首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kcv, isolated from a Chlorella virus, is the smallest known K+ channel. When Kcv is expressed in Xenopus oocytes and exposed to 50 mM [K+]o, its open-state current-voltage relationship (I-V) has the shape of a “tilted S” between ?200 and +120 mV. Details of this shape depend on the conditioning voltage (V c) immediately before an I-V recording. Unexpectedly, the I-V relationships, recorded in different [K+]o, do intersect. These characteristics are numerically described here by fits of a kinetic model to the experimental data. In this model, the V c sensitivity of I-V is mainly assigned to an affinity increase of external K+ association at more positive voltages. The general, tilted-S shape as well as the unexpected intersections of the I-V relationships are kinetically described by a decrease of the cord conductance by the electrochemical driving force for K+ in either direction, like in fast V-dependent blocking by competing ions.  相似文献   

2.
Raising extracellular K+ concentration ([K+](o)) around mesenteric resistance arteries reverses depolarization and contraction to phenylephrine. As smooth muscle depolarizes and intracellular Ca(2+) and tension increase, this effect of K+ is suppressed, whereas efflux of cellular K+ through Ca(2+)-activated K+ (K(Ca)) channels is increased. We investigated whether K+ efflux through K(Ca) suppresses the action of exogenous K+ and whether it prestimulates smooth muscle Na(+)-K(+)-ATPase. Under isometric conditions, 10.8 mM [K+](o) had no effect on arteries contracted >10 mN, unless 100 nM iberiotoxin (IbTX), 100 nM charybdotoxin (ChTX), and/or 50 nM apamin were present. Simultaneous measurements of membrane potential and tension showed that phenylephrine depolarized and contracted arteries to -32.2 +/- 2.3 mV and 13.8 +/- 1.6 mN (n = 5) after blockade of K(Ca), but 10.8 mM K+ reversed fully the responses (107.6 +/- 8.6 and 98.8 +/- 0.6%, respectively). Under isobaric conditions and preconstriction with phenylephrine, 10.7 mM [K+](o) reversed contraction at both 50 mmHg (77.0 +/- 8.5%, n = 9) and 80 mmHg (83.7 +/- 5.5%, n = 5). However, in four additional vessels at 80 mmHg, raising K+ failed to reverse contraction unless ChTX was present. Increases in isometric and decreases in isobaric tension with phenylephrine were augmented by either ChTX or ouabain (100 microM), whereas neither inhibitor altered tension under resting conditions. Inhibition of cellular K+ efflux facilitates hyperpolarization and relaxation to exogenous K+, possibly by indirectly reducing the background activation of Na(+)-K(+)-ATPase.  相似文献   

3.
The voltage dependence of steady state current produced by the forward mode of operation of the endogenous electrogenic Na+/K+ pump in Na(+)- loaded Xenopus oocytes has been examined using a two-microelectrode voltage clamp technique. Four experimental cases (in a total of 18 different experimental conditions) were explored: variation of external [Na+] ([Na]o) at saturating (10 mM) external [K+] ([K]o), and activation of pump current by various [K]o at 0, 15, and 120 mM [Na]o (tetramethylammonium replacement). Ionic current through K+ channels was blocked by Ba2+ (5 mM) and tetraethylammonium (20 mM), thereby allowing pump-mediated current to be measured by addition or removal of external K+. Control measurements and corrections were made for pump current run-down and holding current drift. Additional controls were done to estimate the magnitude of the inwardly directed pump-mediated current that was present in K(+)-free solution and the residual K(+)- channel current. A pseudo two-state access channel model is described in the Appendix in which only the pseudo first-order rate coefficients for binding of external Na+ and K+ are assumed to be voltage dependent and all transitions between states in the Na+/K+ pump cycle are assumed to be voltage independent. Any three-state or higher order model with only two oppositely directed voltage-dependent rate coefficients can be reduced to an equivalent pseudo two-state model. The steady state current-voltage (I-V) equations derived from the model for each case were simultaneously fit to the I-V data for all four experimental cases and yielded least-squares estimates of the model parameters. The apparent fractional depth of the external access channel for Na+ is 0.486 +/- 0.010; for K+ it is 0.256 +/- 0.009. The Hill coefficient for Na+ is 2.18 +/- 0.06, and the Hill coefficient for K+ (which is dependent on [Na]o) ranges from 0.581 +/- 0.019 to 1.35 +/- 0.034 for 0 and 120 mM [Na]o, respectively. The model provides a reasonable fit to the data and supports the hypothesis that under conditions of saturating internal [Na+], the principal voltage dependence of the Na+/K+ pump cycle is a consequence of the existence of an external high- field access channel in the pump molecule through which Na+ and K+ ions must pass in order to reach their binding sites.  相似文献   

4.
Despite the popularity of Na+-binding benzofuran isophthalate (SBFI) to measure intracellular free Na+ concentrations ([Na+](i)), the in situ calibration techniques described to date do not favor the straightforward determination of all of the constants required by the standard equation (Grynkiewicz G, Poenie M, and Tsien RY. J Biol Chem 260: 3440-3450, 1985) to convert the ratiometric signal into [Na+]. We describe a simple method in which SBFI ratio values obtained during a "full" in situ calibration are fit by a three-parameter hyperbolic equation; the apparent dissociation constant (K(d)) of SBFI for Na+ can then be resolved by means of a three-parameter hyperbolic decay equation. We also developed and tested a "one-point" technique for calibrating SBFI ratios in which the ratio value obtained in a neuron at the end of an experiment during exposure to gramicidin D and 10 mM Na+ is used as a normalization factor for ratios obtained during the experiment; each normalized ratio is converted to [Na+](i) using a modification of the standard equation and parameters obtained from a full calibration. Finally, we extended the characterization of the pH dependence of SBFI in situ. Although the K(d) of SBFI for Na+ was relatively insensitive to changes in pH in the range 6.8-7.8, acidification resulted in an apparent decrease, and alkalinization in an apparent increase, in [Na+](i) values. The magnitudes of the apparent changes in [Na+](i) varied with absolute [Na+](i), and a method was developed for correcting [Na+](i) values measured with SBFI for changes in intracellular pH.  相似文献   

5.
The miniature viral K+ channel Kcv represents the pore module of all K+ channels. A synthetic gene of Kcv with an elevated GC content compared to that of the wild-type gene was expressed heterologously in Pichia pastoris, and the purified protein was functionally reconstituted into liposomes. Biochemical assays reveal a remarkable cation selective stability of the channel tetramer via SDS-PAGE. Only cations, which permeate Kcv, were able to protect the oligomer against disassembly into monomers at high temperatures. Electrophysiological characterization of the single Kcv channel reveals a saturating conductance (lambda(max)) of 360 pS; the single-channel current-voltage relation was strongly rectifying with a negative slope conductance at extreme voltages. The channel was highly selective for K+ and was blocked by Ba2+ and in a side specific manner by Na+ and Cs+ also. The channel conducted Rb+, but as a consequence, the channel was shifted into a hyperactive state. We conclude that specific binding interactions of cations in the conductive pathway are an important determinant of channel stability and function.  相似文献   

6.
Sudden increases in heart rate cause accumulation of K+ in the extracellular space. However, the exact relationship between rate and extracellular K+ concentration ([K+](o)) in vivo is unknown. We measured [K+](o) in right atria of anesthetized dogs by using K(+)-sensitive electrodes. Peak increase in [K+](o) ranged from 0.18 +/- 0.04 mM [means +/- SE; cycle length (CL) = 350 ms] to 0.80 +/- 0.09 mM (CL = 250 ms) above baseline (3.50 +/- 0.08 mM at CL = 380 ms; n = 5). During rapid pacing-induced atrial fibrillation, peak increase in [K+](o) averaged 0.80 +/- 0.07 mM (n = 5). Whole cell current-clamp measurements in single right atrial myocytes (n = 5) showed that raising [K+](o) from 3 to 5 mM in 1-mM steps progressively depolarized resting membrane potential and reduced both phase 0 action potential amplitude and maximal upstroke velocity. Multisite epicardial mapping (n = 4) demonstrated that sudden rate increases changed longitudinal conduction velocity (CV(L)) by -3.6 +/- 1.8% to -5.9 +/- 1.2% over a CL range of 330 to 250 ms. Our observations suggest that rate-related [K+](o) accumulation in vivo is of sufficient magnitude to modulate those cellular electrophysiological properties that determine atrial CV(L).  相似文献   

7.
Expression of voltage-gated K(+) (Kv) channel genes is regulated by polyamines in intestinal epithelial cells (IEC-6 line), and Kv channel activity is involved in the regulation of cell migration during early restitution by controlling membrane potential (E(m)) and cytosolic free Ca2+ concentration ([Ca2+](cyt)). This study tests the hypothesis that RhoA of small GTPases is a downstream target of elevated ([Ca2+](cyt)) following activation of K(+) channels by increased polyamines in IEC-6 cells. Depletion of cellular polyamines by alpha-difluoromethylornithine (DFMO) reduced whole cell K+ currents [I(K(v))] through Kv channels and caused membrane depolarization, which was associated with decreases in ([Ca2+](cyt)), RhoA protein, and cell migration. Exogenous polyamine spermidine reversed the effects of DFMO on I(K(v)), E(m), ([Ca2+](cyt)), and RhoA protein and restored cell migration to normal. Elevation of ([Ca2+](cyt)) induced by the Ca2+ ionophore ionomycin increased RhoA protein synthesis and stimulated cell migration, while removal of extracellular Ca2+ decreased RhoA protein synthesis, reduced protein stability, and inhibited cell motility. Decreased RhoA activity due to Clostridium botulinum exoenzyme C(3) transferase inhibited formation of myosin II stress fibers and prevented restoration of cell migration by exogenous spermidine in polyamine-deficient cells. These findings suggest that polyamine-dependent cell migration is partially initiated by the formation of myosin II stress fibers as a result of Ca2+-activated RhoA activity.  相似文献   

8.
9.
To clarify the mechanism by which lactate affects insulin secretion, we investigated the effect of lactate on insulin secretion, cytosolic free Ca2+ ([Ca2+](i), the ATP sensitive K+ channel (K(ATP)) and the Ca2+-activated K+ channel (K(Ca)) in HIT-T15 cells, and the results were compared with those of glucose and glibenclamide. All three agents caused insulin secretion and increased [Ca2+](i), but the effects on the K+ channels were different. In cell-attached patch configurations, 10 mmol/l glucose blocked both the K(ATP) and KCa channels, while 100 nmol/l glibenclamide had no effect on KCa channels, but blocked K(ATP) channels. Lactate at a concentration of 10 mmol/l activated both the K(ATP) and KCa channels, not only in cell-attached, but also in inside-out patch configurations, indicating that the increase in [Ca2+](i) and secretion of insulin by lactate cannot be explained by the blocking of the K+ channels. Lactate, at concentrations of 10 mmol/l and 50 mmol/l decreased 45Ca2+ efflux, while glibenclamide increased the efflux. These results suggest that the lactate-induced Ca2+ increase is not due to the closing of K+ channels, but at least in part, to the suppression of Ca2+ efflux from HIT cells.  相似文献   

10.
The Gibbs free energy of the sarcolemmal Na+/Ca2+ exchanger (DeltaG(Na/Ca)) determines its net Ca2+ flux. We tested the hypothesis that a difference of diastolic DeltaG(Na/Ca) exists between rat and guinea pig myocardium. We measured the suprabasal rate of oxygen consumption (VO2) of arrested Langendorff-perfused hearts of both species, manipulating DeltaG(Na/Ca) by reduction of extracellular Na+ concentration, [Na+](o). Hill equations fitted to the resulting VO2-[Na+](o) relationships yielded Michaelis constant (K(m)) values of 67 and 25 mM for rat and guinea pig, respectively. We developed and tested a simple thermodynamic model that attributes this difference of K(m) values to a 7.84 kJ/mol difference of DeltaG(Na/Ca). The model predicts that reversal of Na+/Ca2+ exchange, leading to diastolic Ca2+ influx, should occur at a value of [Na+](o) about three times higher in rat myocardium. We verified this quantitative prediction using fura 2 fluorescence to index intracellular Ca2+ concentration in isolated ventricular trabeculae at 37 degrees C. The postulated difference in free energy of Na+/Ca2+ exchange explains a number of reported disparities of Ca2+ handling at rest between rat and guinea pig myocardia.  相似文献   

11.
Large unitary conductance Ca2+-activated K+ channels from smooth muscle membrane were incorporated into phospholipid planar bilayers, and the blockade induced by internally and externally applied Cs+ was characterized. Internal Cs+ blockade is voltage dependent and can be explained on the basis of a Cs+ binding to a site that senses 54% of the applied voltage, with an apparent dissociation constant, Kd(0), of 70 mM. On the other hand, external Cs+ blocks the channel in micromolar amounts, and the voltage dependence of blockade is a function of Cs+ concentration. The fractional electrical distance can be as large as 1.4 at 10 mM Cs+. This last result suggests that the channel behaves as a multi-ion pore. At large negative voltages the I-V relationships in the presence of external Cs+ show an upturn, indicating relief of Cs+ block. External Cs+ blockade is relieved by increasing the internal K+ concentration, but can be enhanced by increasing the external K+. All the characteristics of external Cs+ block can be explained by a model that incorporates a "knock-on" of Cs+ by K+.  相似文献   

12.
Na/K pump current was determined between -140 and +60 mV as steady-state, strophanthidin-sensitive, whole-cell current in guinea pig ventricular myocytes, voltage-clamped and internally dialyzed via wide-tipped pipettes. Solutions were designed to minimize all other components of membrane current. A device for exchanging the solution inside the pipette permitted investigation of Na/K pump current-voltage (I-V) relationships at several levels of pipette [Na] [( Na]pip) in a single cell; the effects of changes in external [Na] [( Na]o) or external [K] [( K]o) were also studied. At 50 mM [Na]pip, 5.4 mM [K]o, and approximately 150 mM [Na]o, Na/K pump current was steeply voltage dependent at negative potentials but was approximately constant at positive potentials. Under those conditions, reduction of [Na]o enhanced pump current at negative potentials but had little effect at positive potentials: at zero [Na]o, pump current was only weakly voltage dependent. At 5.4 mM [K]o and approximately 150 mM [Na]o, reduction of [Na]pip from 50 mM scaled down the sigmoid pump I-V relationship and shifted it slightly to the right (toward more positive potentials). Pump current at 0 mV was activated by [Na]pip according to the Hill equation with best-fit K0.5 approximately equal to 11 mM and Hill coefficient nH approximately equal to 1.4. At zero [Na]o, reduction of [Na]pip seemed to simply scale down the relatively flat pump I-V relationship: Hill fit parameters for pump activation by [Na]pip at 0 mV were K0.5 approximately equal to 10 mM, nH approximately equal to 1.4. At 50 mM [Na]pip and high [Na]o, reduction of [K]o from 5.4 mM scaled down the sigmoid I-V relationship and shifted it slightly to the right: at 0 mV, K0.5 approximately equal to 1.5 mM and nH approximately equal to 1.0. At zero [Na]o, lowering [K]o simply scaled down the flat pump I-V relationships yielding, at 0 mV, K0.5 approximately equal to 0.2 mM, nH approximately equal to 1.1. The voltage-independent activation of Na/K pump current by both intracellular Na ions and extracellular K ions, at zero [Na]o, suggests that neither ion binds within the membrane field. Extracellular Na ions, however, seem to have both a voltage-dependent and a voltage-independent influence on the Na/K pump: they inhibit outward Na/K pump current in a strongly voltage-dependent fashion, with higher apparent affinity at more negative potentials (K0.5 approximately equal to 90 mM at -120 mV, and approximately 170 mM at -80 mV), and they compete with extracellular K ions in a seemingly voltage-independent manner.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Background K+ current in isolated canine cardiac Purkinje myocytes.   总被引:3,自引:0,他引:3       下载免费PDF全文
The current-voltage (I-V) relation of the background current, IK1, was studied in isolated canine cardiac Purkinje myocytes using the whole-cell, patch-clamp technique. Since Ba2+ and Cs+ block IK1, these cations were used to separate the I-V relation of IK1 from that of the whole cell. The I-V relation of IK1 was measured as the difference between the I-V relations of the cell in normal Tyrode (control solution) and in the presence of either Ba2+ (1 mM) or Cs+ (10 mM). Our results indicate that IK1 is an inwardly rectifying K+ current whose conductance depends on extracellular potassium concentration. In different [K+]0's the I-V relations of IK1 exhibit crossover. In addition the I-V relation of IK1 contains a region of negative slope (even when that of the whole cell does not). We also examined the relationship between the resting potential of the myocyte, Vm, and [K+]0 and found that it exhibits the characteristic anomalous behavior first reported in Purkinje strands (Weidmann, S., 1956, Elektrophysiologie der Herzmuskelfaser, Med. Verlag H. Huber), where lowering [K+]0 below 4 mM results in a depolarization.  相似文献   

14.
Marked accumulation of arachidonic acid (AA) and intracellular Ca2+ and Na+ overloads are seen during brain ischemia. In this study, we show that, in neurons, AA induces cytosolic Na+ ([Na+](cyt)) and Ca2+ ([Ca2+](cyt)) overload via a non-selective cation conductance (NSCC), resulting in mitochondrial [Na+](m) and [Ca2+](m) overload. Another two types of free fatty acids, including oleic acid and eicosapentaenoic acid, induced a smaller increase in the [Ca2+](i) and [Na+](i). RU360, a selective inhibitor of the mitochondrial Ca2+ uniporter, inhibited the AA-induced [Ca2+](m) and [Na+](m) overload, but not the [Ca2+](cyt) and [Na+](cyt) overload. The [Na+](m) overload was also markedly inhibited by either Ca2+-free medium or CGP3715, a selective inhibitor of the mitochondrial Na+(cyt)-Ca2+(m) exchanger. Moreover, RU360, Ca2+-free medium, Na+-free medium, or cyclosporin A (CsA) largely prevented AA-induced opening of the mitochondrial permeability transition pore, cytochrome c release, and caspase 3-dependent neuronal apoptosis. Importantly, Na+-ionophore/Ca2+-free medium, which induced [Na+](m) overload, but not [Ca2+](m) overload, also caused cyclosporin A-sensitive mitochondrial permeability transition pore opening, resulting in caspase 3-dependent apoptosis, indicating that [Na+](m) overload per se induced apoptosis. Our results therefore suggest that AA-induced [Na+](m) overload, acting via activation of the NSCC, is an important upstream signal in the mitochondrial-mediated apoptotic pathway. The NSCC may therefore act as a potential neuronal death pore which is activated by AA accumulation under pathological conditions.  相似文献   

15.
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction.  相似文献   

16.
The endogenous Mg(2+)-inhibited cation (MIC) current was recently described in different cells of hematopoietic lineage and was implicated in the regulation of Mg2+ homeostasis. Here we present a single channel study of endogenously expressed Mg(2+)-dependent cation channels in the human myeloid leukemia K562 cells. Inwardly directed unitary currents were activated in cell-attached experiments in the absence of Ca2+ and Mg2+ in the pipette solution. The current-voltage (I-V) relationships displayed strong inward rectification and yielded a single channel slope conductance of approximately 30 pS at negative potentials. The I-V relationships were not altered by patch excision into divalent-free solution. Channel open probability (P(o)) and mean closed time constant (tau(C)) were strongly voltage-dependent, indicating that gating mechanisms may underlie current inward rectification. Millimolar concentrations of Ca2+ or Mg2+ applied to the cytoplasmic side of the membrane produced slow irreversible inhibition of channel activity. The Mg(2+)-dependent cation channels described in this study differ from the MIC channels described in human T-cells, Jurkat, and rat basophilic leukemia (RBL) cells in their I-V relationships, kinetic parameters and dependence on intracellular divalent cations. Our results suggested that endogenously expressed Mg(2+)-dependent cation channels in K562 cells and the MIC channels in other hematopoietic cells might be formed by different channel proteins.  相似文献   

17.
Endothelialization repairs the lining of damaged vasculature and is a key process in preventing thrombosis and restenosis. It has been demonstrated that extracellular calcium ([Ca2+](o)) influx is important for subsequent endothelialization. The role of intracellular Ca2+ stores in mechanical denudation induced intracellular calcium ([Ca2+](i)) rise and endothelialization remains to be demonstrated. Using monolayer culture of a human endothelial cell line (human umbilical vein endothelial cell, HUVEC), we investigated [Ca2+](i) wave propagation and re-endothelialization following mechanical denudation. Consistent with previous reports for other types of cells, mechanical denudation induces calcium influx, which is essential for [Ca2+](i) rise and endothelialization. Moreover, we found that intracellular Ca(2+) stores are also essential for denudation induced [Ca2+](i) wave initiation and propagation, and the subsequent endothelialization. Thapsigargin which depletes intracellular Ca2+ stores completely abolished [Ca2+](i) wave generation and endothelialization. Xestospongin C (XeC), which prevents Ca2+ release from intracellular Ca2+ stores by inhibition of inositol 1,4,5-trisphosphate (IP(3)) receptor, inhibited intercellular Ca2+ wave generation and endothelialization following denudation. Purinergic signaling through a suramin sensitive mechanism and gap junction communication also contribute to in intercellular Ca(2+) wave propagation and re-endothelialization. We conclude that intracellular Ca2+ stores, in addition to extracellular Ca2+, are essential for intracellular Ca2+ signaling and subsequent endothelialization following mechanical denudation.  相似文献   

18.
Inward rectifier (IR) K+ channels of bovine pulmonary artery endothelial cells were studied using the whole-cell, cell-attached, and outside-out patch-clamp configurations. The effects of Rb+ on the voltage dependence and kinetics of IR gating were explored, with [Rb+]o + [K+]o = 160 mM. Partial substitution of Rb+ for K+ resulted in voltage-dependent reduction of inward currents, consistent with Rb+ being a weakly permeant blocker of the IR. In cells studied with a K(+)- free pipette solution, external Rb+ reduced inward IR currents to a similar extent at large negative potentials but block at more positive potentials was enhanced. In outside-out patches, the single-channel i-V relationship was approximately linear in symmetrical K+, but rectified strongly outwardly in high [Rb+]o due to a reduced conductance for inward current. The permeability of Rb+ based on reversal potential, Vrev, was 0.45 that of K+, whereas the Rb+ conductance was much lower, 0.034 that of K+, measured at Vrev-80 mV. The steady state voltage- dependence of IR gating was determined in Rb(+)-containing solutions by applying variable prepulses, followed by a test pulse to a potential at which outward current deactivation was observed. As [Rb+]o was increased, the half-activation potential, V1/2, changed less than Vrev. In high [K+]o solutions V1/2 was Vrev-6 mV, while in high [Rb+]o V1/2 was Vrev + 7 mV. This behavior contrasts with the classical parallel shift of V1/2 with Vrev in K+ solutions. Steady state IR gating was less steeply voltage-dependent in high [Rb+]o than in K+ solutions, with Boltzmann slope factors of 6.4 and 4.4 mV, respectively. Rb+ decreased (slowed) both activation and deactivation rate constants defined at V1/2, and decreased the steepness of the voltage dependence of the activation rate constant by 42%. Deactivation of IR channels in outside-out patches was also slowed by Rb+. In summary, Rb+ can replace K+ in setting the voltage-dependence of IR gating, but in doing so alters the kinetics.  相似文献   

19.
Outward currents through inward rectifier K+ channels (Kir) play a pivotal role in determining resting membrane potential and in controlling excitability in many cell types. Thus, the regulation of outward Kir current (IK1) is important for appropriate physiological functions. It is known that outward IK1 increases with increasing extracellular K+ concentration ([K+]o), but the underlying mechanism is not fully understood. A "K+-activation of K+-channel" hypothesis and a "blocking-particle" model have been proposed to explain the [K+]o-dependence of outward IK1. Yet, these mechanisms have not been examined at the single-channel level. In the present study, we explored the mechanisms that determine the amplitudes of outward IK1 at constant driving forces [membrane potential (Vm) minus reversal potential (EK)]. We found that increases in [K+]o elevated the single-channel current to the same extent as macroscopic IK1 but did not affect the channel open probability at a constant driving force. In addition, spermine-binding kinetics remained unchanged when [K+]o ranged from 1 to 150 mM at a constant driving force. We suggest the regulation of K+ permeation by [K+]o as a new mechanism for the [K+]o-dependence of outward IK1.  相似文献   

20.
Although recent studies focused on the contribution of mitochondrial Ca2+ to the mechanisms of ischemia-reperfusion injury, the regulation of mitochondrial Ca2+ under pathophysiological conditions remains largely unclear. By using saponin-permeabilized rat myocytes, we measured mitochondrial membrane potential (DeltaPsi(m)) and mitochondrial Ca2+ concentration ([Ca2+](m)) at the physiological range of cytosolic Ca2+ concentration ([Ca2+](c); 300 nM) and investigated the regulation of [Ca2+](m) during both normal and dissipated DeltaPsi(m). When DeltaPsi(m) was partially depolarized by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP, 0.01-0.1 microM), there were dose-dependent decreases in [Ca2+](m). When complete DeltaPsi(m) dissipation was achieved by FCCP (0.3-1 microM), [Ca2+](m) remained at one-half of the control level despite no Ca2+ influx via the Ca2+ uniporter. The DeltaPsi(m) dissipation by FCCP accelerated calcein leakage from mitochondria in a cyclosporin A (CsA)-sensitive manner, which indicates that DeltaPsi(m) dissipation opened the mitochondrial permeability transition pore (mPTP). After FCCP addition, inhibition of the mPTP by CsA caused further [Ca2+](m) reduction; however, inhibition of mitochondrial Na+/Ca2+ exchange (mitoNCX) by a Na+-free solution abolished this [Ca2+](m) reduction. Cytosolic Na(+) concentrations that yielded one-half maximal activity levels for mitoNCX were 3.6 mM at normal DeltaPsi(m) and 7.6 mM at DeltaPsi(m) dissipation. We conclude that 1) the mitochondrial Ca2+ uniporter accumulates Ca2+ in a manner that is dependent on DeltaPsi(m) at the physiological range of [Ca2+](c); 2) DeltaPsi(m) dissipation opens the mPTP and results in Ca2+ influx to mitochondria; and 3) although mitoNCX activity is impaired, mitoNCX extrudes Ca2+ from the matrix even after DeltaPsi(m) dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号