首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restoration of damaged ecosystems has become an important tool to slow down biodiversity loss and to maintain ecosystem services. Peatland bird populations have shown a substantial decline during the recent decades in Northern Europe as a consequence of peatland drainage. We studied whether restoration of peatlands drained for forestry affects bird communities. We conducted bird surveys at 11 peatlands in Western Finland, where each of the restored and their pristine counterparts were surveyed before restoration and yearly after restoration during 2010–2018. We used linear mixed effect models to analyze whether restoration affected the number of species and territories of peatland specialist and non‐specialist species and permutational multivariate analysis of variance to analyze the change in community composition. Drained parts of the peatlands had higher number of territories of non‐specialist species before restoration, and restoration seemed to decrease these numbers towards the level of pristine parts. By contrast, restoration did not affect the number of peatland specialists and their territories, which was lower in drained than in pristine parts of the peatlands. Bird communities in restored parts remained different from pristine parts in terms of community composition after restoration. Thus, despite the effect of restoration on non‐specialists, a substantially long time may be required for a recovery of the peatland bird communities. Based on our results, it seems that long‐term monitoring of the restored and pristine peatlands is needed to determine whether restoration is effective in recovering the peatland specialist bird species and bird communities in general.  相似文献   

2.
Drainage and afforestation of peatlands cause extensive habitat degradation and species losses. Restoration supports peatland biodiversity by creating suitable habitat conditions, including stable high water tables. However, colonization by characteristic species can take decades or even fail. Peatland recovery is often monitored shortly after restoration, but initial trends may not continue, and results might differ among taxonomic groups. This study analyzes trends in plant, dragonfly, and butterfly diversity within 18 years after rewetting of montane peatlands in central Germany. We compared diversity and species composition of 19 restored sites with three drained peatlands and one near‐natural reference site. Restoration resulted in improved habitat conditions and benefited species diversity, but there were marked differences among taxonomic groups. Dragonflies rapidly colonized small water bodies but their diversity did not further increase in older restoration sites. Characteristic peatland vegetation recovered slowly, since it depended on a high water holding capacity that was only reached after peat started accumulating. Generally, plant diversity developed toward reference conditions albeit incompletely, even 18 years after restoration. Butterflies responded less to peatland restoration; generalists increased only temporarily and specialists could not establish. In conclusion, peatland restoration improves habitat conditions and biodiversity, while trajectories of recovery are nonlinear and incomplete after two decades. This highlights the need for long‐term monitoring and a strategic selection of indicator species for evaluation of restoration success.  相似文献   

3.
Status and restoration of peatlands in northern Europe   总被引:3,自引:0,他引:3  
Vasander  H.  Tuittila  E.-S.  Lode  E.  Lundin  L.  Ilomets  M.  Sallantaus  T.  Heikkilä  R.  Pitkänen  M.-L.  Laine  J. 《Wetlands Ecology and Management》2003,11(1-2):51-63
Environmental management of peatlands,landscape ecology and protection of keybiotopes have created needs and pressure torestore drained peatlands to natural mireecosystems. Here, we summarize differentapproaches and restoration techniquesdeveloped for peatland management inEstonia, Sweden, and Finland wherepeatlands are abundant. Without rewetting,plant colonisation on abandoned cut-awayareas is slow due to harsh hydrological andmicroclimatic conditions. However, after restoration, cut-away peatlands may returnto a functional state close to that ofpristine mires, and therefore restore a netcarbon sink function within a few years. Inaddition, restoration techniques can helpto create buffer zones between terrestrialand limnic ecosystems that reduces thenutrient loading imposed on watercourses byforestry operations. Restoration may alsobe important for peatland conservationprograms as drained peatlands are part ofpresent and future conservation areas.Finally, restoration actions in themselvescan have negative environmental impacts.For instance, inundation of peat surfacesresulting from the rewetting process oftenincreases phosphorus leaching. Efforts onpeatland restoration should focus onenvironmental monitoring, research onrestoration and its environmental impact aswell as public relations activities. Inthat respect, knowledge transfer betweenacademics and managers should generatesynergy benefits.  相似文献   

4.
Peatlands represent globally-important ecosystems and carbon stores. However, large areas of peatland have been drained for agriculture, or peat has been harvested for use as fuel or in horticulture. Increasingly, these landscapes are being restored through ditch blocking and rewetting primarily to improve biodiversity and promote peat accumulation. To date we have little knowledge of how these interventions influence the microbial communities in peatlands. We compared the responses of dominant microbial consumers (testate amoebae) to drainage ditch restoration relative to unblocked ditches in a UK upland blanket peatland (Migneint, North Wales). Two techniques were used for restoration: (i) dammed ditches with re-profiling; and (ii) dammed ditches with pools of open water behind each dam. Testate communities in the inter-ditch areas changed markedly over time and between treatments illustrating the potential of this group of organisms as indicators of blanket peatland restoration status. However, the responses of testate amoebae to peat rewetting associated with restoration were partially obscured by inter-annual variability in weather conditions through the course of the experiment. Although there was considerable variability in the response of testate amoebae communities to peatland drain blocking, there were clearly more pronounced changes in samples from the dammed and reprofiled treatments including an increase in diversity, and the appearance of unambiguous wet-indicator species in relatively high abundances (including Amphitrema stenostoma, Archerella flavum, Arcella discoides type, Difflugia bacillifera and Difflugia bacillarium). This reflects a shift towards overall wetter conditions across the site and the creation of new habitats. However, water-table was not a significant control on testate amoebae in this case, suggesting a poor relationship between water table and surface moisture in this sloping blanket peatland. Our findings highlight the potential of testate amoebae as bioindicators of peatland restoration success; however, there is a need for caution as mechanisms driving change in the microbial communities may be more complex than first assumed. Several factors need to be taken into account when implementing biomonitoring studies in peatlands including: (i) the natural variability of the peatland ecosystem under changing weather conditions; (ii) any disturbance connected with the restoration procedures; and (iii) the timescales over which the ecosystem responds to the management intervention. Our results also suggest an indicator species approach based on population dynamics may be more appropriate for biomonitoring peatland restoration than examining changes at the community level.  相似文献   

5.
Peatlands are the most efficient terrestrial carbon store on Earth, and deliver multiple other ecosystem services including climate regulation, water purification, preservation of ecological and archaeological records, etc. Disturbed and degraded peatlands do not provide the same ecological services and thus bear a significant cost to society. Because this cost may be alleviated by appropriate restoration measures, money is being invested in peatland restoration projects around the world. Here, we review over 25 years of restoration in Western Europe. First, we provide an overview of techniques used in different contexts and evaluate the status of the evidence base for restoration outcomes. Between 1993 and 2015, the EU‐LIFE nature programme alone invested 167.6M € in 80 projects, which aim to restore over 913 km2 of peatland habitats in Western European countries, mostly in protected sites part of the Natura 2000 EU network. This represents less than 2% of the total remaining area of peatlands in these countries, most of which have been impacted to some degree by anthropogenic disturbances. Potential for restoration should be considered in nondesignated sites. We reviewed a number of case studies covering a range of restoration approaches used in different parts of Western Europe. We found that published evidence of restoration progress was limited to specific sites/areas, and in many cases lacked baseline measurements and clear goals, that is, measurable target or contemporary reference(s). We discuss barriers and opportunities to turn the tide for peatland restoration in Western Europe and promote the establishment of robust, standardized monitoring schemes.  相似文献   

6.
Indonesia declared an ambitious plan to restore its degraded and fire‐prone peatlands, which have been a source of significant greenhouse gas and haze. However, the progress has been slow and the plan cannot succeed without sustained social supports and political will. Although many previous studies argued for the need to see ecological restoration in socio‐economic contexts, empirical assessments have been lacking for how restoration is operationalized on the ground. We interviewed 47 key informants involved in four different projects in Central Kalimantan, Indonesia, and assessed their definitions, goals, and practices of peatland restoration. Most of the actors we interviewed defined peatland restoration primarily in an ecological context following the global concept of ecological restoration. However, all four restoration projects were designed without determining reference and trajectory conditions. Their intermediate goals and practices were more focused on engaging local communities and developing sustainable livelihood options than improving the ecological conditions of peatlands. To be internally consistent, peatland restoration needs to recognize a social dimension in its process, as well as in its goal. Setting clear trajectory conditions is also important to clarify achievable goals and measurable intermediate outcomes. We propose the following definition of peatland restoration: a process of assisting the recovery of degraded peatland ecosystems to achieve the appropriate trajectories defined through multi‐stakeholder collaboration within social‐ecological contexts. We hope to generate healthy debates to further refine the definition that encompasses both social and ecological dimensions to generate broader support for sustaining and expanding peatland restoration projects in Indonesia.  相似文献   

7.
We studied the effects of restoration on water‐table depth (WTD), element concentrations of peat and vegetation composition of peatlands drained for forestry in southern Finland. The restoration aimed to return the trajectory of vegetation succession toward that of undisturbed systems through the blockage of ditches and the removal of trees. Permanent plots established on a bog and a fen were sampled 1 year before, and 1, 2, 3, and 10 years after the restoration. The restoration resulted in a long‐term rise of the water‐table in both peatlands. Ten years after restoration, the mineral element concentrations (Ca, K, Mg, Mn, and P) of peat corresponded to those reported from comparable pristine peatlands. In particular, the increase of K and Mn concentrations at both sites suggests the recovery of ecosystem functionality in terms of nutrient cycling between peat and plants. The restoration resulted in the succession of plant communities toward the targeted peatland vegetation of wetter condition at both sites. This was evident from the decreased abundance of species benefiting from drainage and the corresponding increase of peatland species. However, many species typical of pristine peatlands were missing 10 years after restoration. We conclude that the restoration led to a reversal of the effects of drainage in vegetation and studied habitat conditions. However, due to the slow recovery of peatland ecosystems and the possibility that certain failures in the restoration measures may become apparent only after extended time periods, long‐term monitoring is needed to determine whether the goals of restoration will be met.  相似文献   

8.
Ecological restoration is expected to reverse the loss of biodiversity and ecosystem services. Due to the low number of well‐replicated field studies, the extent to which restoration recovers plant communities, and the factors underlying possible shortcomings, are not well understood even in medium term. We compared the plant community composition of 38 sites comprising pristine, forestry‐drained, and 5 or 10 years ago restored peatlands in southern Finland, with special interest in understanding spatial variation within studied sites, as well as the development of the numbers and the abundances of target species. Our results indicated a recovery of community composition 5–10 years after restoration, but there was significant heterogeneity in recovery. Plant communities farthest away from ditches were very similar to their pristine reference already 10 years after restoration. In contrast, communities in the ditches were as far from the target as the drained communities. The recovery appears to be characterized by a decline in the number and abundance of species typical to degraded conditions, and increase in the abundance of characteristic peatland species. However, we found no increase above the drained state in the number of characteristic peatland species. Our results suggest that there is a risk of drawing premature conclusions on the efficiency of ecological restoration with the current practice of short‐term monitoring. Our results also illustrate fine‐scale within‐site spatial variability in the degradation and recovery of the plant communities that should be considered when evaluating the success of restoration. Overall, we find the heterogeneous outcome of restoration observed here promising. However, low recovery in the number of characteristic species demonstrates the importance of prioritizing restoration sites, and addressing the uncertainty of recovery when setting restoration targets. It appears that it is easier to eradicate unwanted species than regain characteristic species by restoration.  相似文献   

9.
Present environmental policy aims to restore wetlands for multifunctional purposes and requires quantitative information on the spatially interrelated biohydrochemical processes which allow wetlands to regulate water- and nutrient flow on different scales. For this purpose, this study presents an ecohydrological system analysis as a basis for a future management concept of the Eider valley peatland. This study combines field data with existing knowledge to set up different modelling techniques to study hydrological processes and nitrogen transformations. The Eider valley of northern Germany is a riverine freshwater wetland of 150 ha. Mire genesis was dominated first by river water inflow from the upstream catchment area, and in a later successional stage by groundwater inflow at the mire margins. Drainage, land use intensification and river regulation have resulted in severe degeneration of the peatland. Altering of the water flow patterns led to the mobilisation of nutrients and resulted in eutrophication of the sites. Abandonment of the mown or grazed sites led to the establishment of species poor Urtica dioica stands. The scenario calculations of the nitrogen budget of the peatland with a process oriented nitrogen model indicate that a water level increase of 30 cm is not sufficient to reduce peat loss due to oxidation. On the basis of the system analysis, restoration prospects for the Eider valley peatland are discussed where the historical subsurface flow pattern can be a long term restoration goal. Due to irreversible changes in peat hydraulic conductivities combined with subsidence, it is only possible to restore surface flow on top of the peat. Raising river water level will result in a shallow lake system. The limnic stage is a draw-back in the genesis of the valley, but necessary for the restoration of wetlands as self-evolving landscape entities.  相似文献   

10.
受损湿地植被的恢复与重建研究进展   总被引:35,自引:0,他引:35       下载免费PDF全文
 自20世纪90年代以来,有关受损湿地植被恢复与重建的研究大量涌现。在大量文献调研的基础上,对湿地植被恢复的目的、优先原则、策略和途径、理论、技术、长期监测及评价作了回顾,对贫营养沼泽和富营养沼泽的恢复技术作了详细总结。湿地恢复的策略主要有修复和重建,指导理论主要有次生演替、自设计和入侵理论等。泥炭地植被受损后的恢复技术主要有播种法、泥炭藓片段散布法、营养体移植法、草皮移植法等。种子(繁殖体)库在植被恢复中的作用也不可忽视。恢复初期的抚育和管理必不可少。最后指出了湿地恢复研究中亟待解决的问题。  相似文献   

11.
Many peatlands have a recent history of being degraded by extraction, drainage, burning, overgrazing and atmospheric pollution often leading to erosion and loss of peat mass. Restoration schemes have been implemented aimed at rewetting peatlands, encouraging revegetation of bare peat or shifting the present vegetation assemblage to an alternative. Here we demonstrate the use of palaeoecological techniques that allow reconstruction of the historical development of a blanket peatland and provide a historical context from which legitimate restoration targets can be determined and supported. We demonstrate the applicability of simple stratigraphic techniques to provide a catchment-wide peatland development history and reinforce this with a detailed macrofossil reconstruction from a central core. Analysis at Keighley Moor Reservoir Catchment in northern England showed that the present vegetation state was ‘atypical’ and has been characteristic for only the last c. 100 years. Sphagnum moss was an important historic contributor to the vegetation cover between 1500 years ago and the early 1900s. Until the early 1900s Sphagnum occurrence fluctuated with evidence of fire, routinely returning after fire demonstrating good resilience of the ecosystem. However, from the turn of the 20th century, Sphagnum levels declined severely, coincident initially with a wildfire event but remaining extremely diminished as the site regularly underwent managed burning to support grouse moor gun sports where practitioners prefer a dominant cover of heather. It is suggested that any intention to alter land management at the site to raise water tables and encourage greater Sphagnum abundance is in line with peatland development at the site over the past 1500 years. Similar palaeoecological studies providing historical context could provide support for restoration targets and changes to peatland management practice for sites globally.  相似文献   

12.
Ecological restoration is considered to play an important role in mitigating climate change, protecting biodiversity, and preventing environmental degradation. Yet, there are often multiple perspectives on what outcomes restoration should be aiming to achieve, and how we should get to that point. In this study we interview a range of policymakers, academics, and non‐governmental organization (NGO) representatives to explore the range of perspectives on the restoration of Indonesia's tropical peatlands—key global ecosystems that have undergone large‐scale degradation. Thematic analysis suggests that participants agreed about the importance of restoration, but had differing opinions on how effective restoration activities to date have been and what a restored peatland landscape should look like. These results exemplify how ecological restoration can mean different things to different people, but also highlight important areas of consensus for moving forward with peatland restoration strategies.  相似文献   

13.
Tropical peat swamp forests (TPSFs) are found mainly in Southeast Asia and especially Indonesia. A total of 61% were lost between 1990 and 2015 and 6% remained in a pristine condition by 2015. Tropical peat swamps store vast amounts of carbon in their peat, but peat degradation, through drainage and fire, leads to high greenhouse gas emissions. This is gaining much international attention and, with it, policy initiatives and funding for restoration from local to landscape scales are being promoted. Unfortunately, although there is a now strong desire and need for TPSF restoration, methods are lacking. Ecological understanding is still at an early stage, and, even more so, in its applied use. There is an imbalance between the activities of TPSF restoration and sound ecological application. Furthermore, while many activities are underway and knowledge is being gained, these techniques are yet to be published. This article has been written to provide a common‐sense, practical guide to tropical peatland forest restoration which summarizes what we know to date, while acknowledging the gaps in our understanding. Topics covered include species selection, land assessment, land selection, and appropriate nursery, transplanting, and monitoring methods. The authors make no apologies that in places this reads like a manual as, given the importance of tropical peatland recovery and the recent attention and funding opportunities available, it is essential we now provide techniques to restoration practitioners working on the ground, and a basic common‐sense approach must be the starting point.  相似文献   

14.
泥炭藓繁殖体移植是影响泥炭地植被恢复的重要因素之一,不同移植方式的效果往往缺乏比较研究。选取长白山区白江河退化泥炭地为研究地,以自然生境的丘间种喙叶泥炭藓(Sphagnum flexuosum)和藓丘种中位泥炭藓(S.magellanicum)(后者耐旱能力较强)为实验材料,通过野外移植实验,研究水位提升与不同泥炭藓繁殖体移植方式对退化泥炭地植被恢复的影响。数据分析显示:水位条件显著影响了喙叶泥炭藓和中位泥炭藓的建植,随着水位上升,地表湿度增加,两种泥炭藓的盖度均呈明显的上升趋势;移植方式的变化短期内对泥炭藓的建植作用并不明显,但在移植2个月后,移植方式对喙叶泥炭藓表现出显著影响,即耐旱能力较强的中位泥炭藓置于上层时,喙叶泥炭藓盖度最高;水位和移植方式不存在交互作用,即在低水位条件下,中位泥炭藓置于上层的移植方式也未能提升泥炭藓的建植盖度。研究表明,水位提升是泥炭地植被恢复的十分有效的手段,因物种间存在对水分保持的差异,采用合理植物繁殖体移植方式,将会明显提升植被恢复的成效。  相似文献   

15.
Peatland restoration in North America (NA) was initiated approximately 25 years ago on peat‐extracted bogs. Recent advances in peatland restoration in NA have expanded the original concepts and methodology. Restoration efforts in NA now include restoring peatlands from many diverse types of disturbances (e.g. roads, agriculture, grazing, erosion, forestry, and petrol industry infrastructure impacts) and occur in a greater array of peatland types (e.g. fens and swamps). Because fens are groundwater and surface flow driven, techniques to restore the hydrology of fens are generally more complicated than bogs. Restoring a greater variety of peatland types on a large‐scale basis (>10 ha) commands new techniques for reestablishing a broader array of plants other than Sphagnum spp., including non‐Sphagnum mosses, sedges, nonericaceous shrubs, and trees. The rationale for restoring peatlands has expanded to include legal requirements, wetland mitigation and banking, climate mitigation, water quality, and as part of responsible ecosystem management for industry or society. In the past 25 years, peatland restoration in NA has evolved from (1) trial and error to a more empirically based scientific approach, (2) small site‐specific experiments to landscape‐scale restoration (e.g. hydrological connectivity, ecological fragmentation), and (3) individual stakeholder (academic) to multiple stakeholders across jurisdictional boundaries (private, local, and regional governmental agencies, NGOs, and so on). However, many research gaps still exist that must be addressed to enhance our ability to restore peatlands successfully.  相似文献   

16.
The influence of near-ambient and reduced solar UV-B radiation on a peatland microfungal community was assessed by exposing experimental plots to UV-selective filtration. Replicate plots were covered with special plastic films to effect treatments of near-ambient and attenuated solar UV-B. The microfungal community from the top 1 cm of Sphagnum capitulum in a Tierra del Fuego peatland was censused throughout three growing seasons, between 1999 and 2002. Sphagnum capitula under near-ambient UV-B were more compressed and held more water than capitula under reduced UV-B. This water had a greater conductivity and was more acidic under near-ambient UV-B, as would be expected with increased leaching from the Sphagnum leaves. Nine regularly occurring hyphal fungi from the peatland were identified, at least to genus. Over three field seasons, no treatment effect on total fungal colony abundance was recorded, but individual species abundance was increased (Mortierella alpina), decreased (Penicillium frequentans), or was unaffected (P. thomii, Aureobasidium) by near-ambient UV-B. Species richness was also slightly lower under near-ambient UV-B. These treatment differences were smaller than seasonal or inter-annual fluctuations in abundance and species richness. In a growth chamber experiment, lamp UV-B treatments indicated that realistic fluxes of UV-B can inhibit fungal growth in some species. In addition to this direct UV-B effect, we suggest that changes in the peatland fungal community under near-ambient solar UV-B may also result from increased nutrient and moisture availability in the Sphagnum capitulum. The subtle nature of the responses of peatland fungi to solar UV-B suggests that most fungal species we encountered are well adapted to current solar UV-B fluxes in Tierra del Fuego.  相似文献   

17.
As most ecosystems, peatlands have been heavily exploited for different human purposes. For example, in Finland the majority is under forestry, agriculture or peat mining use. Peatlands play an important role in carbon storage, water cycle, and are a unique habitat for rare organisms. Such properties highlight their environmental importance and the need for their restoration. To monitor the success of peatland restoration sensitive indicators are needed. Here we test whether testate amoebae can be used as a reliable bioindicator for assessing peatland condition. To qualify as reliable indicators, responses in testate amoebae community structure to ecological changes must be stronger than random spatial and temporal variation. In this study, we simultaneously assessed differences between the effects of seasonality, intermediate scale spatial variation and land uses on living testate amoebae assemblages in natural, forested and restored peatlands. We expected the effects of seasonality on testate amoebae communities to be less pronounced than those of land use and within site variation. On average, natural sites harboured the highest richness and density, while the lowest numbers were found at forestry sites. Despite small changes observed in taxa dominance and differences in TA community structure between seasons and years at some sites, spatial heterogeneity, temperature, pH, nor water table depth seemed to significantly affect testate amoebae communities. Instead, observed differences were related to type of land use, which explained 75% of the community variation. Our results showed that testate amoebae community monitoring is a useful tool to evaluate impacts of human land use on boreal peatlands.  相似文献   

18.
Sphagnum capillifolium var. tenellum, S. magellanicum, and S. recurvum var. brevifolium were regenerated from stem pieces grown in containers to assess their potential for use in peatland restoration projects. The effect of two water levels; peat, peat/sand or peat/clay substrates; and peat decomposition level on the species’ regeneration was evaluated. S. magellanicum attained the greatest cover on the peat or peat/sand mixture using decomposed peat when the growing surface was occasionally inundated. S. recurvum attained the greatest cover grown on the peat or peat/sand mixture using undecomposed peat when the water level was kept below the surface. S. capillifolium showed an affinity for the peat/clay mixture, and overall attained a greater total cover than the other species when grown under the lower water level on all substrate types, with total cover approximately three to five times that of the others. When developing management plans for restoration of mined peatlands, species-specific responses to water level, type and extent of mineral soil mixed with the peat surface, and peat decomposition level should be considered.  相似文献   

19.
朱瑞良 《植物学报》2022,57(5):559-578
全球气候变暖是人类面临最严峻的环境挑战。有效控制碳排放, 充分发挥生态系统的固碳能力是实现碳中和目标的重要手段。作为碳封存能力最强的一种湿地类型, 泥炭地是加快实现碳中和目标的关键陆地生态系统。作为泥炭地“有效的生态系统工程师”, 泥炭藓(Sphagnum)在泥炭地的碳汇功能、过滤淡水及保护土地免受洪水侵袭等方面具有极其重要的作用。100多年来, 泥炭藓广泛应用于医药保健、污染监测和废水处理等领域, 尤其是作为一类最值得信赖的土壤介质和保湿材料一直被广泛用于园艺产业。在全球气候变暖和“双碳”目标的大背景下, 泥炭藓已经成为生命科学和生态学研究的热点。该文主要从泥炭藓的形态、物种多样性和起源、生境与分布、繁殖和保护、培养与种植、环境指示和监测、用途和应用, 以及碳封存、储水和酸化能力等方面进行综述, 旨在为泥炭藓研究、泥炭地的保护和恢复以及泥炭藓开发利用和产业发展提供借鉴与参考。  相似文献   

20.
In establishing effective restoration goals, one of the four key issues of increased attention that Hobbs calls for is in the area of incorporating socio‐economic investigations and theories into restoration practice in a synergistic manner. Although often commented upon by restoration practitioners, this is an area of research that is poorly developed, and because it relies on an uneasy combination of empirical and interpretative research methodologies a multidisciplinary alignment may be problematic in practice. This opinion piece is drawn from experiences in examining the after‐use of industrially mined peatland landscapes, and synthesizes ideas that have emerged from socio‐economic research over several years in order to offer an opinion on how Hobbs' call may be addressed. Because socio‐economic concerns are at the root of all restoration projects, sociological methods may be useful as tools in stakeholder engagement in research and planning for landscape rehabilitation as a mechanism for reducing the potential for conflict and for facilitating participative or collaborative restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号