首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H R Stephens  E B Sandborn 《Cytobios》1976,15(60):217-232
The cytochemical localization of nucleoside diphosphatase and thiamine pyrophosphatase occurs within the "mature face" of the Golgi apparatus and over the neurilemma in neurons of the cerebellum, the cerebral cortex and the brain stem. The hydrolytic reaction product of the brain enzyme differs from that of the liver in that it is not found in the endoplasmic reticulum or nuclear envelope. Hydrolysis of IDP, UDP or GDP is not greater than that of ADP or CDP in brain homogenates, in contrast to that found in the liver. The NDPase activity of brain homogenates is optimal at pH 7.2, stimulated by heavy metals and inhibited by uranyl nitrate. Thick section cytochemistry suggests that the reaction product is restricted to a network of polygonally shaped compartments. NDPase activity on the neurilemma may reflect the role of this enzyme in the synthesis of glycoproteins involved in neuronal surface recognition.  相似文献   

2.
The effects of lipid peroxidation on latent microsomal enzyme activities were examined in NADPH-reduced microsomes from phenobarbital-pretreated male rats. Lipid peroxidation, stimulated by iron or carbon tetrachloride, was assayed as malondialdehyde formation. Independent of the stimulating agent of lipid peroxidation, latency of microsomal nucleoside diphosphatase activity remained unaffected up to microsomal peroxidation equivalent to the formation of about 12 nmol malondialdehyde/mg microsomal protein. However, above this threshold a close correlation was found between lipid peroxidation and loss of latent enzyme activity. The loss of latency evoked by lipid peroxidation was comparable to the loss of latency attainable by disrupting the microsomal membrane by detergent. Loss of latent enzyme activity produced by lipid peroxidation was also observed for microsomal glucose-6-phosphatase and UDPglucuronyltransferase. In contrast to nucleoside diphosphatase, however, both enzymes were inactivated by lipid peroxidation, as indicated by pronounced decreases of their activities in detergent-treated microsomes. According to the respective optimal oxygen partial pressure (po2) for lipid peroxidation, the iron-mediated effects on enzyme activities were maximal at a po2 of 80 mmHg and the one mediated by carbon tetrachloride at a po2 of 5 mmHg. Under anaerobic conditions no alterations of enzyme activities were detected. These results demonstrate that loss of microsomal latency only occurs when peroxidation of the microsomal membrane has reached a certain extent, and that beyond this threshold lipid peroxidation leads to severe disintegration of the microsomal membrane resulting in a loss of its selective permeability, a damage which should be of pathological consequences for the liver cell. Because of its resistance against lipid peroxidation nucleoside diphosphatase is a well-suited intrinsic microsomal parameter to estimate this effect of lipid peroxidation on the microsomal membrane.  相似文献   

3.
Phosphatase activity in sea urchin embryonic antigens was investigated by histochemical staining of immunoprecipitates separated by two-dimensional (crossed) immunoelectrophoresis. Unfertilized eggs were homogenized in a hypotonic medium which solubilized cytoplasmic antigens. Antigens integrated in membranes or enclosed in particles were solubilized by detergent treatment of the residual pellet. Two different phosphatase activities were discerned in the unfertilized eggs, nucleoside diphosphatase (EC 3.6.1.6.) and acid phosphatase (EC 3.1.3.2.). Nucleoside diphosphatase activity was obtained in both the water soluble and detergent extracted protein fractions. This activity was confined to one antigen. Acid phosphatase acitivity on the other hand was almost exclusively obtained in the detergent extracted fraction and about ten distinct antigens displayed this activity. The nucleoside diphosphatase active antigen preferentially hydrolyzed purine nucleoside diphosphates and to a lesser degree triphosphates of these nucleosides. The acid phosphatase active antigens had a broader substrate specificity and hydrolyzed equally well beta-glycerophosphate and nucleotides. Both activities were essentially inactive at neutral or alkaline pH values. The activities were inhibited by p-choloromercuribenzoate and accordingly stimulated by cysteine. Tartrate and sodium fluoride, however, inhibited the acid phosphatase activity while nucleoside diphosphatase activity was either stimulated or not affected at all by these agents.  相似文献   

4.
Golgi-rich fractions were prepared from homogenates of adult rat pancreas by discontinuous gradient centrifugation. These fractions were characterized by stacks of cisternae associated with large, irregular vesicles and were relatively free of rough microsomes, mitochondria, and zymogen granules. The Golgi-rich fractions contained 50% of the UDP-galactose: glycoprotein galactosyltransferase activity; the specific activity was 12-fold greater than the homogenate. Such fractions represented < 19% of thiamine pyrophosphatase, uridine diphosphatase, adenosine diphosphatase, and Mg2+-adenosine triphosphatase. Zymogen granules and the Golgi-rich fractions were extracted with 0.2 m NaHCO3, pH 8.2, and the membranes were isolated by centrifugation. The glycoprotein galactosyltransferase could not be detected in granule membranes, while the specific activity in Golgi membranes was 25-fold greater than the homogenate.At least 35 polypeptide species were detected in Golgi membranes by polyacrylamide gel electrophoresis in 1% sodium dodecylsulfate. These ranged in molecular weight from 12,000 to <160,000. There were only minor differences between Golgi membranes and smooth microsomal membrane. In contrast, zymogen granule membranes contained fewer polypeptides. A major polypeptide, which represented 30–40% of the granule membrane profile, accounted for less than 3% of the polypeptides of Golgi membranes or smooth microsomal membranes.  相似文献   

5.
A procedure is described for purification of nucleoside diphosphatase from pig liver microsomes which avoids exposure of the enzyme to potentially denaturing conditions. The purest fractions obtained have specific activities of approximately 100 units/mg and appear to contain approximately 35% NDPase on a protein basis. Pig liver nucleoside diphosphatase resembles the enzyme obtained from other mammalian tissues in its substrate specificity and in its interaction with MgATP2? as an allosteric modifier. However the molecular weight of the pig liver enzyme appears higher than that reported for other nucleoside diphosphatases, and activation by MgATP2? is attributable to an increase in the maximal rate of nucleoside diphosphate hydrolysis rather than to a decrease in Km. These differences in properties seem to be due to a species difference since similar properties were found with pig liver enzyme prepared by a different extraction procedure. The kinetic parameters which describe the reaction catalyzed by pig liver nucleoside diphosphatase are insensitive to changes in [H+]over the range pH 6.5–8.6. The intracellular location of nucleoside diphosphatase is microsomal in both pig and chicken liver.  相似文献   

6.
The latency of rat liver microsomal protein disulphide-isomerase.   总被引:4,自引:1,他引:3       下载免费PDF全文
Protein disulphide-isomerase (PDI) activity was not detectable in freshly prepared rat liver microsomes (microsomal fraction), but became detectable after treatments that damage membrane integrity, e.g. sonication, detergent treatment or freezing and thawing. Maximum activity was detectable after sonication. Identical latency was observed in microsomes prepared by gel filtration and in those prepared by high-speed centrifugation. PDI activity was latent in all particulate subcellular fractions, but not latent in the high-speed supernatant. When all fractions were sonicated to expose total PDI activity, PDI was found at highest specific activity in the microsomal fraction and co-distributed with marker enzymes of the endoplasmic reticulum. Washing of microsomes under various conditions that removed peripheral proteins and, in some cases, bound ribosomes did not remove significant quantities of PDI, nor did it affect the latency of PDI activity. Treatment of microsomes with proteinases, under conditions where the permeability barrier of the microsomal vesicles was maintained intact, did not inactivate PDI significantly or affect its latency. PDI was very readily solubilized from microsomal vesicles by low concentrations of detergents, which removed only a fraction of the total microsomal protein. In all these respects, PDI resembled nucleoside diphosphatase, a marker peripheral protein of the luminal surface of the endoplasmic reticulum, and differed from NADPH: cytochrome c reductase, a marker integral protein exposed at the cytoplasmic surface of the membrane. The data are compatible with a model in which PDI is loosely associated with the luminal surface of the endoplasmic reticulum, a location consistent with the proposed physiological role of the enzyme as catalyst of formation of native disulphide bonds in nascent and newly synthesized secretory proteins.  相似文献   

7.
Phosphatase activities in sea urchin eggs and plutei were investigated by means of histochemical staining of immunoprecipitates. Two protein fractions were obtained by extraction in a hypotonic medium and by detergent treatment of the residual pellet. Three distinctly different phosphatase activities were discerned, nucleoside diphosphatase (EC 3.6.1.6.), acid phosphatase (EC 3.1.3.2.) and alkaline phosphatase (EC 3.1.3.1.). The nucleoside diphosphatase activity, which was confined to one antigen, was present in both water soluble and detergent extracts and at roughly the same concentration in eggs and plutei. By means of a monospecific antiserum the immunological identify of this antigen was established in all instances. The acid phosphatase activity, which was displayed by ten detergent extracted antigens in eggs, was only found in five detergent extracted antigens in plutei. This decrease in number of enzyme active antigens was also reflected by a general decrease in number of enzyme active antigens was also reflected by a general decrease in activity as assessed by quantitative determinations. Furthermore, by means of absorbed antisera it was established that two or three of the acid phosphatase active antigens were "egg specific". Another acid phosphatase active antigen, which was common to both developmental stages, was investigated by a monospecific antiserum. While this antigen was found in both soluble fractions, it was only enzymatically active when extracted with detergent. Alkaline phosphatase active antigens were only found in the detergent extract of plutei. However, immunoprecipitates with this activity appeared both with antiserum against unfertilized eggs and with antiserum against plutei. This suggests that the egg contained the antigens in an enzymatically inactive form.  相似文献   

8.
9.
Chen X  Morris R  Lawrence MJ  Quinn PJ 《Biochimie》2007,89(2):192-196
The action of detergents in the isolation of detergent-resistant membrane fractions from rat brain is reported. Triton X-100 treatment of whole rat brain homogenate at 4 degrees C produced detergent-resistant membranes with a density of 1.07g/ml compared with Brij96 where the density of the membrane was only 1.05g/ml. The DRM fractions isolated using Triton X-100 are considerably heavier than those isolated from homogenates treated with Brij96. The major polar lipid composition of DRMs derived from Brij96 treated homogenates have a higher proportion of aminophospholipids compared with choline phospholipids than Triton X-100 derived DRMs; this may indicate that DRMs from Brij96 treated homogenates are more closely related to the parent membrane in lipid composition. Solubilization by Triton X-100 at higher temperatures resulted in the appearance of a second detergent-resistant membrane fraction distinctly lighter in density than the membrane recovered at density 1.07g/ml. Analysis of phospholipid composition of the brain homogenate during detergent treatment for up to 30min at 37 degrees C showed a decreasing proportion of sphingomyelin. Treatment of homogenates at 37 degrees C appears to activate phospholipases/sphingomyelinases that may alter the lipid content of isolated DRMs. The presence of K+/Mg2+ with Brij96 treatment results in DRM fractions with significantly thicker bilayers and of larger vesicle diameter than DRMs isolated from either Triton X-100 or Brij96 treated homogenates in the absence of cations.  相似文献   

10.
Thiamine pyrophosphatase (TPPase), nucleoside diphosphatase (NDPase), and glucose-6-phosphatase (G-6-Pase) were localized by the cerium technique in guinea pig pinealocytes and compared with the corresponding lead technique. NDPase and TPPase were also compared at different pH values using the cerium technique. Vibratome sections of perfusion-fixed tissue were incubated with cerium chloride or lead nitrate. Substrates used were thiamine pyrophosphate (for TPPase), sodium inosine diphosphate (NDPase), and disodium glucose-6-phosphate (G-6-Pase). The 1-2 trans saccules of the Golgi apparatus showed TPPase and NDPase activity but none for G-6-Pase. The endoplasmic reticulum (ER) cisternae and perinuclear space had NDPase and G-6-Pase activity but not TPPase. The abluminal plasmalemma of endothelial cells and the plasmalemma of Schwann cells demonstrated TPPase and NDPase activity but the luminal plasmalemma of the endothelial cells and the plasmalemma of pinealocyte processes showed only NDPase activity. TPPase was active at all pH values tested, but NDPase was most active at pH values of 6.5 and 7.0. Lead phosphate precipitate was frequently seen in nuclei, perinuclear space, ER cisternae, and "synaptic" vesicles when lead was used as the capturing agent. These sites were usually not labeled when cerium was used.  相似文献   

11.
Summary Electron-microscopic survey of selectively stained microglial cells in the cerebral cortex of the rat reveals that the processes of this cell type often encircle axo-dendritic synapses. Enzyme-histochemical methods for thiamine pyrophosphatase (TPPase) or nucleoside diphosphatase (NDPase) were used for the selective marking of the microglial cells; TPPase and NDPase activities were observed in the plasma membrane of microglial cells. The synapses encircled by microglial processes displayed presynaptic structures containing round clear vesicles (50 nm in diameter) and a prominent thickening of the postsynaptic membrane. In vitro, the above-mentioned enzymatic activities were completely suppressed by neuroactive agents such as catecholamines and phenothiazine derivatives. Examination using enzyme-histochemical techniques suggests that a single enzyme may be responsible for both above-mentioned enzymatic reactions. The functional significance of microglial cells in the normal central nervous tissue is discussed.This work was supported by grant No. 437002 from the Ministry of Education, Science and Culture, Japan  相似文献   

12.
Structural equivalents of latency for lysosome hydrolases.   总被引:8,自引:5,他引:3       下载免费PDF全文
1. Structure-linked latency, a trait for most lysosome hydrolase activities, is customarily ascribed to the permeability-barrier function performed by the particle-limiting membrane, which shields enzyme sites from externally added substrates. 2. The influence of various substrate concentrations on the reaction rate has been measured for both free (non-latent) and total (completely unmasked by Triton X-100) hydrolase activities in rat liver cell-free preparations. The substrates were: beta-glycerophosphate, phenolphthalein mono-beta-glucuronide. p-nitrophenyl N-acetyl-beta-D-glucosaminide and p-nitrophenyl beta-D-galactopyranoside. The ratio (free activity/total activity) X 100 is called fractional free activity at any given substrate concentration. 3. The fractional free activity of beta-glucuronidase and beta-N-acetylglucosaminidase were clearly independent of substrate concentration, over the range examined, in both homogenates and lysosome-rich fractions. The fractional free activity of acid phosphatase appeared to be either unaffected (homogenate) or even depressed (lysosome-rich fraction) by increasing the beta-glycerophosphate concentration. The fractional free activity of beta-galactosidase consistently showed a non-linear increase with increasing substrate concentration in both homogenates and lysosome-rich fractions. 4. Procedures such as treatment with digitonin, hypo-osmotic shock and acid autolysis, although effective in causing varying degrees of resolution of the latency of lysosome hydrolase activities, were unable to modify appreciably the pattern of dependence or independence of their fractional free activities on substrate concentration, as compared with that exhibited by control preparations. Ouabain did not affect the free beta-N-acetylglucosaminidase activity of liver homogenates at all. 5. Preincubation of control preparations with beta-glycerophosphate or p-nitrophenyl beta-galactoside did not result in any significant stimulation of the free hydrolytic activity toward these substrates. 6. The results consistently support the view that the membrane of "intact" lysosomes is virtually impermeable to all the substrates tested, except for p-nitrophenyl beta-galactoside, for which the evidence is contradictory. Moreover the progressive unmasking of the hydrolase activities produced by these procedures in vitro reflects the increasing proportion of enzyme sites that are fully accessible to their substrates rather than a graded increase in the permeability of the lysosomal membrane.  相似文献   

13.
In the nematode Caenorhabditis elegans, the gonad acquires two U-shaped arms through the directed migration of its distal tip cells (DTCs), which are located at the tip of the growing gonad arms. A member of the ADAM (a disintegrin and metalloprotease) family, MIG-17, regulates directional migration of DTCs: MIG-17 is synthesized and secreted from the muscle cells of the body wall, and diffuses to the gonad where it is required for DTC migration. The mig-23 mutation causes defective migration of DTCs and interacts genetically with mig-17. Here, we report that mig-23 encodes a membrane-bound nucleoside diphosphatase (NDPase) required for glycosylation and proper localization of MIG-17. Our findings indicate that an NDPase affects organ morphogenesis through glycosylation of the MIG-17 ADAM protease.  相似文献   

14.
A study was made of the activity of nucleoside diphosphatase (NDPase, EC 3.6.1.16) and nucleoside triphosphatase (NTPase, EC 3.6.1.15) that catalyze enzymatic dephosphorylation of UDP, CDP, UTP, and CTP in mitochondria and postmitochondrial supernatant fraction of rat liver 30 min, 1, 3, 6 and 24 h following 60Co-gamma-irradiation with a dose of 774 mC/kg. The observed phase changes in the enzyme activity depended on the times of exposure, a cell fraction, and nucleotides under study. Both uridylic and cytidylic nucleotides exhibited a significant increase in the their enzymatic disintegration being more pronounced at a comparatively later times, that is, 6 h, and particularly, 24 h after irradiation.  相似文献   

15.
In the cell cortex of the parasitic ciliate Ichthyophthirius multifiliis different kinds of cisternae were observed: the alveolar sacs, thick membrane cisternae and the endoplasmic reticulum. The thick membrane cisternae possess coated dilated rims and sometimes could be observed close to the endoplasmic reticulum. Using cytochemical techniques acid phosphatase, thiamine pyrophosphatase and nucleoside diphosphatase activities were detected in the thick membrane cisternae and in the alveolar sacs of trophozoites. In the endoplasmic reticulum acid phosphatase activity was not detected and only very small amounts of thiamine pyrophosphatase and nucleoside diphosphatase reaction product were observed. After exit from the host, a reduction in acid phosphatase activity was evident in the alveolar sacs. At theront stage acid phosphatase activity is absent from these structures. However, high thiamine pyrophosphatase and nucleoside diphosphatase activities remain in the alveolar sacs during the whole life cycle. On the other hand, acid phosphatase, thiamine pyrophosphatase and nucleoside diphosphatase activities were detected in thick membrane cisternae of theronts. Based on the morphological aspects and enzymatic content the thick membrane cisternae of the cell cortex are designated as golgian-like cisternae. The cytochemical results point out a relationship between the alveolar sacs and the Golgi complex.  相似文献   

16.
In the cell cortex of the parasitic ciliate Ichthyophthirius multifiliis different kinds of cisternae were observed: the alveolar sacs, thick membrane cisternae and the endoplasmic reticulum. The thick membrane cisternae possess coated dilated rims and sometimes could be observed close to the endoplasmic reticulum. Using cytochemical techniques acid phosphatase, thiamine pyrophosphatase and nucleoside diphosphatase activities were detected in the thick membrane cisternae and in the alveolar sacs of trosphozoites. In the endoplasmic reticulum acid phosphatase activity was not detected and only very small amounts of thiamine pyrophosphatase and nucleoside diphosphatase reaction product were observed. After exit from the host, a reduction in acid phosphatase activity was evident in the alveolar sacs. At theront stage acid phosphatase activity is absent from these structures. However, high thiamine pyrophosphatase and nucleoside diphosphatase activities remain in the alveolar sacs during the whole life cycle. On the other hand, acid phosphatase, thiamine pyrophosphatase and nucleoside diphosphatase activities were detected in thick membrane cisternae of theronts. Based on the morphological aspects and enzymatic content the thick membrane cisternae of the cell cortex are designated as golgian-like cisternae. The cytochemical results point out a relationship between the alveolar sacs and the Golgi complex.  相似文献   

17.
Phenolase activity in spinach leaves homogenates depends on the stage of development of leaves and on the kind of homogenization procedure. Under constant experimental conditions it is low in non-senescent leaves. With the onset of senescence there is a 15–20-fold increase in soluble activity in the supernatants of broken chloroplasts as well as an increase in activation of latent phenolase in fractions containing thylakoids. This rise in activity is due to an increase in particular multiple forms, differing for supernatants and membrane sediments. Phenolase from spinach lacks monophenolase and laccase activities.  相似文献   

18.
The activity of ammoniagenesis from guanine nucleotides was found to increase significantly in rat brain after infusion of kainic acid into the striatum. Among the enzymes involved in degrading guanine nucleotides, nucleoside diphosphatase was markedly increased in the lesioned striatum. The enzyme activity began to increase 2 days after the infusion, and reached the maximum on the 13th day, the level being 4 times as high as that of the intact contralateral region. The increased activity was due to Type L enzyme, judging from its substrate specificity. Puromycin and cycloheximide inhibited this increase, indicating that the increased activity resulted from an increase in the net synthesis of the enzyme. These findings suggest that Type L NDPase might play some important roles in gliosis after neuronal lesion.  相似文献   

19.
1. UDP-glucose-sterol glucosyltransferase and nucleoside diphosphatases were isolated in a particulate fraction from 7-day-old etiolated pea seedlings. The glucosyltransferase and UDPase (uridine diphosphatase) are stimulated by Ca2+ cation, less so by Mg2+ cation, and inhibited by Zn2+. 2. Each activity has a pH optimum near 8. 3. The glucosyltransferase is specific for UDP-glucose as the glucosyl donor and is inhibited by UDP. Partial recovery from UDP inhibition is effected by preincubation of the enzyme. 4. Freeze-thaw treatment and subsequent sucrose-density-gradient centrifugation of the particulate fraction shows the glucosyltransferase to be widely distributed among cell fractions but to be most active in particles with a density of 1.15 g/ml. UDPase is most active in particulate material with a density of over 1.18 g/ml but an activity peak also appears at 1.15 g/ml. Of several nucleoside diphosphatase activities, UDPase activity is most enhanced by the freeze-thaw and sucrose-density-gradient-fractionation procedures. 5. Detergent treatment with 0.1% sodium deoxycholate allows the partial solubilization of the glucosyltransferase and UDPase. The two activities are similarly distributed between pellet and supernatant after high-speed centrifugation for two different time intervals. 6. A role for UDPase in the functioning of glucosylation reactions is discussed.  相似文献   

20.
Glutathione-insulin transhydrogenase (glutathione:protein disulfide oxidoreductase, EC 1.8.4.2) inactivates insulin by cleaving its disulfide bonds. The distribution of GSH-insulin transhydrogenase in subcellular fractions of rat liver homogenates has been studied. From the distribution of insulin-degrading activity and marker enzymes (glucose-6-phosphatase and succinate-INT reductase) (INT, 2-p-iodophenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride) after cell fractionation by differential centrifugation, the immunological analysis of the isolated subcellular fractions with antibody to purified rat liver GSH-insulin transhydrogenase, and chromatographic analysis (on a column of Sephadex G-75 in 50% acetic acid) of the products formed from 125I-labelled insulin after incubation with the isolated subcellular fractions, it is concluded that GSH-insulin transhydrogenase is located primarily in the microsomal fraction of rat liver homogenate. An enzyme(s) that further degrades insulin by proteolysis is located mainly in the soluble fraction; a significant amount of the protease(s) activity is also present in the mitochondrial fraction. The possibility has been discussed that the protease(s) acts upon the intermediate product of insulin degradation, A and B chains of insulin, rather than upon the intact insulin molecule itself.The GSH-insulin transhydrogenase in intact microsomes occurs in a latent state; it is readily released from the microsomal membrane and its activity is greatly increased by treatments which affect the lipoprotein membrane structure of microsomal vesicles. There include homogenization with a Polytron homogenizer, sonication, freezing and thawing, alkaline pH, the nonionic detergent Triton X-100, and phospholipases A and C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号