首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated and characterized cDNA clones from chicken cDNA libraries derived from skeletal muscle, body wall, and cultured fibroblasts. A clone isolated from a skeletal muscle cDNA library contains the complete protein-coding sequence of the 284-amino-acid skeletal muscle beta-tropomyosin together with 72 bases of 5' untranslated sequence and nearly the entire 3' untranslated region (about 660 bases), lacking only the last 4 bases and the poly(A) tail. A second clone, isolated from the fibroblast cDNA library, contains the complete protein-coding sequence of a 248-amino-acid fibroblast tropomyosin together with 77 bases of 5' untranslated sequence and 235 bases of 3' untranslated sequence through the poly(A) tract. The derived amino acid sequence from this clone exhibits only 82% homology with rat fibroblast tropomyosin 4 and 80% homology with human fibroblast tropomyosin TM30nm, indicating that this clone encodes a third 248-amino-acid tropomyosin isoform class. The protein product of this mRNA is fibroblast tropomyosin 3b, one of two low-molecular-weight isoforms expressed in chicken fibroblast cultures. Comparing the sequences of the skeletal muscle and fibroblast cDNAs with a previously characterized clone which encodes the smooth muscle alpha-tropomyosin reveals two regions of absolute homology, suggesting that these three clones were derived from the same gene by alternative RNA splicing.  相似文献   

2.
3.
4.
5.
6.
7.
8.
cDNA clones for rat muscle-type creatine kinase and glycogen phosphorylase and aldolase A were isolated from a rat muscle cDNA library. An additional clone recognizing an unidentified 2.7-kilobase pair mRNA species was also isolated. These cDNA clones were used as probes to investigate the expression of the corresponding mRNAs during muscle development. Two aldolase A mRNA species were detected, one of 1650 bases expressed in non-muscle tissues, fetal muscle, and adult slow-twitch muscle, the other of 1550 bases was highly specific of adult fast-twitch skeletal muscle differentiation. These aldolase A mRNAs were shown by primer extension to differ by their 5' ends. The accumulation of muscle-type phosphorylase and creatine kinase and muscle-specific aldolase A mRNA accumulation during muscle development seems to be a coordinate process occurring progressively from the 17th day of intrauterine life up to the 30th day after birth. In contrast, the 2.7-kilobase pair RNA species is maximally expressed at the 1st week after birth as is the neonatal form of myosin heavy chain mRNA.  相似文献   

9.
10.
Nearly complete cDNA clones for human aldolase A mRNA were isolated from human liver cDNA library and the nucleotide sequence determined. Using the cDNA clone as a probe the length of human aldolase A mRNAs, isolated from the skeletal muscle, liver and placenta tissues, was measured by RNA blotting and estimated to be 1,600 nucleotides for skeletal muscle mRNA and 1,700 nucleotides for both the liver and placenta mRNAs, indicating that different species of mRNA coding for human aldolase A were expressed in the different tissues.  相似文献   

11.
A full-length cDNA clone that codes for glucose transporter protein was isolated from a rabbit brain cDNA library by using synthetic oligonucleotide probe derived from the sequence of human glucose transporter cDNA. The coding region shared 93.2% nucleotide and 97.0% amino-acid similarities with those of human glucose transporter and 89.4% nucleotide and 97.4% amino-acid similarities with those of rat transporter. Northern blot analysis revealed that glucose transporter mRNA is most abundant in the placenta and that it is also abundant in the brain. The fat tissue, heart, liver, and skeletal muscle of adult rats contained a very small amount of mRNA, while heart, liver, skeletal muscle and kidney of fetal rats contained a very high amount of glucose transporter mRNA. These results suggest that this type of glucose transporter might be closely related with cell proliferation and tissue development.  相似文献   

12.
Summary We have found evidence for two beta-like myosin heavy chains in humans, one cardiac and one skeletal. The cDNA sequences of the cardiac beta myosin heavy chain cDNA clone pHMC3 and the skeletal beta-like myosin heavy chain cDNA clone pSMHCZ, were compared to each other. It was found that the 3 untranslated regions as well as 482 nucleotides specifying the carboxyl coding region, were 100% homologous. Further examination revealed that the skeletal clone pSMHCZ diverges from the human cardiac beta myosin heavy chain cDNA clone pHMC3 at the 5 end. We present evidence in this report which indicates that the cardiac beta myosin heavy chain mRNA is expressed in skeletal muscle tissues. The human cardiac beta myosin heavy chain cDNA clone, pHMC3, which codes for a portion of the light meromyosin section of the myosin heavy chain, was used as a probe for S1 nuclease mapping studies with RNA derived from cardiac tissue, smooth muscle and skeletal muscle tissues consisting of fast-twitch, slow-twitch and mixed fast- and slow-twitch muscle fibres. Two probes were used to examine the expression of the mRNA. One probe (406 nucleotides) constitutes the 3 untranslated region and a portion of the coding region of the beta cardiac myosin heavy chain cDNA clone, which is 100% homologous to pSMHCZ, the skeletal cDNA clone. The other constitutes the majority of the coding region (1017 nucleotides) of the cardiac clone pHMC3 in which the first 216 nucleotides from the labelled end are 100% homologous to the skeletal clone pSMHCZ. In the soleus muscle, which is rich in slow-twitch type I muscle fibres, the expression of the cardiac beta myosin heavy chain mRNA was very prominent. In gastrocnemius muscle, a mixed fibre muscle, the expression of this mRNA was detected to a lesser degree than that for the soleus muscle. In vastus lateralis and vastus medialis, which consist of predominantly type II, fast-twitch fibres, there were trace amounts of the cardiac beta myosin heavy chain mRNA. When expression of this mRNA was tested in smooth muscle tissue none could be detected.  相似文献   

13.
14.
Isolation and characterization of a cDNA encoding a chick alpha-actinin   总被引:7,自引:0,他引:7  
We have isolated and sequenced a 2.1-kilobase cDNA encoding 86% of the sequence of alpha-actinin. The cDNA clone was isolated from a chick embryo fibroblast cDNA library constructed in the expression vector lambda gt11. Identification of this sequence as alpha-actinin was confirmed by immunological methods and by comparing the deduced protein sequence with the sequence of several CNBr fragments obtained from adult chicken smooth muscle (gizzard) alpha-actinin. The deduced protein sequence shows two distinct domains, one of which consists of four repeats of approximately 120 amino acids. This region corresponds to a previously identified 50-kDa tryptic peptide involved in formation of the alpha-actinin dimer. The last 19 residues of C-terminal sequence display an homology with the so-called E-F hand of Ca2+-binding proteins. Hybridization analysis reveals only one size of mRNA (approximately 3.5 kilobases) in fibroblasts, but multiple bands in genomic cDNA.  相似文献   

15.
A cDNA clone, labeled pFOD5, isolated from a fetal-rat skeletal-muscle cDNA library, has been characterized and found to contain sequences corresponding to a perinatal-specific skeletal myosin heavy-chain (MHC) mRNA. This MHC cDNA demonstrates a high degree of nucleotide- and amino acid-sequence conservation with other MHC genes, but its carboxyl-terminal peptide and 3'-untranslated region are highly divergent and specific for this gene. S1 nuclease mapping experiments have shown that the perinatal MHC gene represented by this cDNA clone is only transiently expressed during skeletal-muscle development. Perinatal MHC mRNA is first detected late in fetal life, reaches maximal levels of expression at the end of the first postnatal week, and is de-induced thereafter. Its levels are almost undetectable at 28 days of postnatal life. During fetal and early postnatal life, the expression of this perinatal gene in skeletal muscle overlaps with the expression of the embryonic MHC gene. After the first week of extrauterine life, this gene is coexpressed with two adult MHC genes. The transient expression of this perinatal MHC gene raises interesting questions about the physiological significance of the MHC transitions and offers an interesting model for the study of MHC gene regulation.  相似文献   

16.
17.
18.
The cDNA coding for human skeletal muscle beta-tropomyosin was expressed in Escherichia coli to produce an unacetylated beta-tropomyosin. This cDNA was deleted from the sequence corresponding to the exon 9 and expressed in E. coli to produce an unacetylated beta-tropomyosin mutant lacking the C-terminal residues 254-284. The main structural and functional properties of the two isolated proteins, designated tropomyosin-1 and des-(254-284)-tropomyosin, respectively, were characterized in comparison with those of the genuine rabbit skeletal muscle alpha beta-tropomyosin. The folding and thermal stability of the three tropomyosins were indistinguishable. Tropomyosin-1, but not des-(254-284)-tropomyosin, was polymerized in the presence of troponin and did bind to actin in the presence of the troponin complex. Despite its weak binding to actin, des-(254-284)-tropomyosin displayed a regulatory function in the presence of troponin with a marked activation of the actomyosin subfragment-1 ATPase in the presence of Ca2+ and low concentrations of subfragment-1. The data were interpreted in the light of the allosteric models of regulation and suggest the involvement of the sequence coded by exon 9 in the stabilization by tropomyosin of the off state of the thin filament.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号