首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Isolation of the REC1 gene controlling recombination in Ustilago maydis   总被引:5,自引:0,他引:5  
T Tsukuda  R Bauchwitz  W K Holloman 《Gene》1989,85(2):335-341
  相似文献   

2.
K. Onel  A. Koff  R. L. Bennett  P. Unrau    N. K. Holloman 《Genetics》1996,143(1):165-174
Mutation in the REC1 gene of Ustilago maydis results in extreme sensitivity to killing by ultraviolet light. The lethality of the rec1-1 mutant was found to be partially suppressed if irradiated cells were held artificially in G2-phase by addition of a microtubule inhibitor. This mutant was also found to be sensitive to killing when DNA synthesis was inhibited by external means through addition of hydroxyurea or by genetic control in a temperature-sensitive mutant strain defective in DNA synthesis. Flow cytometric analysis of exponentially growing cultures indicated that wild-type cells accumulated in G2 after UV irradiation, while rec1-1 cells appeared to exit from G2 and accumulate in G1/S. Analysis of mRNA levels in synchronized cells indicated that the REC1 gene is periodically expressed with the cell cycle and reaches maximal levels at G1/S. The results are interpreted to mean that a G2-M checkpoint is disabled in the rec1-1 mutant. It is proposed that the REC1 gene product functions in a surveillance system operating during S-phase and G2 to find and repair stretches of DNA with compromised integrity and to communicate with the cell cycle apparatus.  相似文献   

3.
The REC104 gene was initially defined by mutations that rescued the inviability of a rad52 spo 13 haploid strain in meiosis. We have observed that rec104 mutant strains undergo essentially no induction of meiotic gene conversion, and we have not been able to detect any meiotic crossing over in such strains. The REC104 gene has no apparent role in mitosis, since mutations have no observable effect on growth, mitotic recombination, or DNA repair. The DNA sequence of REC104 reveals that it is a previously unknown gene with a coding region of 549-bp, and genetic mapping has localized the gene to chromosome VIII near FUR1. Expression of the REC104 gene is induced in meiosis, and it appears that the gene is not transcribed in mitotic cells. Possible roles for the REC104 gene product in meiosis are discussed.  相似文献   

4.
rec mutations result in an extremely low level of recombination and a high frequency of primary non-disjunction in the female meiosis of Drosophila melanogaster. Here we demonstrate that the rec gene encodes a novel protein related to the mini-chromosome maintenance (MCM) proteins. Six MCM proteins (MCM2-7) are conserved in eukaryotic genomes, and they function as heterohexamers in the initiation and progression of mitotic DNA replication. Three rec alleles, rec(1), rec(2) and rec (3), were found to possess mutations within this gene, and P element-mediated germline transformation with a wild-type rec cDNA fully rescued the rec mutant phenotypes. The 885 amino acid REC protein has an MCM domain in the middle of its sequence and, like MCM2, 4, 6 and 7, REC contains a putative Zn-finger motif. Phylogenetic analyses revealed that REC is distantly related to the six conserved MCM proteins. Database searches reveal that there are candidates for orthologs of REC in other higher eukaryotes, including human. We addressed whether rec is involved in DNA repair in the mitotic division after the DNA damage caused by methylmethane sulfonate (MMS) or by X-rays. These analyses suggest that the rec gene has no, or only a minor, role in DNA repair and recombination in somatic cells.  相似文献   

5.
The REC104 gene was initially defined by mutations that rescued the inviability of a rad52 spo13 haploid strain in meiosis. We have observed that rec104 mutant strains undergo essentially no induction of meiotic gene conversion, and we have not been able to detect any meiotic crossing over in such strains. The REC104 gene has no apparent role in mitosis, since mutations have no observable effect on growth, mitotic recombination, or DNA repair. The DNA sequence of REC104 reveals that it is a previously unknown gene with a coding region of 549-bp, and genetic mapping has localized the gene to chromosome VIll near FUR1. Expression of the REC104 gene is induced in meiosis, and it appears that the gene is not transcribed in mitotic cells. Possible roles for the REC104 gene product in meiosis are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Mutation in the REC2 gene of Ustilago maydis leads to defects in DNA repair, recombination, and meiosis. Analysis of the primary sequence of the Rec2 protein reveals a region with significant homology to bacterial RecA protein and to the yeast recombination proteins Dmc1, Rad51, and Rad57. This homologous region in the U. maydis Rec2 protein was found to be functionally sensitive to mutation, lending support to the hypothesis that Rec2 has a functional RecA-like domain essential for activity in recombination and repair. Homologous recombination between plasmid and chromosomal DNA sequences is reduced substantially in the rec2 mutant following transformation. The frequency can be restored to a level approaching, but not exceeding, that observed in the wild-type strain if transformation is performed with cells containing multiple copies of REC2.  相似文献   

7.
Recombination-deficient strains have been proven useful for the understanding of the genetic control of homologous recombination. As the genetic screens used to isolate recombination-deficient (rec(-)) yeast mutants have not been saturated, we sought to develop a simple colony color assay to identify mutants with low or elevated rates of recombination. Using this system we isolated a collection of rec(-) mutants. We report the characterization of the REC41 gene identified in this way. REC41 is required for normal levels of interplasmid recombination and gamma-ray induced mitotic interchromosomal recombination. The rec41-1 mutant failed to grow at 37 degrees C. Microscopic analysis of plated cells showed that 45-50% of them did not form visible colonies at permissive temperature. Haploid cells of the rec41 mutant show the same gamma-ray sensitivity as wild type ones. However, the diploid rec41 mutant shows gamma-ray sensitivity which is comparable with heterozygous REC41/rec41-1 diploid cells. This fact indicates semidominance of the rec41-1 mutation. Diploid strains homozygous for the rec41 rad52 mutations had the same gamma-ray sensitivity as single rad52 diploids and exhibited dramatically decreased growth rate. The expression of the HO gene does not lead to inviability of rec41 cells. The rec41 mutation has an effect on meiosis, likely meiotic recombination, even in the heterozygous state. We cloned the REC41 gene. Sequence analysis revealed that the REC41 gene is encoded by ORF YDR245w. Earlier, this ORF was attributed to MNN10, BED1, SLC2, CAX5 genes. Two multicopy plasmids with suppressers of the rec41-1 mutation (pm21 and pm32) were isolated. The deletion analysis showed that only DNA fragments with the CDC43 and HAC1 genes can partially complement the rec41-1 mutation.  相似文献   

8.
A mutation at the REC102 locus was identified in a screen for yeast mutants that produce inviable spores. rec102 spore lethality is rescued by a spo13 mutation, which causes cells to bypass the meiosis I division. The rec102 mutation completely eliminates meiotically induced gene conversion and crossing over but has no effect on mitotic recombination frequencies. Cytological studies indicate that the rec102 mutant makes axial elements (precursors to the synaptonemal complex), but homologous chromosomes fail to synapse. In addition, meiotic chromosome segregation is significantly delayed in rec102 strains. Studies of double and triple mutants indicate that the REC102 protein acts before the RAD52 gene product in the meiotic recombination pathway. The REC102 gene was cloned based on complementation of the mutant defect and the gene was mapped to chromosome XII between CDC25 and STE11.  相似文献   

9.
The Cas9 nuclease from Staphylococcus aureus (SaCas9) holds great potential for use in gene therapy, and variants with increased fidelity have been engineered. However, we find that existing variants have not reached the greatest accuracy to discriminate base mismatches and exhibited much reduced activity when their mutations were grafted onto the KKH mutant of SaCas9 for editing an expanded set of DNA targets. We performed structure-guided combinatorial mutagenesis to re-engineer KKH-SaCas9 with enhanced accuracy. We uncover that introducing a Y239H mutation on KKH-SaCas9’s REC domain substantially reduces off-target edits while retaining high on-target activity when added to a set of mutations on REC and RuvC domains that lessen its interactions with the target DNA strand. The Y239H mutation is modelled to have removed an interaction from the REC domain with the guide RNA backbone in the guide RNA-DNA heteroduplex structure. We further confirmed the greatly improved genome-wide editing accuracy and single-base mismatch discrimination of our engineered variants, named KKH-SaCas9-SAV1 and SAV2, in human cells. In addition to generating broadly useful KKH-SaCas9 variants with unprecedented accuracy, our findings demonstrate the feasibility for multi-domain combinatorial mutagenesis on SaCas9’s DNA- and guide RNA- interacting residues to optimize its editing fidelity.  相似文献   

10.
Amino acid sequence analysis has established that the homologous pairing protein of Ustilago maydis, known previously in the literature as rec1, is encoded by REC2, a gene essential for recombinational repair and meiosis with regional homology to Escherichia coli RecA. The 70-kDa rec1 protein is most likely a proteolytic degradation product of REC2, which has a predicted mass of 84 kDa but which runs anomalously during sodium dodecyl sulfate-gel electrophoresis with an apparent mass of 110 kDa. To facilitate purification of the protein product, the REC2 gene was overexpressed from a vector that fused a hexahistidine leader sequence onto the amino terminus, enabling isolation of the REC2 protein on an immobilized metal affinity column. The purified protein exhibits ATP-dependent DNA renaturation and DNA-dependent ATPase activities, which were reactions characteristic of the protein as purified from cell extracts of U. maydis. Homologous pairing activity was established in an assay that measures recognition via non-Watson-Crick bonds between identical DNA strands. A size threshold of about 50 bp was found to govern pairing between linear duplex molecules and homologous single-stranded circles. Joint molecule formation with duplex DNA well under the size threshold was efficiently catalyzed when one strand of the duplex was composed of RNA. Linear duplex molecules with hairpin caps also formed joint molecules when as few as three RNA residues were present.  相似文献   

11.
The REC1 gene of Ustilago maydis has an uninterrupted open reading frame, predicted from the genomic sequence to encode a protein of 522 amino acid residues. Nevertheless, an intron is present, and functional activity of the gene in mitotic cells requires an RNA processing event to remove the intron. This results in a change in reading frame and production of a protein of 463 amino acid residues. The 3'-->5' exonuclease activity of proteins derived from the REC1 genomic open reading frame, the intronless open reading frame, and several mutants was investigated. The mutants included a series of deletions constructed by removing restriction fragments at the 3' end of the cloned REC1 gene and a set of mutant alleles previously isolated in screens for radiation sensitivity. All of these proteins were overproduced in Escherichia coli as N-terminal polyhistidine-tagged fusions that were subsequently purified by immobilized metal affinity chromatography and assayed for 3'-->5' exonuclease activity. The results indicated that elimination of the C-terminal third of the protein did not result in a serious reduction in 3'-->5' exonuclease activity, but deletion into the midsection caused a severe loss of activity. The biological activity of the rec1-1 allele, which encodes a truncated polypeptide with full 3'-->5' exonuclease activity, and the rec1-5 allele, which encodes a more severely truncated polypeptide with no exonuclease activity, was investigated. The two mutants were equally sensitive to the lethal effect of UV light, but the spontaneous mutation rate was elevated 10-fold over the wild-type rate in the rec1-1 mutant and 100-fold in the rec1-5 mutant. The elevated spontaneous mutation rate correlated with the ablation of exonuclease activity, but the radiation sensitivity did not. These results indicate that the C-terminal portion of the Rec1 protein is not essential for exonuclease activity but is crucial in the role of REC1 in DNA damage repair.  相似文献   

12.
A gene encoding a Ustilago maydis Rad51 orthologue has been isolated. rad51-1, a mutant constructed by disrupting the gene, was as sensitive to killing by ultraviolet light and γ radiation as the rec2-1 mutant and slightly more sensitive to killing by methyl methanesulfonate. There was no suppression of killing by ultraviolet light when a rec2-1 strain was transformed with a multicopy plasmid containing RAD51, nor was there suppression when rad51-1 was transformed with a multicopy plasmid containing REC2. Recombination proficiency as measured by a gap repair assay was diminished in both rec2-1 and rad51-1 strains. In rec2-1 the frequency of recombination was decreased, but the spectrum of events was similar to that observed in wild type, while in rad51-1 the frequency as well as the spectrum of recombination events were different. Studies with the rec2-1 rad51-1 double mutant indicated that there was epistasis in the action of REC2 and RAD51 in certain repair and recombination functions, but some measure of independent action in other functions.  相似文献   

13.
14.
Cesium-137 gamma rays were used to transform rat embryo cells (REC) which were first transfected with activated c-myc or c-Ha-ras oncogenes to produce immortal cell lines (REC:myc and REC:ras). When exposed to 6 Gy of 137Cs gamma rays, some cells became morphologically transformed with focus formation frequencies of approximately 3 x 10(-4) for REC:myc and approximately 1 x 10(-4) for REC:ras, respectively. Cells isolated from foci of gamma-ray-transformed REC:myc (REC:myc:gamma) formed anchorage-independent colonies and were tumorigenic in nude mice, but foci from gamma-ray-transformed REC:ras (REC:ras:gamma) did not exhibit either of these criteria of transformation. Similar to the results with gamma irradiation, we observed a sequence-dependent phenomenon when myc and ras were transfected into REC, one at a time. REC immortalized by ras transfection were not converted to a tumorigenic phenotype by secondary transfection with myc, but REC transfected with myc were very susceptible to transformation by subsequent ras transfection. This suggests that myc-immortalized cells are more permissive to transformation via secondary treatments. In sequentially transfected REC, myc expression was high whether it was transfected first or second, whereas ras expression was highest when the ras gene was transfected secondarily into myc-containing REC. Molecular analysis of REC:ras:gamma transformants showed no alterations in structure of the transfected ras or of the endogenous ras, myc, p53, or fos genes. The expression of ras and p53 was increased in some isolates of REC:ras:gamma, but myc and fos expression were not affected. Similarly, REC:myc:gamma transformants did not demonstrate rearrangement or amplification of the transfected or the endogenous myc genes, or of the potentially cooperating Ha-, Ki-, or N-ras genes. Northern hybridization analysis revealed increased expression of N-ras in two isolates, REC:myc:gamma 33 and gamma 41, but no alterations in the expression of myc, raf, Ha-ras, or Ki-ras genes in any REC:myc transformant. DNA from several transformed REC:myc:gamma cell lines induced focus formation in recipient C3H 10T1/2 and NIH 3T3 cells. The NIH 3T3 foci tested positive when hybridized to a probe for rat repetitive DNA. A detailed analysis of the NIH 3T3 transformants generated from REC:myc:gamma 33 and gamma 41 DNA failed to detect Ha-ras, Ki-ras, raf, neu, trk, abl, fms, or src oncogenes of rat origin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
M. Ajimura  S. H. Leem    H. Ogawa 《Genetics》1993,133(1):51-66
Mutants defective in meiotic recombination were isolated from a disomic haploid strain of Saccharomyces cerevisiae by examining recombination within the leu2 and his4 heteroalleles located on chromosome III. The mutants were classified into two new complementation groups (MRE2 and MRE11) and eight previously identified groups, which include SPO11, HOP1, REC114, MRE4/MEK1 and genes in the RAD52 epistasis group. All of the mutants, in which the mutations in the new complementation groups are homozygous and diploid, can undergo premeiotic DNA synthesis and produce spores. The spores are, however, not viable. The mre2 and mre11 mutants produce viable spores in a spo13 background, in which meiosis I is bypassed, suggesting that these mutants are blocked at an early step in meiotic recombination. The mre2 mutant does not exhibit any unusual phenotype during mitosis and it is, thus, considered to have a mutation in a meiosis-specific gene. By contrast, the mre11 mutant is sensitive to damage to DNA by methyl methanesulfonate and exhibits a hyperrecombination phenotype in mitosis. Among six alleles of HOP1 that were isolated, an unusual pattern of intragenic complementation was observed.  相似文献   

16.
Replication protein A (RPA) is a conserved heterotrimeric protein complex comprising RPA1, RPA2, and RPA3 subunits involved in multiple DNA metabolism pathways attributable to its single-stranded DNA binding property. Unlike other species possessing a single RPA2 gene, rice (Oryza sativa) possesses three RPA2 paralogs, but their functions remain unclear. In this study, we identified RPA2c, a rice gene preferentially expressed during meiosis. A T-DNA insertional mutant (rpa2c) exhibited reduced bivalent formation, leading to chromosome nondisjunction. In rpa2c, chiasma frequency is reduced by ∼78% compared with the wild type and is accompanied by loss of the obligate chiasma. The residual ∼22% chiasmata fit a Poisson distribution, suggesting loss of crossover control. RPA2c colocalized with the meiotic cohesion subunit REC8 and the axis-associated protein PAIR2. Localization of REC8 was necessary for loading of RPA2c to the chromosomes. In addition, RPA2c partially colocalized with MER3 during late leptotene, thus indicating that RPA2c is required for class I crossover formation at a late stage of homologous recombination. Furthermore, we identified RPA1c, an RPA1 subunit with nearly overlapping distribution to RPA2c, required for ∼79% of chiasmata formation. Our results demonstrate that an RPA complex comprising RPA2c and RPA1c is required to promote meiotic crossovers in rice.  相似文献   

17.
The REC2 gene of Ustilago maydis encodes a homologue of the Escherichia coli RecA protein and was first identified in a screen for UV-sensitive mutants. The original isolate, rec2-1, was found to be deficient in repair of DNA damage, genetic recombination and meiosis. We report here that the rec2-197 allele, which was constructed by gene disruption, retains some biological activity and is partially dominant with respect to REC2. The basis for the residual activity is probably as a result of expression of a diffusible product from the rec2-197 allele that augments or interferes with REC2 functions. This product appears to be a polypeptide expressed from a remnant of the 5' end of the open reading frame that was not removed in creating the gene disruption. The mutator activity and disturbed meiosis of rec2-197 suggest that the Rec2 protein functions in a process that avoids spontaneous mutation and insures faithful meiotic chromosome segregation. A prediction based on the phenotype of rec2-197 is that Rec2 protein interacts with one or more other proteins in directing these functions. To identify interacting proteins we performed a yeast two-hybrid screen and found Rad51 as a candidate. Rec2-197 and Rad51 appear to interact to a similar degree.  相似文献   

18.
A unit Rad-Equivalent Chemical (REC) has been suggested for purposes of quantitating the mutagenic hazards of chemicals. The usefulness of this approach is demonstrated by the establishment of a constant relationship between the forward mutation frequency and haploid genome size in various organisms for both radiation and chemical EMS. However, it is necessary to determine the radiation equivalence of chemicals in as many organisms and for as many end-points as possible. For end-points we are limited to forward mutations. Another relevant genetic end-point of interest in this regard is gene conversion which can also monitor any kind of DNA damage in a suitable diploid system. Hence, we have determined the REC value for EMS in diploid yeast with gene conversion as the end-point. This agrees well with the REC values estimated in a number of organisms with forward mutation as the end-point. This finding further underlines the generality of the REC concept.  相似文献   

19.
Chloroplasts of plant cells have their own genome, and a basic recombination protein homologous to the eubacterial RecA was suggested to be involved in the perpetuation of chloroplast DNA. A candidate cDNA sequence encoding the chloroplast RecA protein was identified from the Kazusa EST database for the unicellular green alga, Chlamydomonas reinhardtii (http://www.kazusa.or.jp/en/plant/chlamy/EST/). Analysis of the cDNA sequence identified an open reading frame (ORF) of 414 amino acids encoding a eubacteria-type RecA protein. Thus the corresponding gene was named REC1. The predicted protein contains an N-terminal extension that does not show any similarity with other RecA proteins. Transient expression of a REC1-sGFP (green fluorescent protein) fusion construct in tobacco cells has indicated that this N-terminal sequence functions as a transit peptide for import into chloroplasts. Since DNA-damaging reagents induced the REC1 mRNA, REC1 was suggested to have roles in DNA recombination and repair of the chloroplast DNA in C. reinhardtii.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号