首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Relaxosomes are specific nucleoprotein structures involved in DNA-processing reactions during bacterial conjugation. In this work, we present evidence indicating that plasmid R388 relaxosomes are composed of origin of transfer (oriT) DNA plus three proteins TrwC relaxase, TrwA nic-cleavage accessory protein and integration host factor (IHF), which acts as a regulatory protein. Protein IHF bound to two sites (ihfA and ihfB) in R388 oriT, as shown by gel retardation and DNase I footprinting analysis. IHF binding in vitro was found to inhibit nic-cleavage, but not TrwC binding to supercoiled DNA. However, no differences in the frequency of R388 conjugation were found between IHF- and IHF+ donor strains. In contrast, examination of plasmid DNA obtained from IHF- strains revealed that R388 was obtained mostly in relaxed form from these strains, whereas it was mostly supercoiled in IHF+ strains. Thus, IHF could have an inhibitory role in the nic-cleavage reaction in vivo. It can be speculated that triggering of conjugative DNA processing during R388 conjugation can be mediated by IHF release from oriT.  相似文献   

3.
Relaxases are DNA strand transferases that catalyze the initial and final stages of DNA processing during conjugative cell-to-cell DNA transfer. Upon binding to the origin of transfer (oriT) DNA, relaxase TrwC melts the double helix. The three-dimensional structure of the relaxase domain of TrwC in complex with its cognate DNA at oriT shows a fold built on a two-layer alpha/beta sandwich, with a deep narrow cleft that houses the active site. The DNA includes one arm of an extruded cruciform, an essential feature for specific recognition. This arm is firmly embraced by the protein through a beta-ribbon positioned in the DNA major groove and a loop occupying the minor groove. It is followed by a single-stranded DNA segment that enters the active site, after a sharp U-turn forming a hydrophobic cage that traps the N-terminal methionine. Structural analysis combined with site-directed mutagenesis defines the architecture of the active site.  相似文献   

4.
When two, directly-repeated copies of the origin of transfer (oriT) of the conjugatively mobilizable, broad host-range plasmid R1162 are cloned into bacteriophage M13mp9 DNA, they undergo recombination in the presence of one of the R1162-encoded proteins required for mobilization [Meyer, R. (1989) J. Bacteriol., 171, 799-806]. Mutations in the outer arm of the inverted repeat within oriT inhibit this recombination. These mutations also affect a late step in transfer. We propose that recombination on the phage DNA models the processing of single-stranded DNA after entry into a recipient cell. The two, directly-repeated oriTs are not equivalent during the recombination reaction, because they are differently affected by the outer-arm mutations. A mutation was also isolated that reduces the specificity of the cleavage site in one of the two oriTs. Together, the results with the mutations suggest that phage recombinants can form only when the first cleavage occurs at one of the two oriTs. This is followed by the resulting free 3' end joining to the 5' end at the cleavage site of the other oriT.  相似文献   

5.
Conjugative DNA processing of plasmid R388 requires the concerted action of two proteins, the relaxase-helicase TrwC and the relaxase enhancer TrwA. TrwA can be aligned with DNA binding proteins belonging to the ribbon-helix-helix (RHH) protein family. To further analyse TrwA function, the structural domains of the protein have been identified and dissected by limited proteolysis. Two stable domains were found that resulted to be, according to DNA binding experiments and oligomerization analysis, an N-terminal DNA binding domain and a C-terminal tetramerization domain. Using the three-dimensional structure of the Arc repressor as a guide, it was possible to model TrwA DNA binding site with atomic detail. As a result, TrwA polar amino acids Q8, R10 and S12, contained in the polar face of a putative N-terminal beta-strand, were found to be directly involved in DNA binding, in a manner analogous to RHH proteins. In this respect, TrwA seemed to be a new member of the RHH family. However, secondary structure analyses underscored the existence of a substantial difference in the architecture of the TrwA-oriT complex when compared to the Arc repressor-operator complex.  相似文献   

6.
During conjugation, a single strand of DNA is cleaved at the origin of transfer (oriT) by the plasmid-encoded relaxase. This strand is then unwound from its complement and transferred in the 5'-to-3' direction, with the 3' end likely extended by rolling-circle replication. The resulting, newly synthesized oriT must then be cleaved as well, prior to recircularization of the strand in the recipient. Evidence is presented here that the R1162 relaxase contains only a single nucleophile capable of cleaving at oriT, with another molecule therefore required to cleave at a second site. An assay functionally isolating this second cleavage shows that this reaction can take place in the donor cell. As a result, there is a flux of strands with free 3' ends into the recipient. These ends are susceptible to degradation by exonuclease I. The degree of susceptibility is affected by the presence of an uncleaved oriT within the strand. A model is presented where these internal oriTs bind and trap the relaxase molecule covalently bound to the 5' end of the incoming strand. Such a mechanism would result in the preferential degradation of transferred DNA that had not been properly cleaved in the donor.  相似文献   

7.
The origin of transfer (oriT) of a bacterial plasmid plays a key role in both the initiation and termination of conjugative DNA transfer. We have previously shown that a conjugation-dependent recombination between the tandem R64 oriT sequences cloned into pHSG398 occurred, resulting in the deletion of the intervening sequence during DNA transfer. In this study, we tandemly cloned two oriT sequences of IncI1 plasmid R64 into pUC18. Specific recombination between the two oriT sequences in pUC18 was observed within Escherichia coli cells harboring mini-R64. This recombination was found to be independent of both the recA gene and conjugative DNA transfer. The R64 genes nikA and nikB, required for conjugal DNA processing, were essential for this recombination. Although a fully active 92-bp oriT sequence was required at one site for the recombination, the 44-bp oriT core sequence was sufficient at the other site. Furthermore, when two oriT sequences were tandemly cloned into the single-stranded phage vector M13 and propagated within E. coli cells, recombination between the two oriT sequences was observed, depending on the nikB gene. These results suggest that the R64 relaxase protein NikB can execute cleavage and rejoining of single-stranded oriT DNA within E. coli cells, whereas such a reaction in double-stranded oriT DNA requires collaboration of the two relaxosome proteins, NikA and NikB.  相似文献   

8.
Plasmids containing a direct repeat of plasmid R388 oriT are capable of site-specific recombination, which results in deletion of the intervening DNA. This reaction occurs in the presence, but not in the absence, of the region of R388 implicated in DNA processing during conjugation. This region contains three genes, trwA, trwB, and trwC. By using mutants of each of the three genes, it was demonstrated that only trwC is required for the oriT-specific recombination. Further analysis showed that the N-terminal 272 amino acids of the protein are sufficient to catalyze recombination. TrwC is also capable of promoting intermolecular recombination between two plasmids containing oriT, suggesting that double-strand breaks in both plasmid DNAs are involved in the process. Additionally, intramolecular recombination between R388 oriT and R46 oriT did not occur in the presence of both nickases. This suggests that the half-reactions at each oriT are not productive if they occur separately; therefore, an interaction between the recombination complexes formed at each recombining site is required. This is the first report in which a nicking-closing enzyme involved in conjugal DNA transfer promotes oriT-specific recombination of double-stranded DNA in the absence of conjugation.  相似文献   

9.

Background

Bacterial conjugation is a mechanism for horizontal DNA transfer between bacteria which requires cell to cell contact, usually mediated by self-transmissible plasmids. A protein known as relaxase is responsible for the processing of DNA during bacterial conjugation. TrwC, the relaxase of conjugative plasmid R388, is also able to catalyze site-specific integration of the transferred DNA into a copy of its target, the origin of transfer (oriT), present in a recipient plasmid. This reaction confers TrwC a high biotechnological potential as a tool for genomic engineering.

Methodology/Principal Findings

We have characterized this reaction by conjugal mobilization of a suicide plasmid to a recipient cell with an oriT-containing plasmid, selecting for the cointegrates. Proteins TrwA and IHF enhanced integration frequency. TrwC could also catalyze integration when it is expressed from the recipient cell. Both Y18 and Y26 catalytic tyrosil residues were essential to perform the reaction, while TrwC DNA helicase activity was dispensable. The target DNA could be reduced to 17 bp encompassing TrwC nicking and binding sites. Two human genomic sequences resembling the 17 bp segment were accepted as targets for TrwC-mediated site-specific integration. TrwC could also integrate the incoming DNA molecule into an oriT copy present in the recipient chromosome.

Conclusions/Significance

The results support a model for TrwC-mediated site-specific integration. This reaction may allow R388 to integrate into the genome of non-permissive hosts upon conjugative transfer. Also, the ability to act on target sequences present in the human genome underscores the biotechnological potential of conjugative relaxase TrwC as a site-specific integrase for genomic modification of human cells.  相似文献   

10.
The primary DNA processing protein for conjugative mobilization of the plasmid R1162 is the transesterase MobA, which acts at a unique site on the plasmid, the origin of transfer (oriT). Both MobA and oriT are members of a large family of related elements that are widely distributed among bacteria. Each oriT consists of a highly conserved core and an adjacent region that is required for binding by its cognate MobA. The sequence of the adjacent region is important in determining the specificity of the interaction between the Mob protein and the oriT DNA. However, the R1162 MobA is active on the oriT of pSC101, another naturally occurring plasmid. We show here that MobA can recognize oriTs having different sequences in the adjacent region and, with varying frequencies, can cleave these oriTs at the correct position within the core. Along with the structure of the oriTs themselves, these characteristics suggest a model for the evolution of this group of transfer systems.  相似文献   

11.
The nicking of the origin of transfer (oriT) is an essential initial step in the conjugative mobilization of plasmid DNA. In the case of staphylococcal plasmid pC221, nicking by the plasmid-specific MobA relaxase is facilitated by the DNA-binding accessory protein MobC; however, the role of MobC in this process is currently unknown. In this study, the site of MobC binding was determined by DNase I footprinting. MobC interacts with oriT DNA at two directly repeated 9 bp sequences, mcb1 and mcb2, upstream of the oriT nic site, and additionally at a third, degenerate repeat within the mobC gene, mcb3. The binding activity of the conserved sequences was confirmed indirectly by competitive electrophoretic mobility shift assays and directly by Surface Plasmon Resonance studies. Mutation at mcb2 abolished detectable nicking activity, suggesting that binding of this site by MobC is a prerequisite for nicking by MobA. Sequential site-directed mutagenesis of each binding site in pC221 has demonstrated that all three are required for mobilization. The MobA relaxase, while unable to bind to oriT DNA alone, was found to associate with a MobC-oriT complex and alter the MobC binding profile in a region between mcb2 and the nic site. Mutagenesis of oriT in this region defines a 7 bp sequence, sra, which was essential for nicking by MobA. Exchange of four divergent bases between the sra of pC221 and the related plasmid pC223 was sufficient to swap their substrate identity in a MobA-specific nicking assay. Based on these observations we propose a model of layered specificity in the assembly of pC221-family relaxosomes, whereby a common MobC:mcb complex presents the oriT substrate, which is then nicked only by the cognate MobA.  相似文献   

12.
The plasmid R1162 encodes proteins that enable its conjugative mobilization between bacterial cells. It can transfer between many different species and is one of the most promiscuous of the mobilizable plasmids. The plasmid-encoded protein MobA, which has both nicking and priming activities on single-stranded DNA, is essential for mobilization. The nicking, or relaxase, activity has been localized to the 186 residue N-terminal domain, called minMobA. We present here the 2.1 A X-ray structure of minMobA. The fold is similar to that seen for two other relaxases, TraI and TrwC. The similarity in fold, and action, suggests these enzymes are evolutionary homologs, despite the lack of any significant amino acid similarity. MinMobA has a well- defined target DNA called oriT. The active site metal is observed near Tyr25, which is known to form a phosphotyrosine adduct with the substrate. A model of the oriT substrate complexed with minMobA has been made, based on observed substrate binding to TrwC and TraI. The model is consistent with observations of substrate base specificity, and provides a rationalization for elements of the likely enzyme mechanism.  相似文献   

13.
The N-type oriT of plasmid pMUR274 was cloned on a 474-bp RsaI-SspI fragment, and the nucleotide sequence was determined. A comparison of the pMUR274 oriT sequence and the sequence of the oriTs of IncN plasmid pCU1 and IncW plasmid R388 demonstrated 57 and 28% identity, respectively. Intramolecular, site-specific recombination between the pCU1 oriT and the oriT of pMUR274 resulted in the formation of a hybrid oriT containing one half of each parental sequence. The junction point of the hybrid occurred within a 10-bp sequence, GCTATACACC, present in both parental sequences and represents the nic site of each oriT. Mutation of the first A or second T residue within the 10-bp junction sequence reduced transfer less than 20-fold, while mutation of either the second or third A residue reduced transfer over 1,000-fold. Site-specific recombination between a wild-type pCU1 oriT and these four mutant pCU1 oriTs demonstrated that nic lies between the second T and second A residues of the 10-bp junction sequence. Site-specific recombination between wild-type and mutant pCU1 oriTs also demonstrated that point mutations to the right of nic reduced both initiation and termination of transfer while point mutations to the left of nic reduced termination but had little or no effect on initiation. A 28-bp deletion within the AT-rich region 39 bases to the right of nic reduced both initiation and termination, while deletion of a 6-bp inverted repeat sequence at the right-most boundary of the minimal oriT region reduced initiation but not termination.  相似文献   

14.
Conjugal transfer of the broad-host-range plasmid R1162 is initiated and terminated at the nic site within the 38-bp origin of transfer (oriT). Termination involves ligation of the transferred single strand by the plasmid-encoded MobA protein. Several different assays were used to identify the oriT DNA required for termination. For plasmids containing two oriTs, with transfer initiated at one and terminated at the other, the inverted repeat within oriT is important for termination. Deletion of the outer arm reduces the termination frequency; those terminations that do occur probably depend upon nicking at this oriT prior to transfer. The locations of second-site suppressor mutations indicate that base pairing between the arms of the inverted repeat is important for termination. In vitro, the inverted repeat is not required for specific cleavage of single-stranded DNA at nic, but competition experiments indicate that oriTs with the inverted repeat are preferentially cleaved. We propose that the function of the oriT inverted repeat is to trap the plasmid-encoded MobA protein at the end of a round of strand transfer, thus ensuring that the protein is available for the ligation step.  相似文献   

15.
The relaxase of the plasmid R1162 is a large protein essential for conjugative transfer and containing two different and physically separate catalytic activities. The N-terminal half cleaves one of the DNA strands at the origin of transfer (oriT) and becomes covalently linked to the 5' terminal phosphate; the C-terminal half is a primase essential for initiation of plasmid vegetative replication. We show here that the two parts of the protein are independently transported by the type IV pathway. Part of the domain containing the catalytic activity, as well as an adjacent region, is required in each case, but the required regions do not physically overlap. Both transport systems contribute to the overall frequency of conjugative transfer. MobB is a small protein, encoded within mobA but in a different reading frame, that stabilizes the relaxase at oriT. MobB is required for efficient type IV transport of both the complete relaxase and its two, separate functional halves. MobB inserts into the membrane and could thus stabilize the association between the relaxase and the type IV transfer apparatus.  相似文献   

16.
17.
TrwC is a DNA strand transferase that catalyzes the initial and final stages of conjugative DNA transfer. We have solved the crystal structure of the N-terminal relaxase domain of TrwC in complex with a 27 base-long DNA oligonucleotide that contains both the recognition hairpin and the scissile phosphate. In addition, a series of ternary structures of protein-DNA complexes with different divalent cations at the active site have been solved. Systematic anomalous difference analysis allowed us to determine unambiguously the nature of the metal bound. Zn2+, Ni2+ and Cu2+ were found to bind the histidine-triad metal binding site. Comparison of the structures of the different complexes suggests two pathways for the DNA to exit the active pocket. They are probably used at different steps of the conjugative DNA-processing reaction. The structural information allows us to propose (i) an enzyme mechanism where the scissile phosphate is polarized by the metal ion facilitating the nucleophilic attack of the catalytic tyrosine, and (ii) a probable sequence of events during conjugative DNA processing that explains the biological function of the relaxase.  相似文献   

18.
Genomic islands (GEIs) are large DNA segments, present in most bacterial genomes, that are most likely acquired via horizontal gene transfer. Here, we study the self-transfer system of the integrative and conjugative element ICEclc of Pseudomonas knackmussii B13, which stands model for a larger group of ICE/GEI with syntenic core gene organization. Functional screening revealed that unlike conjugative plasmids and other ICEs ICEclc carries two separate origins of transfer, with different sequence context but containing a similar repeat motif. Conjugation experiments with GFP-labelled ICEclc variants showed that both oriTs are used for transfer and with indistinguishable efficiencies, but that having two oriTs results in an estimated fourfold increase of ICEclc transfer rates in a population compared with having a single oriT. A gene for a relaxase essential for ICEclc transfer was also identified, but in vivo strand exchange assays suggested that the relaxase processes both oriTs in a different manner. This unique dual origin of transfer system might have provided an evolutionary advantage for distribution of ICE, a hypothesis that is supported by the fact that both oriT regions are conserved in several GEIs related to ICEclc.  相似文献   

19.
Intercellular transfer of plasmid DNA during bacterial conjugation initiates and terminates at a specific origin of transfer, oriT. We have investigated the oriT structure of conjugative plasmid R64 with regard to the initiation and termination of DNA transfer. Using recombinant plasmids containing two tandemly repeated R64 oriT sequences with or without mutations, the subregions required for initiation and termination were determined by examining conjugation-mediated deletion between the repeated oriTs. The oriT subregion required for initiation was found to be identical to the 44-bp oriT core sequence consisting of two units, the conserved nick region sequence and the 17-bp repeat A sequence, that are recognized by R64 relaxosome proteins NikB and NikA, respectively. In contrast, the nick region sequence and two sets of inverted repeat sequences within the 92-bp minimal oriT sequence were required for efficient termination. Mutant repeat A sequences lacking NikA-binding ability were found to be sufficient for termination, suggesting that the inverted repeat structures are involved in the termination process. A duplication of the DNA segment between the repeated oriTs was also found after mobilization of the plasmid carrying initiation-deficient but termination-proficient oriT and initiation-proficient but termination-deficient oriT, suggesting that the 3' terminus of the transferred strand is elongated by rolling-circle-DNA synthesis.  相似文献   

20.
TrwC, the relaxase of plasmid R388, catalyzes a series of concerted DNA cleavage and strand transfer reactions on a specific site (nic) of its origin of transfer (oriT). nic contains the cleavage site and an adjacent inverted repeat (IR2). Mutation analysis in the nic region indicated that recognition of the IR2 proximal arm and the nucleotides located between IR2 and the cleavage site were essential for supercoiled DNA processing, as judged either by in vitro nic cleavage or by mobilization of a plasmid containing oriT. Formation of the IR2 cruciform and recognition of the distal IR2 arm and loop were not necessary for these reactions to take place. On the other hand, IR2 was not involved in TrwC single-stranded DNA processing in vitro. For single-stranded DNA nic cleavage, TrwC recognized a sequence embracing six nucleotides upstream of the cleavage site and two nucleotides downstream. This suggests that TrwC DNA binding and cleavage are two distinguishable steps in conjugative DNA processing and that different sequence elements are recognized by TrwC in each step. IR2-proximal arm recognition was crucial for the initial supercoiled DNA binding. Subsequent recognition of the adjacent single-stranded DNA binding site was required to position the cleavage site in the active center of the protein so that the nic cleavage reaction could take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号