首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were carried out on cultured hippocampal neurons using a patch-clamp technique in the whole-cell configuration. We studied the characteristics of regular series of action potentials (APs), which were generated with a low frequency by inhibitory and excitatory interneurons after their direct stimulation with long-lasting (500 msec) current pulses. Nearly all parameters of the evoked impulse activity (except the frequency of generation and duration of APs) in excitatory and inhibitory neurons were significantly different. According to immunocytochemical analysis, Kv1.2- and Kv4.2-type potassium channels were expressed in the membrane of excitatory neurons (granular cells), and somatostatin was present in all these cells. As to inhibitory interneurons, only a part of such cells (large units) demonstrated immunopositivity with respect to somatostatin. In inhibitory neurons, only Kv1.2-type potassium channels were expressed. Therefore, mechanisms responsible for the ability of hippocampal interneurons to generate impulse activity under conditions of direct stimulation (in our experiments, regular low-frequency series of APs) in inhibitory and excitatory neurons are rather dissimilar. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 207–216, May–June, 2005.  相似文献   

2.
Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na+ channels that belong to the epithelial Na+ channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na+ and K+ channels, providing the conditions necessary for the transduction of local pH changes into electrical signals. cellular excitability; neuronal signaling; pH  相似文献   

3.
Cultured neuronal networks (CNNs) are a robust model to closely investigate neuronal circuits’ formation and monitor their structural properties evolution. Typically, neurons are cultured in plastic plates or, more recently, in microfluidic platforms with potentially a wide variety of neuroscience applications. As a biological protocol, cell culture integration with a microfluidic system provides benefits such as accurate control of cell seeding area, culture medium renewal, or lower exposure to contamination. The objective of this report is to present a novel neuronal network on a chip device, including a chamber, fabricated from PDMS, vinyl and glass connected to a microfluidic platform to perfuse the continuous flow of culture medium. Network growth is compared in chips and traditional Petri dishes to validate the microfluidic chip performance. The network assessment is performed by computing relevant topological measures like the number of connected neurons, the clustering coefficient, and the shortest path between any pair of neurons throughout the culture's life. The results demonstrate that neuronal circuits on a chip have a more stable network structure and lifespan than developing in conventional settings, and therefore this setup is an advantageous alternative to current culture methods. This technology could lead to challenging applications such as batch drug testing of in vitro cell culture models. From the engineering perspective, a device's advantage is the chance to develop custom designs more efficiently than other microfluidic systems.  相似文献   

4.
We report on a simple and high‐yield manufacturing process for silicon planar patch‐clamp chips, which allow low capacitance and series resistance from individually identified cultured neurons. Apertures are etched in a high‐quality silicon nitride film on a silicon wafer; wells are opened on the backside of the wafer by wet etching and passivated by a thick deposited silicon dioxide film to reduce the capacitance of the chip and to facilitate the formation of a high‐impedance cell to aperture seal. The chip surface is suitable for culture of neurons over a small orifice in the substrate with minimal leak current. Collectively, these features enable high‐fidelity electrophysiological recording of transmembrane currents resulting from ion channel activity in cultured neurons. Using cultured Lymnaea neurons we demonstrate whole‐cell current recordings obtained from a voltage‐clamp stimulation protocol, and in current‐clamp mode we report action potentials stimulated by membrane depolarization steps. Despite the relatively large size of these neurons, good temporal and spatial control of cell membrane voltage was evident. To our knowledge this is the first report of recording of ion channel activity and action potentials from neurons cultured directly on a planar patch‐clamp chip. This interrogation platform has enormous potential as a novel tool to readily provide high‐information content during pharmaceutical assays to investigate in vitro models of disease, as well as neuronal physiology and synaptic plasticity. Biotechnol. Bioeng. 2010;107:593–600. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
We obtained a viable culture of sympathetic neurons of the superior cervical ganglion of neonatal rats. Electrophysiological experiments (patch-clamp in the whole-cell configuration) showed that the cultured neurons generated action potentials after intercellular stimulation by long-lasting pulses of depolarizing current. In some neurons, background impulse electrical activity and evoked postsynaptic currents suppressed by applications of benzohexonium were observed.  相似文献   

6.
The present communication concerns with the analysis of elementary and the compound excitatory postsynaptic potentials (eEPSPs and cEPSPs) recorded by intracellular microelectrode from an identified defensive command neuron of the snail Helix lucorum. The eEPSPs were evoked by single presynaptic action potentials (APs) elicited by cationic current injection into one of the identified sensory neurons synapsing on the respective command neuron. The cEPSPs were elicited by local brief tactile stimuli on the skin or internal organs. It was shown that the cEPSPs amplitudes depend mainly on the number of activated sensory neurons. Compound EPSPs depend also on frequency and the number of APs in the bursts occurring in a single neuron. Presynaptic APs having frequency 2-10 Hz evoke high frequency depression of that eEPSPs after an interval is followed by post-tetanic potentiation of single eEPSPs. Preceding stimulation of a pneumostom area facilitates the cEPSPs elicited by repeated stimulation of viscera. The eEPSPs from the same visceral area demonstrate no heterosynaptic facilitation in experiments with double parallel intracellular recording from responsive sensory and command neurons. The different types of the eEPSPs plasticity are discussed according to their contribution cEPSPs plastic changes.  相似文献   

7.
Using eight-channel metal microelectrodes (diameter of a separate channel 12 μm), we extracellularly recorded the impulse activity of 186 single neurons or their small groups (usually, pairs) localized in the motor cortex of rats anesthetized with ketamine. In 60 cases (32.3%), action potentials (APs) of two single neurons were generated in a parallel manner and demonstrated fixed time relations with each other. This is interpreted as being a result of excitation of two neighboring functionally connected (coupled) cells. These AP pairs could be recorded via one and the same or two neighboring microelectrode channels. Second APs in the pair were elicited exclusively in the case where an AP was preliminarily generated by another neuron, while APs of the latter in some cases could arrive independently. Therefore, “leading” and “accompanying” cells could be identified in such neuronal pairs. The coupling coefficient in the generation of APs by an accompanying unit with respect to APs generated by a leading cell was close to 100%, with no dependence on the discharge frequency in the latter. Intervals between APs of two neurons in different coupled pairs varied from about 1.0 to 22-23 msec. In the case of minimum values of these interspike intervals, APs generated by coupled neurons overlapped each other; this resulted in the formation of spikes looking like “complex APs.” Within some time intervals, interspike intervals could increase, and such APs began to be decomposed. The above-described data are considered electrophysiological proof of the existence of tight functional coupling between a significant part of cortical neurons spatially close to each other, i.e., members of a micropopulation, which was obtained in an in vivo experiment.  相似文献   

8.
The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics.  相似文献   

9.
Using the patch-clamp technique in the whole-cell configuration, we studied the characteristics of a series of action potentials (APs) induced by a 500-msec-long current pulse applied to a pre-synaptic unit, as well as the kinetic characteristics of post-synaptic currents (PSCs) evoked by the APs in a post-synaptic unit, in synaptically connected pairs of cultured hippocampal neurons. Presynaptic inhibitory units were identified as GABA-ergic interneurons; they were divided into two groups according to the size of the soma and the number of processes. The kinetic characteristics of PSCs, which were induced in the post-synaptic neuron by a series of the APs generated in the pre-synaptic cell, demonstrated a certain dependence on the morphological characteristics of these cells. In interneurons with large-sized somata, the kinetics of the currents were more fast, and the reversal potential was close to the equilibrium Cl potential. In interneurons with small-sized somata, currents were slower, and the reversal potential was shifted. We conclude that under conditions of culturing, a pre-synaptic cell not only directly provokes the development of PSC in a post-synaptic neuron and determines the amplitude of this current but also significantly influences the kinetics of this current. Neirofiziologiya/Neurophysiology, Vol. 37, No. 2, pp. 116–123, March–April, 2005.  相似文献   

10.
Extracellular recordings in primates have identified two types of neurons in the external segment of the globus pallidus (GPe): high frequency pausers (HFP) and low frequency bursters (LFB). The aim of the current study was to test whether the properties of HFP and LFB neurons recorded extracellularly in the primate GPe are linked to cellular mechanisms underlying the generation of action potential (AP) firing. Thus, we recorded from primate and rat globus pallidus neurons. Extracellular recordings in primates revealed that in addition to differences in firing patterns the APs of neurons in these two groups have different widths (APex). To quantitatively investigate this difference and to explore the heterogeneity of pallidal neurons we carried out cell-attached and whole-cell recordings from acute slices of the rat globus pallidus (GP, the rodent homolog of the primate GPe), examining both spontaneous and evoked activity. Several parameters related to the extracellular activity were extracted in order to subdivide the population of recorded GP neurons into groups. Statistical analysis showed that the GP neurons in the rodents may be differentiated along six cellular parameters into three subgroups. Combining two of these groups allowed a better separation of the population along nine parameters. Four of these parameters (Fmax, APamp, APhw, and AHPs amplitude) form a subset, suggesting that one group of neurons may generate APs at significantly higher frequencies than the other group. This may suggest that the differences between the HFP and LFB neurons in the primate are related to fundamental underlying differences in their cellular properties.  相似文献   

11.
12.
We have previously shown that late-developing avian nucleus magnocellularis (NM) neurons (embryonic [E] days 19–21) fire action potentials (APs) that resembles a band-pass filter in response to sinusoidal current injections of varying frequencies. NM neurons located in the mid- to high-frequency regions of the nucleus fire preferentially at 75 Hz, but only fire a single onset AP to frequency inputs greater than 200 Hz. Surprisingly, NM neurons do not fire APs to sinusoidal inputs less than 20 Hz regardless of the strength of the current injection. In the present study we evaluated intrinsic mechanisms that prevent AP generation to low frequency inputs. We constructed a computational model to simulate the frequency-firing patterns of NM neurons based on experimental data at both room and near physiologic temperatures. The results from our model confirm that the interaction among low- and high-voltage activated potassium channels (KLVA and KHVA, respectively) and voltage dependent sodium channels (NaV) give rise to the frequency-firing patterns observed in vitro. In particular, we evaluated the regulatory role of KLVA during low frequency sinusoidal stimulation. The model shows that, in response to low frequency stimuli, activation of large KLVA current counterbalances the slow-depolarizing current injection, likely permitting NaV closed-state inactivation and preventing the generation of APs. When the KLVA current density was reduced, the model neuron fired multiple APs per sinusoidal cycle, indicating that KLVA channels regulate low frequency AP firing of NM neurons. This intrinsic property of NM neurons may assist in optimizing response to different rates of synaptic inputs.  相似文献   

13.
There is increasing evidence that heat shock (HS) has long-term effects on electrophysiological properties of neurons and synapses. Prior HS protects neural circuitry from a subsequent heat stress but little is known about the mechanisms that mediate this plasticity and induce thermotolerance. Exposure of Locusta migratoria to HS conditions of 45 degrees C for 3 h results in thermotolerance to hitherto lethal temperatures. Locust flight motor patterns were recorded during tethered flight at room temperature, before and after HS. In addition, intracellular action potentials (APs) were recorded from control and HS motoneurons in a semi-intact preparation during a heat stress. HS did not alter the timing of representative depressor or elevator muscle activity, nor did it affect the ability of the locust to generate a steering motor pattern in response to a stimulus. However, HS did increase the duration of APs recorded from neuropil segments of depressor motoneurons. Increases in AP duration were associated with protection of AP generation against failure at subsequent elevated temperatures. Failure of AP generation at high temperatures was preceded by a concomitant burst of APs and depolarization of the membrane. The protective effects of HS were mimicked by pharmacological blockade of I(K+) with tetraethylammonium (TEA). Taken together, these findings are consistent with a hypothesis that HS protects neuronal survival and function via K+ channel modulation.  相似文献   

14.
15.
The mechanism by which action potentials (APs) are generated in afferent nerve fibers in the carotid body is unknown, but it is generally speculated to be release of an excitatory transmitter and synaptic depolarizing events. However, previous results suggested that Na(+) channels in the afferent nerve fibers play an important role in this process. To better understand the potential mechanism by which Na(+) channels may generate APs, a mathematical model of chemoreceptor nerve fibers that incorporated Hodgkin-Huxley-type Na(+) channels with kinetics of activation and inactivation, as determined previously from recordings of petrosal chemoreceptor neurons, was constructed. While the density of Na(+) channels was kept constant, spontaneous APs arose in nerve terminals as the axonal diameter was reduced to that in rat carotid body. AP excitability and pattern were similar to those observed in chemoreceptor recordings: 1) a random pattern at low- and high-frequency discharge rates, 2) a high sensitivity to reductions in extracellular Na(+) concentration, and 3) a variation in excitability that increased with AP generation rate. Taken together, the results suggest that an endogenous process in chemoreceptor nerve terminals may underlie AP generation, a process independent of synaptic depolarizing events.  相似文献   

16.
Neuronal, muscle and some endocrine cells are electrically excitable. While in muscle and endocrine cells AP stimulates and synchronizes intracellular processes, neurons employ action potentials (APs) to govern discontinuous synapses located distantly. Meanwhile, such axonless sensory cells as photoreceptors and hair cells exemplify afferent output, which is not driven by APs; instead, gradual receptor potentials elicited by sensory stimuli control the release of afferent neurotransmitter glutamate. Mammalian taste cells of the type II and type III are electrically excitable and respond to stimulation by firing APs. Since taste cells also have no axons, physiological significance of the electrical excitability for taste transduction and encoding sensory information is unclear. Perhaps, AP facilitates transmitter release, ATP in type II cells and 5-HT in type III cells, although via different mechanisms. The ATP release is mediated by connexin hemichannels, does not require a Ca2+ trigger, and largely gated by membrane voltage. 5-HT secretion is driven by intracellular Ca2+ and involves VG Ca2+ channels. Here, we discuss ionic mechanisms of excitability of taste cells and speculate on a likely role of APs in mediating their afferent output.  相似文献   

17.
The effect of taurine (2-aminoethanesulphonic acid) on myocardial slow action potentials (APs) and accompanying contractions was examined in isolated perfused chick hearts and reaggregated cultured cells. Isoproterenol (ISO), histamine (HIS), or tetraethylammonium (TEA) induced slow APs and contractions in hearts whose fast Na+ channels had been inactivated by elevated K+. Taurine (10 mM) not only failed to induce slow APs, but actually decreased ISO (10(-8) M), HIS (10(-4) M), or TEA (10 mM) induced slow APs and contractions transiently (about 30s-2 min after the addition of taurine). The properties of the slow APs recovered to control levels by 7-13 min after the addition of the taurine; at this time, there was an increase in developed tension of the contraction accompanying the slow APs. These results suggest that the positive inotropic action of taurine is not mediated through an increase in the slow inward Ca2+ current. However, the transient depression of Ca2+-dependent slow APs by taurine probably explains the transient negative inotropic effect of taurine.  相似文献   

18.
This study reports the composition of a chemically defined medium (DDM1) that supports the survival and differentiation of neurons in dissociated cell cultures prepared from midgastrula stage Drosophila embryos. Cells with neuronal morphology that stain with a neural-specific marker are clearly differentiated by 1 day in vitro and can be maintained in culture for up to 2 weeks. Although the whole cell capacitance measurements from neurons grown in DDM1 were 5- to 10-fold larger than those of neurons grown in a conventional serum-supplemented medium, the potassium current densities were similar in the two growth conditions. A small but significant increase in the sodium current density was observed in the neurons grown in DDM1 compared with those in serum-supplemented medium. The majority of neurons grown in DDM1 fired either single or trains of action potentials in response to injection of depolarizing current. Contributing to the observed heterogeneity in the firing properties between individual neurons grown in DDM1 was heterogeneity in the levels of expression and gating properties of voltage-dependent sodium, calcium, and pottassium currents. The ability of embryonic Drosophila neurons to differentiate in a chemically defined medium and the fact that they are amenable to both voltage-clamp and current-clamp analysis makes this system well suited to studies aimed at understanding the mechanisms regulating expression of ion channels involved in electrical excitability. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
20.
Embryonic stem (ES) cells are pluripotent cells capable of differentiating into cell lineages derived from all primary germ layers including neural cells. In this study we describe an efficient method for differentiating rhesus monkey ES cells to neural lineages and the subsequent isolation of an enriched population of Nestin and Musashi positive neural progenitor (NP) cells. Upon differentiation, these cells exhibit electrophysiological characteristics resembling cultured primary neurons. Embryoid bodies (EBs) were formed in ES growth medium supplemented with 50% MEDII. After 7 days in suspension culture, EBs were transferred to adherent culture and either differentiated in serum containing medium or expanded in serum free medium. Immunocytochemistry on differentiating cells derived from EBs revealed large networks of MAP-2 and NF200 positive neurons. DAPI staining showed that the center of the MEDII-treated EBs was filled with rosettes. NPs isolated from adherent EB cultures expanded in serum free medium were passaged and maintained in an undifferentiated state by culture in serum free N2 with 50% MEDII and bFGF. Differentiating neurons derived from NPs fired action potentials in response to depolarizing current injection and expressed functional ionotropic receptors for the neurotransmitters glutamate and gamma-aminobutyric acid (GABA). NPs derived in this way could serve as models for cellular replacement therapy in primate models of neurodegenerative disease, a source of neural cells for toxicity and drug testing, and as a model of the developing primate nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号