首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phylogenetic analysis of the interrelationships of the barbets (Capitonidae) and the toucans (Aves: Ramphastidae, Superfamily Ramphastoidea) is presented. Thirty-two morphological characters from the literature and independent osteological observations were analysed. Character polarity was determined by outgroup comparison to the Picidae, Indicatoridae, Galbulidae, Bucconidae and Coraciiformes. Four alternative phylogenetic hypotheses were compared: (1) the overall most parsimonious morphological phylogeny, (2) the most parsimonious morphological phylogeny in which the capitonids and ramphastids were hypothesized as monophyletic sister groups, and (3) and (4) the most parsimonious hypotheses for the evolution of the morphological characters within two proposed DNA-DNA hybridization phylogenies of the ramphastoids. The analysis focused on the higher level relationships of ramphastids and capitonids and interrelationships among capitonid genera. Two cladistic analyses were performed using 26 phylogenetically informative characters, and the PAUP and CONTREE computer alogorithms. The most parsimonious morphological phylogeny required fewer character changes and had a lower consistency index than any of the alternative hypotheses but congruence between the most parsimonious phylogeny and the second, revised DNA-DNA hybridization hypothesis was very high. Based on these results the monophyly of the Capitonidae is rejected. The ramphastids and the Neotropical capitonids form a well corroborated clade within the pantropical ramphastoid radiation. Neither the African, Asian nor New World capitonids is monophyletic. The genus Trachyphonus is the sister group to all other capitonids and ramphastids. The sister group to the ramphastids is the genus Semnornis. The interrelationships of the Old World capitonids excluding Trachyphonus are not completely resolved by these morphological data but one of the alternative phylogenetic resolutions is presented as a preliminary hypothesis. The clades in this resolved phylogeny are diagnosed and the palaeontology and biogeography of the ramphastoids arc-reviewed in light of this new evidence. A phylogenetic classification is proposed in which the Capitonidae is rejected and the capitonids and ramphastids are placed in seven subfamilies of the Ramphastidae.  相似文献   

2.
Picoides is the largest genus of woodpeckers and member species are found on most major land masses. Current systematic arrangement of this group, based on morphological, behavioral, and plumage characters, suggests that New World species evolved from a single invasion by a Eurasian common ancestor and that all New World species form a monophyletic group. No clear link has ever been established between the relationships of Old World and New World species other than to infer that the most primitive species is Eurasian. This study employs DNA sequences for two protein-coding mitochondrial genes, cytochrome oxidase I and cytochrome b, to reconstruct phylogenetic relationships among all New World species and several Eurasian representatives of the genus Picoides. A well-resolved mitochondrial gene tree is in direct conflict with proposed species relationships based on nongenetic characters; monophyly among New World species is rejected, the evolution of New World species likely resulted from as many as three independent Eurasian invasions, and Picoides is paraphyletic with two other woodpecker genera, Veniliornis and Dendropicos. These results strongly suggest that this large, cosmopolitan genus is in need of systematic revision in order to reflect evolutionary history.  相似文献   

3.
A new species of conifer was recently discovered in northern Vietnam. In a preliminary phylogenetic analysis of morphological data a possible sister species, Chamaecyparis nootkatensis (D. Don) Spach, was identified; however, because of the presumed phylogenetic remoteness of these two species to the remainder of the Cupressaceae, a new genus-Xanthocyparis-was described to accommodate both species. Here an analysis of ITS (nrDNA), matK, and rbcL sequence data in combination with 58 informative morphological characters was aimed at testing the monophyly of the remainder of Chamaecyparis and evaluating the placement and monophyly of Xanthocyparis. Chamaecyparis, minus C. nootkatensis, was resolved as a monophyletic group, remote from Cupressus and Xanthocyparis. Cupressus, Juniperus, and Xanthocyparis formed a very highly supported monophyletic group. However, Cupressus was not monophyletic. Instead the Old World species sampled were resolved sister to a clade containing a monophyletic Juniperus, a monophyletic Xanthocyparis, and a clade of New World Cupressus species. If both species of Xanthocyparis are to be treated as members of the same genus, then due to the principal of priority they will have to be recognized in the genus Callitropsis. Research is continuing to resolve the status of New World and Old World Cupressus.  相似文献   

4.
Species of the genus Antirrhinum (Veronicaceae) provide excellent opportunities for research on plant evolution given their extensive morphological and ecological diversity. These opportunities are enhanced by genetic and developmental data from the model organism Antirrhinum majus. The genus Antirrhinum includes 15 New World species in section Saerorhinum and 21 Old World species in sections Antirrhinum and Orontium. Phylogenetic analyses of sequences of the internal transcribed spacer region (ITS) of nuclear ribosomal DNA were conducted for 19 Antirrhinum species, including all species from the New World, and 13 related genera in the tribe Antirrhineae. These analyses confirm the monophyly of Antirrhinum given the inclusion of the small genus Mohavea and exclusion of A. cyathiferum. The New World species, all of which are tetraploid, form a clade that is weakly supported as sister to the Old World sect. Orontium. The Old World species in sect. Antirrhinum form a well-supported clade that is sister to the remainder of the genus. In addition, both molecular and morphological data are used in the most comprehensive effort to date focused on recovering the phylogenetic relationships among the extremely diverse species in section Saerorhinum.  相似文献   

5.
The availability of standard protocols to obtain DNA sequences has allowed the inference of phylogenetic Hypotheses for many taxa, including moths. We here have inferred a phylogeny using maximum‐Likelihood and Bayesian approaches for a species‐rich group of moths (Erebidae, Arctiinae), with strong emphasis on Neotropical genera collected in different field campaigns in the Atlantic Forest of Brazil, eastern Amazon and southern Ecuador. A total of 277 species belonging to 246 genera were included in the analysis. Our main objectives were to shed light on the relationships between suprageneric groups, especially subtribes, and hypothesize colonization events in and out of the Neotropics. The monophyly of Arctiinae and its four tribes (Lithosiini, Amerilini, Syntomini and Arctiini) was recovered in the ML and Bayesian trees. Three Lithosiini subtribes previously found and two additional species groups were recovered monophyletic in both phylogenetic estimation methods. In Arctiini, the monophyly of Spilosomina and Arctiina was highly supported in the ML and Bayesian trees, but the monophyly of Ctenuchina and Echromiina was weakly supported in the ML tree and absent in the Bayesian tree; the remaining subtribes were paraphyletic and, in the case of Phageopterina, formed several species groups. The mapping of species occurrence in our ML tree suggests that Arctiinae have an Old World origin and that the Neotropical region was colonized at least six times independently. Our analysis also suggests that a number of species that occur in Neotropical and other zoogeographic regions may have originated in the Neotropics, although further taxon sampling is required to support this hypothesis. To our knowledge, this is the first time that a highly speciose group of tropical moths is well covered in a phylogeny, and it seems plausible that the results reported here may be extendable to other species‐rich tropical undersampled moth taxa.  相似文献   

6.
7.
运用广义形态学性状对虎尾草亚科(Chloridoideae)进行系统发育分析。内类群包括虎尾草亚科52属的69种植物,代表虎尾草亚科的主要类群;芦竹亚科(Arundinoideae)扁芒草族(Danthonieae)的Centropodia和Danthonia被选作外类群。分支分析表明,虎尾草亚科是一个单系类群。其严格一致树包括A、B、C、D、E5个分支。两个大族画眉草族(Eragrostideae)和虎尾草族(Chlorideae)代表虎尾草亚科内部类群分化的两个方向,分开处理较合理。细穗草族(Leptureae)放到虎尾草族中较合理。冠芒草族(Pappophoreae)是虎尾草亚科的基部类群,与画眉草族近缘。我们的研究支持虎尾草亚科从旧世界向新世界扩散的地理分布假说,并提供了虎尾草亚科属上类群的系统发育关系的框架。  相似文献   

8.
Carl E. Lewis 《Brittonia》2002,54(2):78-91
Subtribe Oncospermatinae (Arecaceae: Arecoideae: Areceae) is a diverse group of spiny Old World palms. The subtribe includesOncosperma, a widespread Asian genus of five species, along with seven monotypic genera, all endemic to the Seychelles and Mascarene Islands of the western Indian Ocean. A phylogenetic analysis was conducted in order to test the monophyly of subtribe Oncospermatinae with respect to other Old World genera of tribe Areceae. A matrix of 38 morphological characters was scored for 29 taxa, including 11 species of the Oncospermatinae. A single most parsimonious tree was found, resolving the subtribe as a polyphyletic group of two distinct clades. One clade containingAcanthophoenix, Deckenia, Oncosperma, andTectiphiala was placed as sister to a large group that includes members of subtribes Archontophoenicinae, Arecinae, Iguanurinae, and Ptychospermatinae. The other clade of Oncospermatinae, including the Seychelles endemic generaNephrosperma, Phoenicophorium, Roscheria, andVerschaffeltia, was resolved as sister to the Madagascar endemic subtribe Masoalinae, and may have arisen in the western Indian Ocean region.  相似文献   

9.
A combination of nuclear (beta-fibrinogen intron 7; 938 bp) and mitochondrial (cytochrome b; 1045 bp) DNA sequence data analyzed with model-based phylogenetic methods yields a hypothesis of barbet and toucan relationships supported by high Bayesian posterior probabilities and several synapomorphic indels in the nuclear intron data. The basal topology differs from previous morphology and mitochondrial DNA sequence based hypotheses, but is consistent with DNA-DNA hybridization results. The mitochondrial DNA sequence data provide resolution at the tips of the tree, but when analyzed alone, yield a different basal topology than the combined data. However, the basal nodes in the mitochondrial-based tree have little statistical support. Combined data analysis produced strong statistical support at basal nodes and a relatively simple geographic structure. Barbets from each of the three tropical regions are monophyletic, but the Old World barbets are paraphyletic. The African and New World clades are sister taxa, and the Asian clade is basal. This geographic structure indicates that similarities in plumage, voice, and behavior between Gymnobucco and Calorhamphus are convergent. The data are not conclusive, but suggest paraphyly of the New World barbets. Only 4% of the Bayesian posterior distribution unites Semnornis with the other New World barbets.  相似文献   

10.
We sequenced 2.8 kb of the RAG-1 exon for most of the extant genera in the avian order Caprimulgiformes to investigate monophyly of the order and phylogeny within the traditional families. The order is not monophyletic: the Aegothelidae (owlet-nightjars) were the sister group of the Apodiformes (swifts and hummingbirds). There was no support for the monophyly of a clade containing the remaining families of Caprimulgiformes. However, the RAG-1 data strongly supported a relationship between the Podargidae (frogmouths) and Caprimulgidae (nightjars). Within the Caprimulgidae, the Australasian genus Eurostopodus was sister to the rest of the family, which in turn was composed of four major clades, three of which were restricted to the New World and primarily to the Neotropics. The Old World caprimulgids form a monophyletic clade embedded within the New World taxa; consequently, most Old World nightjars are probably the result of a single expansion out of the Neotropics. The genus Caprimulgus was not found to be monophyletic. Several species in the Caprimulgidae have both elevated heterozygosity and high GC3 content; it is likely that these are causally related.  相似文献   

11.
Chrysomya Robineau-Desvoidy (Diptera: Calliphoridae) is a genus of blowfly commonly observed in tropical and subtropical countries of the Old World. Species in this genus are vectors of bacteria, protozoans and helminths, cause myiasis, are predators of other carrion insects, and are important forensic indicators. Hypotheses concerning the evolution of sex determination, larval anatomy and genome size in Chrysomya have been difficult to evaluate because a robust phylogeny of the genus was lacking. Similarly, the monophyly of subgenera was uncertain. The phylogeny of Chrysomya spp. was reconstructed based on 2386 bp of combined mitochondrial cytochrome oxidase subunit I (COI) and nuclear carbamoylphosphate synthetase (CPS) genes. Maximum parsimony (MP), maximum likelihood (ML) and Bayesian analysis (BA) differed only slightly in the resulting tree topology. Chrysomya was monophyletic. Monogenic reproduction is almost certainly derived rather than, as has been suggested, primitive within the genus, and tuberculate larvae probably evolved twice. Genome size is more likely to have decreased over evolutionary time rather than, as has been suggested, increased within the genus, but its correlation with developmental time was not observed. The subgenera Microcalliphora, Eucompsomyia and Achoetandrus were recovered as monophyletic.  相似文献   

12.
The genus Arceuthobium (dwarf mistletoes, Viscaceae) comprises 42 species that parasitize hosts in Pinaceae and Cupressaceae in the Old and New Worlds. Maximum parsimony analyses were conducted on two data partitions (separately and combined): nuclear ribosomal internal transcribed spacer (ITS) sequences for all 42 currently recognized species and chloroplast trnT-L-F sequences for 34 New World species. The Old and New World species were phylogenetically distinct using ITS, thus making subgenus Arceuthobium paraphyletic. Arceuthobium pendens and A. guatemalense comprise the basalmost clade of subgenus Vaginata, characterized by the presence of flabellate secondary branching. The trnT-L-F sequences, which vary widely in length depending upon taxon, contain three times less phylogenetic signal than ITS, although homoplasy for this partition is lower. Several of the clades obtained from analysis of nuclear ITS sequences are also recovered using trnT-L-F sequences such as A. guatemalense and A. pendens, the A. rubrum group, the A. vaginatum group, and the A. campylopodum group. The ITS + trnT-L-F tree is well resolved except for four internal nodes. A revised classification of the genus is discussed that recognizes only monophyletic species that are well differentiated by molecular data.  相似文献   

13.
Genetic differentiation and evolutionary relationships were surveyed on 12 species of the Old and seven species of the New World Emberizidae by allozyme electrophoresis of 20 loci. Genetic variability of the Emberizidae is similar to those of the other Passeriformes. The degree of genetic differentiation in the family were large among species of the genus Emberiza of the Old World, and also among genera of the New World Emberizidae. Evolutionary relationships of the Emberizidae based on these genetic distances differed considerably from those of previous publications on some points: (1) Emberiza tristrami, E. elegans, E. bruniceps and E. schoeniclus were genetically much diverged from the other Emberiza as a species of the same genus. (2) Some genetic distances between Emberiza were larger than distances between subfamilies of the New World Emberizidae. (3) Species of the Cardinarinae examined genetically, belonged to the Emberizinae of the New World. Genetic data did not support the current classification that the Old World buntings arose from the New World forms by recent colonization. Discussion was made on the evolution of the Old and New World Emberizidae from the genetic view point.  相似文献   

14.
Many studies of phylogeography, speciation, and species limits restrict their focus to a narrow issue: gene tree monophyly. However, reciprocal monophyly does not provide an ideal touchstone criterion of any aspect of evolutionary divergence. There is a continuum of divergence stages as isolated populations go from initial allele frequency differences to well-differentiated species. Studying intermediate stages of divergence will increase our understanding of geographical speciation, species limits, and conservation priorities. We develop a conceptual framework and terminology for thinking about the stages of 'intermediate polyphyly'. The Holarctic clade of common ravens (Corvus corax), found throughout much of Eurasia and North America, provides a case study of these stages of intermediate divergence. We used coalescent, phylogenetic, and population genetic methods to investigate the history and current status of this Old World-New World distribution using 107 mitochondrial control region sequences. Phylogenetically, New World and Old World samples are intermixed. However, most samples are grouped into small subclades that are restricted to either the New World or the Old World, and only one haplotype is shared between the hemispheres. Analysis of moleculalr variance (amova) results reflect this low haplotype sharing between hemispheres (Phi(ST) = 0.13, P < 0.01). Isolation with Migration (im) coalescent results suggest a sustained period of divergence between the hemispheres and low levels of maternal gene flow. Although there has not been sufficient time to evolve reciprocal monophyly and some gene flow may occur, New World and Old World ravens are genetically quite distinct. We use this example to demonstrate these early stages of divergence as populations go from sharing only internal haplotypes, to sharing no haplotypes, to having population specific subclades. Studies of phylogeography, speciation and systematics will benefit from increased attention to these stages of intermediate polyphyly.  相似文献   

15.
The chestnut-shouldered fairy-wrens comprise a subgroup of four species in the genus Malurus (Passeriformes: Maluridae). Collectively, they are widespread across the Australian continent but phenotypic variation is strongly structured geographically in just one species, M. lamberti. Earlier phylogenetic analyses of this group have been limited to one or two individuals for each species and have not represented all currently recognised subspecies of M. lamberti. Historically, the taxonomy and nomenclature of the M. lamberti complex has been debated, in part because of morphological similarities among its subspecies and another member of the group, M. amabilis. We reconstructed the phylogeny of all four species of chestnut-shouldered fairy-wrens including all four subspecies of M. lamberti using a mitochondrial gene (ND2), five anonymous nuclear loci and three nuclear introns. Phylogenetic analysis of the mitochondrial ND2 gene nests M. amabilis within M. lamberti rendering the latter paraphyletic. Individual nuclear gene trees failed to reliably resolve each of the species boundaries or the phylogenetic relationships found in the mtDNA tree. When combined, however, a strongly supported overall topology was resolved supporting the monophyly of M. lamberti and its sister species relationship to M. amabilis. Current subspecific taxonomy of M. lamberti was not concordant with all evolutionary lineages of M. lamberti, nominotypical M. l. lamberti being the only subspecies recovered as a monophyletic group from mtDNA. Some genetic structuring is evident and potential barriers to gene flow are discussed.  相似文献   

16.
Phylogenetic relationships among major groups of passeriform birds were studied by analyses of nucleotide sequence data from two nuclear genes, c- myc and RAG-1. The results corroborated both the monophyly of the order Passeriformes, and the major dichotomy into oscine and suboscine passerines previously suggested based on syringeal morphology and DNA-DNA hybridizations. The representatives of the Old World suboscines (families Eurylaimidae, Philepittidae and Pittidae) formed a monophyletic clade. The New World suboscines clustered into two clades. The first contained Conopophaga (Conopophagidae), Furnarius (Furnariidae), Lepidocolaptes (Dendrocolaptidae), Thamnophilus (Formicariidae), and Rhinocrypta (Rhinocryptidae). Previously, the monophyly of this group has been inferred from their possession of a unique, "tracheophone" syrinx, and from DNA-DNA hybridisation data. The second clade of New World suboscines includes Gubernetes and Muscivora (Tyrannidae), Phytotoma (Phytotomidae), Tityra (Cotingidae) and Pipra (Pipridae). This group of families have been considered monophyletic based on morphology (although ambiguously) and DNA-DNA hybridisation. The sister group relationship of Tityra and Phytotoma supports the previously supposed cotingid affinity of Phytotoma . Nuclear DNA data also unambiguously group the lyrebirds Menura with the oscines.
The presented results from the analysis of nuclear DNA agree well with morphology and DNA-DNA hybridisation data. The precise age of the divergences studied herein are unknown but based on interpretations of the fossil record of passerine birds many of them might date back to the early Tertiary. The agreement between data from the nuclear DNA and other sources, along with the fact that neither of the studied genes showed sign of saturation, indicate the great potential of these two nuclear genes to resolve very old divergences in birds.  相似文献   

17.
Abstract.  The subtribe Anisopliina (Scarabaeidae: Rutelinae: Anomalini) is associated with grasses, and its species are distributed in the Palaearctic, Oriental, Ethiopian, Nearctic and Neotropical biogeographical regions. Phylogenetic analysis of adult morphological characters was conducted to examine the monophyly and classification of the group, as well as to examine characters associated with grass pollinivory and graminivory. We review the biology, phylogeny and classification of the Anisopliina and provide an overview of each genus. The analysis of ninety-one morphological characters using parsimony does not support the monophyly of the subtribe Anisopliina. Instead, the results provide support for a group referred to here as the anisopliine clade, a circum-Mediterranean group, forming an internal clade within the well-supported tribe Anomalini. Sister group relationships are discussed, possibly being associated with a New World anomaline taxon. Character states associated with grass herbivory, including mouthpart and leg characters, are discussed based on the phylogenetic analysis. Within the Anomalini, an evolutionary shift from generalized leaf feeding to grass associations and grass pollen feeding is supported.  相似文献   

18.
A reanalysis of 32 characters from the literature previously deemed diagnostic of the Cuculidae revealed only five to be synapomorphic. I subsequently examined skeletons from 54 avian families and identified nine additional synapomorphies that supported cuckoo monophyly. My cladistic analysis of 33 cuculid genera using 135 skeletal characters differs markedly from currently accepted taxonomies. The most striking deviation is the placement of both New and Old World parasitic cuckoos in the Cuculinae, supporting the evolution of brood parasitism in a single event rather than three times as previously proposed. Unlike earlier classifications, the Cuculinae also includes the facultative parasites Coccyzus. This, suggests that the ancestral Coccyzus was an obligate parasite, and is consistent with the many behavioral adaptations to parasitism exhibited by this genus. Other changes include the placement of three subfamilies, comprising non-parasitic, terrestrial cuckoos of Old World (Centropodinae and Carpococcystinae) and New World (Neomorphinae) distribution, in basal positions on the tree. Nineteen characters support a sister relationship between the Hoatzin ( Opisthocamus hoatzin Müller) and turacos (Musophagidae), and not cuckoos. Three synapomorphies of the os carpi ulnare were found to unite the Cuculidae, turacos, and the Hoatzin, suggesting that these three diverse taxa may constitute a monophyletic group.  相似文献   

19.
Phylogenetic relationships of the reed warbler group (genera Acrocephalus, Hippolais, Chloropeta; Aves: Passeriformes) and their potential relatives were studied using nucleotide sequences (1 kb) of the mitochondrial cytochrome b gene. This species-rich but morphologically poorly differentiated group of insectivorous passerines is distributed in Eurasia, Africa, and Australasia. Intergeneric relationships were poorly resolved, but monophyly of the reed warbler group (including Chloropeta) versus other Sylviidae was strongly supported. A basal polytomy within the reed warbler group consists of seven branches and may indicate a rapid early radiation. In the genus Acrocephalus three major clades were identified, which corresponded to phenotypic groups characterized by body size and plumage patterns. However, current delimitation of some subgenera (Acrocephalus, Lusciniola, Bebrornis) is at variance with our phylogeny estimate, and appropriate revisions are proposed. The genus Hippolais, which may or may not be monophyletic, consisted of two well-supported clades of four species each. Some Acrocephalus taxa whose species status had been doubted (griseldis, tangorum, orientalis, australis) proved to be highly distinct genetically. Genetic distances between members of two pairs of allopatric Hippolais taxa (caligata/rama; opaca/elaeica) were as large or larger than between other closely related warbler species. Overall, cytochrome b sequences resolved phylogenetically young relationships quite well, whereas more ancient nodes remained poorly resolved.  相似文献   

20.
Conoesucidae (Trichoptera, Insecta) are restricted to SE Australia, Tasmania and New Zealand. The family includes 42 described species in 12 genera, and each genus is endemic to either New Zealand or Australia. Although monophyly has been previously assumed, no morphological characters have been proposed to represent synapomorphies for the group. We collected molecular data from two mitochondrial genes (16S and cytochrome oxidase I), one nuclear gene (elongation factor 1-α) (2237–2277 bp in total), and 12 morphological characters to produce the first phylogeny of the family. We combined the molecular and morphological characters and performed both a maximum parsimony analysis and a Bayesian analysis to test the monophyly of the family, and to hypothesize the phylogeny among its genera. The parsimony analysis revealed a single most parsimonious tree with Conoesucidae being a monophyletic taxon and sistergroup to the Calocidae. The Bayesian inference produced a distribution of trees, the consensus of which is supported with posterior probabilities of 100% for 15 out of 22 possible ingroup clades including the most basal branch of the family, indicating strong support for a monophyletic Conoesucidae. The most parsimonious tree and the tree from the Bayesian analysis were identical except that the ingroup genus Pycnocentria changed position by jumping to a neighbouring clade. Based on the assumption that the ancestral conoesucid species was present on both New Zealand and Australia, a biogeographical analysis using the dispersal-vicariance criteria demonstrated that one or two (depending on which of the two phylogenetic reconstructions were applied) sympatric speciation events took place on New Zealand prior to a single, late dispersal from New Zealand to Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号