induces substantial hepatic gluconeogenesis in fetal sheep near term. After delivery, there appears to be a transient decline in gluconeogenesis from lactate, which may be secondary to limited hepatic oxygen and substrate supply. Onset of gluconeogenesis in the fetus fails to sustain increases in either fetal or postnatal blood glucose concentrations.  相似文献   

19.
The role of umbilical cord occlusion in the initiation of breathing at birth was investigated by use of 16 unanesthetized fetal sheep near full term. Artificial ventilation with high-frequency oscillation was used to control fetal arterial blood gas tensions. At baseline, PCO2 was maintained at control fetal values and PO2 was elevated to between 25 and 50 Torr. In the first study on six intact and four vagotomized fetuses, arterial PCO2 and PO2 were maintained constant during two 30-min periods of umbilical cord occlusion. Nevertheless, the mean fetal breathing rate increased significantly when the umbilical cord was occluded. In the second study on six intact fetuses, hypercapnia (68 Torr) was imposed by adding CO2 to the ventilation gas. When the umbilical cord was occluded, there was a significantly greater stimulation of breathing (rate, incidence, and amplitude) in response to hypercapnia than in response to hypercapnia alone. During cord occlusion, plasma prostaglandin E2 concentration decreased significantly. Results indicate that cord occlusion stimulates breathing possibly by causing the removal of a placentally produced respiratory inhibitor such as prostaglandin E2 from the circulation.  相似文献   

20.
Evaluation of bidirectional transfer of plasma DNA through placenta   总被引:11,自引:0,他引:11  
To clarify the origin of cell-free fetal DNA in maternal plasma, we analyzed bidirectional transfer of plasma DNA between fetus and mother. We analyzed maternal and fetal plasma DNA obtained from 15 pregnant women at the time of Cesarean section. The subjects were five patients with preeclampsia and 10 gestational-age-matched normal controls. DNA was extracted from 1.5-ml plasma samples and the cellular fraction of maternal and umbilical blood. Seven polymorphic marker genes were analyzed. The relative concentration of fetal DNA in maternal plasma and maternal DNA in cord blood were evaluated. The relative concentration of maternal DNA in fetal circulation (median, 0.9%; range, 0.2–8.4%) was significantly lower than that of fetal DNA in maternal blood (14.3%, 2.3–64%), with P=0.007. The relative concentration of maternal DNA in fetal blood was not affected by preeclampsia. These findings indicate that cell-free DNA is unequally transferred through the placenta. The structural characteristics of the placenta suggest that the majority of cell-free fetal DNA in maternal plasma is derived from villous trophoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号