首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
探讨多孔淀粉负载青蒿素微球(ART-PS)与青蒿素原药(ART)在不同浓度下的抗肿瘤活性,以及分别联合全铁转铁蛋白后对肿瘤细胞的生长抑制作用。在体外实验中,取对数生长期的人肝癌细胞和正常肝细胞接种于96孔板中,不同浓度(0、50、100、150、200μmol·L-1)给药处理24h后,用MTT法分别检测多孔淀粉负载青蒿素微球与青蒿素原药对细胞的生长抑制作用。MTT结果显示,同等处理浓度下,多孔淀粉负载青蒿素微球对肿瘤细胞Hep G2和SMMC-7721的抑制效果都高于青蒿素原药,但与盐酸阿霉素相比,都具有较低的细胞毒性,对正常细胞HL7702的毒副作用非常低,结果与分别联合全铁转铁蛋白后对肿瘤细胞的生长抑制作用一致。多孔淀粉负载青蒿素微球对人肝癌细胞的增殖有明显的抑制作用,效果优于青蒿素原药,并对正常肝细胞的毒副作用非常低,为青蒿素在治疗癌症的应用与研究提供了重要的参考依据。  相似文献   

2.
The reticuloendothelial system plays a major role in iron metabolism. Despite this, the manner in which macrophages handle iron remains poorly understood. Mammalian cells utilize transferrin-dependent mechanisms to acquire iron via transferrin receptors 1 and 2 (TfR1 and TfR2) by receptor-mediated endocytosis. Here, we show for the first time that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is localized on human and murine macrophage cell surface. The expression of this surface GAPDH is regulated by the availability of iron in the medium. We further demonstrate that this GAPDH interacts with transferrin and the GAPDH-transferrin complex is subsequently internalized into the early endosomes. Our work sheds new light on the mechanisms involved in regulation of iron, vital for controlling numerous diseases and maintaining normal immune function. Thus, we propose an entirely new avenue for investigation with respect to transferrin uptake and regulation mechanisms in macrophages.  相似文献   

3.
N P Singh  H Lai 《Life sciences》2001,70(1):49-56
Artemisinin becomes cytotoxic in the presence of ferrous iron. Since iron influx is high in cancer cells, artemisinin and its analogs selectively kill cancer cells under conditions that increase intracellular iron concentrations. We report here that after incubation with holotransferrin, which increases the concentration of ferrous iron in cancer cells, dihydroartemisinin, an analog of artemisinin, effectively killed a type of radiation-resistant human breast cancer cell in vitro. The same treatment had considerably less effect on normal human breast cells. Since it is relatively easy to increase the iron content inside cancer cells in vivo, administration of artemisinin-like drugs and intracellular iron-enhancing compounds may be a simple, effective, and economical treatment for cancer.  相似文献   

4.
Iron(II) heme-mediated activation of the peroxide bond of artemisinins is thought to generate the radical oxygen species responsible for their antimalarial activity. We analyzed the role of ferrous iron in the cytotoxicity of artemisinins toward tumor cells. Iron(II)-glycine sulfate (Ferrosanol) and transferrin increased the cytotoxicity of free artesunate, artesunate microencapsulated in maltosyl-beta-cyclodextrin, and artemisinin toward CCRF-CEM leukemia and U373 astrocytoma cells 1.5- to 10.3-fold compared with that of artemisinins applied without iron. Growth inhibition by artesunate and ferrous iron correlated with induction of apoptosis. Cell cycle perturbations by artesunate and ferrous iron were not observed. Treatment of p53 wild-type TK6 and p53 mutated WTK1 lymphoblastic cells showed that mutational status of the tumor suppressor p53 did not influence sensitivity to artesunate. The effect of ferrous iron and transferrin was reversed by monoclonal antibody RVS10 against the transferrin receptor (TfR), which competes with transferrin for binding to TfR. CCRF-CEM and U373 cells expressed TfR in 95 and 48% of the cell population, respectively, whereas TfR expression in peripheral mononuclear blood cells of four healthy donors was confined to 0.4-1.3%. This indicates that artemisinins plus ferrous iron may affect tumor cells more than normal cells. The IC(50) values for a series of eight different artemisinin derivatives in 60 cell lines of the U.S. National Cancer Institute were correlated with the microarray mRNA expression of 12 genes involved in iron uptake and metabolism by Kendall's tau test to identify iron-responsive cellular factors enhancing the activity of artemisinins. This pointed to mitochondrial aconitase and ceruloplasmin (ferroxidase).  相似文献   

5.
The transferrins are a family of proteins that bind free iron in the blood and bodily fluids. Serum transferrins function to deliver iron to cells via a receptor-mediated endocytotic process as well as to remove toxic free iron from the blood and to provide an anti-bacterial, low-iron environment. Lactoferrins (found in bodily secretions such as milk) are only known to have an anti-bacterial function, via their ability to tightly bind free iron even at low pH, and have no known transport function. Though these proteins keep the level of free iron low, pathogenic bacteria are able to thrive by obtaining iron from their host via expression of outer membrane proteins that can bind to and remove iron from host proteins, including both serum transferrin and lactoferrin. Furthermore, even though human serum transferrin and lactoferrin are quite similar in sequence and structure, and coordinate iron in the same manner, they differ in their affinities for iron as well as their receptor binding properties: the human transferrin receptor only binds serum transferrin, and two distinct bacterial transport systems are used to capture iron from serum transferrin and lactoferrin. Comparison of the recently solved crystal structure of iron-free human serum transferrin to that of human lactoferrin provides insight into these differences.  相似文献   

6.
Iron is an essential element for nearly all organisms. In mammals, iron is transported to body tissues by the serum glycoprotein transferrin. Transferrin-iron is internalized by binding to specific receptors followed by endocytosis. In vitro , Neisseria meningitidis and Neisseria gonorrhoeae can use iron from a variety of iron-containing compounds, including human transferrin. In vivo , transferrin is an important source of iron for N. gonorrhoeae : a mutant that is unable to bind and use transferrin-iron is unable to colonize the urethra of men or initiate disease at this site. As pathogenic Neisseria and its human host derive much of their iron from transferrin, we reasoned that a competition may exist between microbe and host epithelial cells for transferrin-iron at certain stages of infection. We therefore tested the hypothesis that N. meningitidis and N. gonorrhoeae may actively interfere with host transferrin-iron metabolism. We report that Neisseria-infected human epithelial cells have reduced levels of transferrin receptor messenger RNA and cycling transferrin receptors. The ability of infected cells to internalize transferrin receptor is also reduced. Finally, the relative distribution of surface and cycling transferrin receptors is altered in an infected cell. We conclude that Neisseria infection alters epithelial cell transferrin-iron homeostasis at multiple levels.  相似文献   

7.
Traditionally, transferrin has been considered the primary mechanism for cellular iron delivery, despite suggestive evidence for additional iron delivery mechanisms. In this study we examined ferritin, considered an iron storage protein, as a possible delivery protein. Ferritin consists of H- and L-subunits, and we demonstrated iron uptake by ferritin into multiple organs and that the uptake of iron is greater when the iron is delivered via H-ferritin compared with L-ferritin. The delivery of iron via H-ferritin but not L-ferritin was significantly decreased in mice with compromised iron storage compared with control, indicating that a feedback mechanism exists for H-ferritin iron delivery. To further evaluate the mechanism of ferritin iron delivery into the brain, we used a cell culture model of the blood-brain barrier to demonstrate that ferritin is transported across endothelial cells. There are receptors that prefer H-ferritin on the endothelial cells in culture and on rat brain microvasculature. These studies identify H-ferritin as an iron transport protein and suggest the presence of an H-ferritin receptor for mediating iron delivery. The relative amount of iron that could be delivered via H-ferritin could make this protein a predominant player in cellular iron delivery. blood-brain barrier; iron transport; H-ferritin  相似文献   

8.
BeWo cells are a placental cell line that has been widely used as an in vitro model for the placenta. The b30 subclone of these cells can be grown on permeable membranes in bicameral chambers to form confluent cell layers, enabling rates of both nutrient uptake into the cells from the apical surface and efflux from the basolateral membrane to be determined. The aim of this study was to evaluate structural and functional properties of confluent b30 BeWo cell layers grown in bicameral chambers, focusing on the potential application for studying receptor-mediated uptake and transport of transferrin (Tf)-bound iron (Fe-Tf). While it proved extremely difficult to establish and maintain an intact BeWo cell monolayer, it was possible to grow the cells to a confluent multilayer. Iron, applied as Fe-Tf, was rapidly transported across this cell layer; 9.3 +/- 0.5% of the total dose was transported after 8 h, equivalent to 38.8 +/- 2.1 pmol.cm(-2).h(-1). Transfer of Tf across the cell layer was much more limited; 2.4 +/- 0.2% of the total dose was transported after 8 h, equivalent to 5.0 +/- 0.4 pmol.cm(-2).h(-1). Compartmental modeling of these data suggested that iron was transported across the cell layer predominantly, if not exclusively, via a transcellular route, whereas Tf taken up into the cells was predominantly recycled back to the apical compartment. The results suggest that these cells are very efficient at transporting iron and, under carefully controlled conditions, can be a valuable tool for the study of iron transport in the placenta.  相似文献   

9.
Pathogenic Gram-negative bacteria of the Pasteurellaceae and Neisseriaceae acquire iron for growth from host transferrin through the action of specific surface receptors. Iron is removed from transferrin by the receptor at the cell surface and is transported across the outer membrane to the periplasm. A periplasmic binding protein-dependent pathway subsequently transports iron into the cell. The transferrin receptor is composed of a largely surface-exposed lipoprotein, transferrin binding protein B, and a TonB-dependent integral outer membrane protein, transferrin binding protein A. To examine the role of transferrin binding protein B in the iron removal process, complexes of recombinant transferrin binding protein B and transferrin were prepared and compared with transferrin in metal-binding and -removal experiments. A polyhistidine-tagged form of recombinant transferrin binding protein B was able to purify a complex with transferrin that was largely monodisperse by dynamic light scattering analysis. Gallium was used instead of iron in the metal-binding studies, since it resulted in increased stability of recombinant transferrin binding protein B in the complex. Difference absorption spectra were used to monitor removal of gallium by nitrilotriacetic acid. Kinetic and equilibrium binding studies indicated that transferrin binds gallium more tightly in the presence of transferrin binding protein B. Thus, transferrin binding protein B does not facilitate metal ion removal and additional components are required for this process.  相似文献   

10.
During pregnancy, the mother is faced with an increased food demand. A good example of this increased demand is iron (Fe). Fe is needed in all growing cells. During pregnancy, the Fe transport to the fetus increases enormously. This amount can easily induce an Fe deficiency in the mother. Fe suppletion is very important for her, but not for the Fe status of the fetus, which is protected against Fe toxicity as well as deficiency. The placenta seems to be autonomous in Fe uptake. Likely there is a regulation mechanism. The human placenta is hemomonochorial. The cell layer of the fetus in contact with the maternal blood is formed by syncytiotrophoblasts. Fe is transported to the placenta by transferrin. Transferrin binds to a transferrin receptor on the trophoblast membrane and is internalized via an endocytic pathway. During this cycle, Fe is released from transferrin and the transferrin-transferrin receptor complex is recycled to the membrane. Isolated trophoblast cells from term placentas form a syncytium in vitro, and transferrin receptors are expressed. Expression depends on the number of cells in culture, culture time, the amount of Fe available, and the Fe compound. By regulation of the number of transferrin receptors, trophoblasts are able to control their Fe uptake.  相似文献   

11.
Several nonmammalian members of the RNase A superfamily exhibit anticancer activity that appears to correlate with resistance to the cytosolic ribonuclease inhibitor (RI). We mutated two human ribonucleases-pancreatic RNase (hRNAse) and eosinophil-derived neurotoxin (EDN)-to incorporate cysteine residues at putative sites of close contact to RI, but distant from the catalytic sites. Coupling of Cys89 of RNase and Cys87 of EDN to proteins at these sites via a thioether bond produced enzymatically active conjugates that were resistant to RI. To elicit cellular targeting as well as to block RI binding, transferrin was conjugated to a mutant human RNase, rhRNase(Gly89)-->Cys) and a mutant EDN (Thr87-->Cys). The transferrin-rhRNase(Gly89-->Cys) thioether conjugate was 5000-fold more toxic to U251 cells than recombinant wild-type hRNase. In addition, transferrin-targeted EDN exhibited tumor cell toxicities similar to those of hRNase. Thus, we endowed two human RI-sensitive RNases with greater cytotoxicity by increasing their resistance to RI. This strategy has the potential to generate a novel set of recombinant human proteins useful for targeted therapy of cancer.  相似文献   

12.
Abstract. Iron chelating agents have been demonstrated to inhibit tumour cell growth. However, in vitro and in vivo results using desferrioxamine a hexadentate iron chelating agent, for anti-cancer treatment are not always in agreement. Therefore, we have studied the response of three human tumour cell lines (HL-60 promyelocytic leukaemia, MCF-7 breast cancer and HepG2 hepatoma), grown in culture medium supplemented with either human pooled (HPS) or fet al bovine serum (FBS), to desferrioxamine. Desferrioxamine, at micromolar concentrations, induced severe cytotoxicity in all tumour cell lines grown in FBS medium. When grown in HPS medium, comparable desferrioxamine cytotoxicity was observed in the millimolar range. The addition of 50% saturated human transferrin to FBS medium resulted in protection against desferrioxamine cytotoxicity. HL-60 cells were further studied for iron metabolism characteristics. HL-60 cells, grown in medium with FBS, were found to have an 8.4 fold increase in surface transferrin receptor (TfR) expression ( P < 0.001) as compared with HL-60 cells grown in medium with HPS. However, iron uptake of HPS cultured HL-60 cells, after incubation with saturated human transferrin, was higher, resulting in a higher concentration of iron in HPS cultured HL-60 cells as compared with FBS cultured cells (1.72 ± 0.02 μmol/g protein v. 1.32 ± 0.14 μmol/g protein; P < 0.001). Using desferrioxamine it was shown that TfR expression is dependent on the biological availability of iron in the cell. Consistent with the lower iron content in FBS cultured cells, we conclude that the cytotoxicity of desferrioxamine is dependent on the ability of cells to replenish cellular iron stores from the culture medium. Cells grown in FBS medium lack this ability and are therefore more susceptible to desferrioxamine.  相似文献   

13.
《Phytomedicine》2015,22(11):1045-1054
BackgroundApoptosis and other forms of cell death have been intensively investigated in the past years to explain the mode of action of synthetic anticancer drugs and natural products. Recently, a new form of cell death emerged, which was termed ferroptosis, because it depends on intracellular iron. Here, the role of genes involved in iron metabolism and homeostasis for the cytotoxicity of ten artemisinin derivatives have been systematically investigated.Material and methodsLog10IC50 values of 10 artemisinin derivatives (artesunate, artemether, arteether, artenimol, artemisitene, arteanuin B, another monomeric artemisinin derivative and three artemisinin dimer molecules) were correlated to the microarray-based mRNA expression of 30 iron-related genes in 60 cell lines of the National Cancer Institute (NCI, USA) as determined in 218 different microarray hybridization experiments. The effect of desferoxamine and ferrostatin-1 on the cytotoxicity of artenimol of CCRF-CEM cells was determined by resazurin assays. The mRNA expression of TFRC was exemplarily validated by immunohistochemical detection of transferrin receptor protein expression.ResultsThe mRNA expression of 20 genes represented by 59 different cDNA clones significantly correlated to the log10IC50 values for the artemisinins, including genes encoding transferrin (TF), transferrin receptors 1 and 2 (TFRC, TFR2), cerulopasmin (CP), lactoferrin (LTF) and others. The ferroptosis inhibitor ferrostatin-1 and the iron chelator deferoxamine led to a significantly reduced cytotoxicity of artenimol, indicating ferroptosis as cell death mode.ConclusionThe numerous iron-related genes, whose expression correlated with the response to artemisinin derivatives speak in factor for the relevance of iron for the cytotoxic activity of these compounds. Treatment with ferroptosis-inducing agents such as artemisinin derivatives represents an attractive strategy for cancer therapy. Pre-therapeutic determination of iron-related genes may indicate tumor sensitivity to artemisinins. Ferroptosis induced by artemisinin-type drugs deserve further investigation for individualized tumor therapy.  相似文献   

14.
To investigate the regulation mechanism of the uptake of iron and heme iron by the cells and intracellular utilization of iron, we examined the interaction between iron uptake from transferrin and hemopexin-mediated uptake of heme by human leukemic U937 cells or HeLa cells. U937 cells exhibited about 40,000 hemopexin receptors/cell with a dissociation constant (Kd) of 1 nM. Heme bound in hemopexin was taken up by U937 cells or HeLa cells in a receptor-mediated manner. Treatment of both species of cells with hemopexin led to a rapid decrease in iron uptake from transferrin in a hemopexin dose-dependent manner, and the decrease seen in case of treatment with hemin was less than that seen with hemopexin. The decrease of iron uptake by hemopexin contributed to a decrease in cell surface transferrin receptors on hemopexin-treated cells. Immunoblot analysis of the transferrin receptors revealed that the cellular level of receptors in U937 cells did not vary during an 8-h incubation with hemopexin although the number of surface receptors as well as iron uptake decreased within the 2-h incubation. After 4 h of incubation of the cells with hemopexin, a decrease of the synthesis of the receptors occurred. Thus, the down-regulation of transferrin receptors by hemopexin can be attributed to at least two mechanisms. One is a rapid redistribution of the surface receptor into the interior of the cells, and the other is a decrease in the biosynthesis of the receptor. 59Fe from the internalized heme rapidly appeared in non-heme iron (ferritin) coincidently with the induction of heme oxygenase. The results suggest that iron released from heme down-regulates the expression of the transferrin receptors and iron uptake.  相似文献   

15.
Most organisms depend on iron as a co-factor for proteins catalyzing redox reactions. Iron is, however, a difficult element for cells to deal with, as it is insoluble in its ferric (Fe3+) form and potentially toxic in its ferrous (Fe2+) form. Thus, in vertebrates iron is transported through the circulation bound to transferrin (Tf) and delivered to cells through an endocytotic cycle involving the transferrin receptor (TfR). We have previously presented a model for the Tf-TfR complex in its iron-bearing form, the diferric transferrin (dTf)-TfR complex [Cheng, Y., Zak, O., Aisen, P., Harrison, S.C., Walz, T., 2004. Structure of the human transferrin receptor-transferrin complex. Cell 116, 565-576]. We have now calculated a single particle reconstruction for the complex in its iron-free form, the apo-transferrin (apoTf)-TfR complex. The same density map was obtained by aligning raw particle images or class averages of the vitrified apoTf-TfR complex to reference models derived from the structures of the dTf-TfR or apoTf-TfR complex. We were unable to improve the resolution of the apoTf-TfR density map beyond 16A, most likely because of significant structural variability of Tf in its iron-free state. The density map does, however, support the model for the apoTf-TfR we previously proposed based on the dTf-TfR complex structure, and it suggests that receptor-bound apoTf prefers to adopt an open conformation.  相似文献   

16.
The Chinese hamster V79 cell line can be grown in medium containing iron instead of lactalbumin hydrolysate and containing defined low molecular weight components instead of peptone. A rather large amount of inorganic iron must be supplied for optimum growth. Dose-response curves done with commercially available transferrins from various species show that this Chinese hamster cell line grows well with human and rabbit transferrins but poorly with porcine, bovine, and chicken egg white (conalbumin) transferrins. An assay of Chinese hamster serum in the presence and absence of iron shows that hamster serum is better at providing the V79 cells with iron than human or rabbit transferrin. Thus, the nature of the iron requirement of V79 cells lies in the requirement for a specific transferrin.  相似文献   

17.
A majority of cells obtain of transferrin (Tf) bound iron via transferrin receptor 1 (TfR1) or by transferrin receptor 2 (TfR2) in hepatocytes. Our study establishes that cells are capable of acquiring transferrin iron by an alternate pathway via GAPDH.These findings demonstrate that upon iron depletion, GAPDH functions as a preferred receptor for transferrin rather than TfR1 in some but not all cell types. We utilized CHO-TRVb cells that do not express TfR1 or TfR2 as a model system. A knockdown of GAPDH in these cells resulted in a decrease of not only transferrin binding but also associated iron uptake. The current study also demonstrates that, unlike TfR1 and TfR2 which are localized to a specific membrane fraction, GAPDH is located in both the detergent soluble and lipid raft fractions of the cell membrane. Further, transferrin uptake by GAPDH occurs by more than one mechanism namely clathrin mediated endocytosis, lipid raft endocytosis and macropinocytosis. By determining the kinetics of this pathway it appears that GAPDH-Tf uptake is a low affinity, high capacity, recycling pathway wherein transferrin is catabolised. Our findings provide an explanation for the detailed role of GAPDH mediated transferrin uptake as an alternate route by which cells acquire iron.  相似文献   

18.
The anti-malarial artesunate also exerts profound anti-cancer activity. The susceptibility of tumor cells to artesunate can be enhanced by ferrous iron. The transferrin receptor (TfR) is involved in iron uptake by internalization of transferrin and is over-expressed in rapidly growing tumors. The ATP-binding cassette (ABC) transporters ABCB6 and ABCB7 are also involved in iron homeostasis. To investigate whether these proteins play a role for sensitivity towards artesunate, Oncotest's 36 cell line panel was treated with artesunate or artesunate plus iron(II) glycine sulfate (Ferrosanol). The majority of cell lines showed increased inhibition rates, for the combination of artesunate plus iron(II) glycine sulfate compared to artesunate alone. However, in 11 out of the 36 cell lines the combination treatment was not superior. Cell lines with high TfR expression significantly correlated with high degrees of modulation indicating that high TfR expressing tumor cells would be more efficiently inhibited by this combination treatment than low TfR expressing ones. Furthermore, we found a significant relationship between cellular response to artesunate and TfR expression in 55 cell lines of the National Cancer Institute (NCI), USA. A significant correlation was also found for ABCB6, but not for ABCB7 in the NCI panel. Artesunate treatment of human CCRF-CEM leukemia and MCF7 breast cancer cells induced ABCB6 expression but repressed ABCB7 expression. Finally, artesunate inhibited proliferation and differentiation of mouse erythroleukemia (MEL) cells. Down-regulation of ABCB6 by antisense oligonucleotides inhibited differentiation of MEL cells indicating that artesunate and ABCB6 may cooperate. In conclusion, our results indicate that ferrous iron improves the activity of artesunate in some but not all tumor cell lines. Several factors involved in iron homeostasis such as TfR and ABCB6 may contribute to this effect.  相似文献   

19.
Little is known about the transport of iron into the mammary secretory cell and the process of milk iron secretion. The concentration of iron in milk is remarkably unaffected by maternal iron status, suggesting that the uptake of iron into the mammary gland is regulated. It is known that iron enters other cells via transferrin receptor-mediated endocytosis. This study was designed to isolate and characterize the mammary gland transferrin receptor in lactating rat mammary tissue using immunochemical techniques. The existence of functional mammary gland transferrin receptors in lactating rodents was demonstrated using radiolabel-binding techniques. Isolation of mammary transferrin receptors by affinity chromatography was confirmed using immunoelectrophoresis and slot blot analysis. The intact transferrin receptor was found to have a molecular weight of 176 kd as determined by Western blotting followed by scanning densitometry. Reduction of the receptor with beta-mercaptoethanol gave a molecular weight of 98 kd. An additional immunoreactive band of 135 kd was observed. The presence of transferrin receptors in normal lactating rat mammary tissue is likely to explain iron transport into mammary tissue for both cellular metabolism and milk iron secretion.  相似文献   

20.
Iron-uptake and storage are tightly regulated to guarantee sufficient iron for essential cellular processes and to prevent the production of damaging free radicals. A non-classical class I MHC molecule, the hemochromatosis factor (HFE), has been shown to regulate iron metabolism, potentially via its interaction with the transferrin receptor. Whereas, the effect of human HFE (hHFE) on transferrin/transferrin receptor association, as well as on transferrin receptor recycling and the level of cellular iron pools in various cell lines was analyzed, very little is known about the mouse HFE (mHFE) protein. In the following study, our aim was to analyze in more detail the function of mHFE. Surprisingly, we observed that over-expression of mHFE, but not of hHFE, in a mouse transformed cell line, results in a most significant inhibition of transferrin-uptake which correlated with apoptotic cell death. mHFE inhibited transferrin-uptake immediately following transfection and this inhibition persisted in the surviving stable transfectants. Concomitantly, cellular iron derived from transferrin-iron uptake was dramatically limited. The activation of a non-transferrin bound iron-uptake pathway that functions in the stable mHFE-transfected clones could explain their normal growth curves and survival. The hypothesis that iron starvation can induce iron-uptake by a novel transferrin-independent pathway is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号