首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Frey  Anne  Audran  Corinne  Marin  Elena  Sotta  Bruno  Marion-Poll  Annie 《Plant molecular biology》1999,39(6):1267-1274
Abscisic acid (ABA) is a plant hormone synthesized during seed development that is involved in the induction of seed dormancy. Delayed germination due to seed dormancy allows long-term seed survival in soil but is generally undesirable in crop species. Freshly harvested seeds of wild-type Nicotiana plumbaginifolia plants exhibit a clear primary dormancy that results in delayed germination, the degree of primary dormancy being influenced by environmental culture conditions of the mother plant. In contrast, seeds, obtained either from ABA-deficient mutant aba2-s1 plants directly or aba2-s1 plants grafted onto wild-type plant stocks, exhibited rapid germination under all conditions irrespective of the mother plant culture conditions. The ABA biosynthesis gene ABA2 of N. plumbaginifolia, encoding zeaxanthin epoxidase, was placed under the control of the constitutive 35S promoter. Transgenic plants overexpressing ABA2 mRNA exhibited delayed germination and increased ABA levels in mature seeds. Expression of an antisense ABA2 mRNA, however, resulted in rapid seed germination and in a reduction of ABA abundance in transgenic seeds. It appears possible, therefore, that seed dormancy can be controlled in this Nicotiana model species by the manipulation of ABA levels.  相似文献   

4.
Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA‐regulated genes are over‐represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA‐related gene expression could be an important component of the Arabidopsis–aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild‐type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1‐1 mutants, which cannot synthesize ABA, and showed a significant preference for wild‐type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1‐1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild‐type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4‐methoxyindol‐3‐ylmethylglucosinolate was more abundant in the aba1‐1 mutant than in wild‐type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids.  相似文献   

5.
During a screen for mutants with defective germination, a newphenotype was observed consisting of red pigmentation of theembryonic axis in the dormant seed. Segregation ratios, as determinedin F2 and back-crossed progeny, indicate that the phenotypeis due to a recessive single gene mutation that has been symbolizedrea to denote red embryonic axis. A closer inspection of therea phenotype revealed that the mutant is occasionally viviparous,indicating a defect in abscisic acid (ABA) metabolism. The mutationprobably affects ABA sensitivity since no difference in ABAcontent was detected in mutant versus normal tissues. Moreover,when immature mutant and wild-type embryos were incubated onmedia containing 10 M ABA, only the mutants germinated. ABA-regulatedgene expression in rea embryos differed from that of embryosof the viviparous mutant vp1 which does not respond to the inhibitoryaction of ABA at the level of immature embryo germination. Theseresults, therefore, indicate that the two genes exert a differentrole in the control of embryogenesis. Key words: Zea mays L, embryo dormancy, ABA  相似文献   

6.
When excised second leaves from 2-week-old barley (Hordeum vulgare var Larker) plants were incubated in a wilted condition, abscisic acid (ABA) levels increased to 0.6 nanomole per gram fresh weight at 4 hours then declined to about 0.3 nanomole per gram fresh weight and remained at that level until rehydrated. Proline levels began to increase at about 4 hours and continued to increase as long as the ABA levels were 0.3 nanomole per gram fresh weight or greater. Upon rehydration, proline levels declined when the ABA levels fell below 0.3 nanomole per gram fresh weight.

Proline accumulation was induced in turgid barley leaves by ABA addition. When the amount of ABA added to leaves was varied, it was observed that a level of 0.3 nanomole ABA per gram fresh weight for a period of about 2 hours was required before proline accumulation was induced. However, the rate of proline accumulation was slower in ABA-treated leaves than in wilted leaves at comparable ABA levels. Thus, the threshold level of ABA for proline accumulation appeared to be similar for wilted leaves where ABA increased endogenously and for turgid leaves where ABA was added exogenously. However, the rate of proline accumulation was more dependent on ABA levels in turgid leaves to which ABA was added exogenously than in wilted leaves.

Salt-induced proline accumulation was not preceded by increases in ABA levels comparable to those observed in wilted leaves. Levels of less than 0.2 nanomole ABA per gram fresh weight were measured 1 hour after exposure to salt and they declined rapidly to the control level by 3 hours. Proline accumulation commenced at about 9 hours. Thus, ABA accumulation did not appear to be involved in salt-induced proline accumulation.

  相似文献   

7.
In Arabidopsis thaliana, seed development in recombinants of the ABA-deficient aba mutant with the ABA response mutants abi1 or abi3 is compared to wild type and the monogenic parents. Aberrant seed development occurred in the aba,abi3 recombinant and was normal in aba,abi1, abi3 and aba,abi1 seeds. Embryos of the recombinant aba,abi3 seeds maintained the green color until maturity, the seeds kept a high water content, did not form the late abundant 2S and 12S storage proteins, were desiccation intolerant, and often showed viviparous germination. Application of ABA, and particularly of an ABA analog, to the roots of plants during seed development partially alleviated the aberrant phenotype. Seeds of aba,abi3 were normal when they developed on a mother plant heterozygous for Aba. In contrast to seed development, the induction of dormancy was blocked in all monogenic mutants and recombinants. Dormancy was only induced by embryonic ABA; it could not be increased by maternal ABA or ABA applied to the mother plant. It is concluded that endogenous ABA has at least two different effects in developing seeds. The nature of these responses and of the ABA response system is discussed.  相似文献   

8.
In this study, we examined the involvement of endogenous abscisic acid (ABA) in methyl jasmonate (MeJA)-induced stomatal closure using an inhibitor of ABA biosynthesis, fluridon (FLU), and an ABA-deficient Arabidopsis (Arabidopsis thaliana) mutant, aba2-2. We found that pretreatment with FLU inhibited MeJA-induced stomatal closure but not ABA-induced stomatal closure in wild-type plants. The aba2-2 mutation impaired MeJA-induced stomatal closure but not ABA-induced stomatal closure. We also investigated the effects of FLU and the aba2-2 mutation on cytosolic free calcium concentration ([Ca(2+)](cyt)) in guard cells using a Ca(2+)-reporter fluorescent protein, Yellow Cameleon 3.6. In wild-type guard cells, FLU inhibited MeJA-induced [Ca(2+)](cyt) elevation but not ABA-induced [Ca(2+)](cyt) elevation. The aba2-2 mutation did not affect ABA-elicited [Ca(2+)](cyt) elevation but suppressed MeJA-induced [Ca(2+)](cyt) elevation. We also tested the effects of the aba2-2 mutation and FLU on the expression of MeJA-inducible VEGETATIVE STORAGE PROTEIN1 (VSP1). In the aba2-2 mutant, MeJA did not induce VSP1 expression. In wild-type leaves, FLU inhibited MeJA-induced VSP1 expression. Pretreatment with ABA at 0.1 μm, which is not enough concentration to evoke ABA responses in the wild type, rescued the observed phenotypes of the aba2-2 mutant. Finally, we found that in wild-type leaves, MeJA stimulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3, which encodes a crucial enzyme in ABA biosynthesis. These results suggest that endogenous ABA could be involved in MeJA signal transduction and lead to stomatal closure in Arabidopsis guard cells.  相似文献   

9.
Water stress was imposed upon soybean plants (Glycine max L.)grown in a greenhouse by withholding irrigation for 10 daysafter 5 weeks of growth, and the changes under stress in thelevels of free amino acids, free ammonia and protein were determinedin detail. With a decrease in the leaf water potential, theprotein content gradually decreased, whereas the free ammoniacontent was relatively constant. Water stress induced an increasein the levels of free amino acids normally present in proteinsuch as isoleucine, leucine, valine, phenylalanine, glutamineand histidine, indicating that protein hydrolysis occurs understress. Proline accumulated only under severe stress (below–1.5 MPa) and attained 0.86% of the dry weight on day10 (–2.6 MPa). Asparagine also accumulated only undersevere stress (below –2.0 MPa). The concentration of glutamicacid, alanine, aspartic acid, serine, glycine and arginine remainedvirtually unchanged during the stress period. Total proline(protein-bound+free) first decreased during mild to moderatestress, and then increased over that of the well-irrigated controlplants at severe stress due to a remarkable accumulation offree proline. These findings indicate that some de novo synthesisof proline occurs under severe stress and that the nitrogensource for this proline synthesis may be protein. (Received July 4, 1981; Accepted September 11, 1981)  相似文献   

10.
We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.  相似文献   

11.
ABA plays important roles in many aspects of seed development, including accumulation of storage compounds, acquisition of desiccation tolerance, induction of seed dormancy and suppression of precocious germination. Quantification of ABA in the F(1) and F(2) populations originated from crosses between the wild type and an ABA-deficient mutant aba2-2 demonstrated that ABA was synthesized in both maternal and zygotic tissues during seed development. In the absence of zygotic ABA, ABA synthesized in maternal tissues was translocated into the embryos and partially induced seed dormancy. We also analyzed the levels of ABA metabolites, gibberellins, IAA, cytokinins, jasmonates and salicylic acid (SA) in the developing seeds of the wild type and aba2-2. ABA metabolites accumulated differentially in the silique and seed tissues during development. Endogenous levels of SA were elevated in aba2-2 in the later developmental stages, whereas that of IAA was reduced compared with the wild type. These data suggest that ABA metabolism depends on developmental stages and tissues, and that ABA interacts with other hormones to regulate seed developmental processes.  相似文献   

12.
Although soluble sugar levels affect many aspects of plant development and physiology, little is known about the mechanisms by which plants respond to sugar. Here we report the isolation of 13 sugar-insensitive (sis) mutants of Arabidopsis that, unlike wild-type plants, are able to form expanded cotyledons and true leaves when germinated on media containing high concentrations of glucose or sucrose. The sis4 and sis5 mutants are allelic to the ABA-biosynthesis mutant aba2 and the ABA-insensitive mutant abi4, respectively. In addition to being insensitive to glucose and sucrose, the sis4/aba2 and sis5/abi4 mutants also display decreased sensitivity to the inhibitory effects of mannose on early seedling development. Mutations in the ABI5 gene, but not mutations in the ABI1, ABI2 or ABI3 genes, also lead to weak glucose- and mannose-insensitive phenotypes. Wild-type and mutant plants show similar responses to the effects of exogenous sugar on chlorophyll and anthocyanin accumulation, indicating that the mutants are not defective in all sugar responses. These results indicate that defects in ABA metabolism and some, but not all, defects in ABA response can also alter response to exogenous sugar.  相似文献   

13.
Abscisic acid (ABA) accumulation has been analyzed in irrigated and water-stressed wild-type and the vtc-1 mutant of Arabidopsis thaliana, which shows an ascorbate deficiency in leaves of approximately 60%. The amounts of ABA increased progressively up to 2.3-fold in water-stressed wild-type plants, whereas levels were kept at low levels in the irrigated plants. In contrast, initial increases followed by a sharp decrease of abscisic acid levels were observed in water-stressed vtc-1 mutants. Furthermore, the levels of this phytohormone increased up to fivefold in irrigated mutants. This differential accumulation of ABA in the mutant strongly correlated with the ascorbate redox state, but not with ascorbate levels. Changes in ABA levels in leaves paralleled those of chloroplasts. Immunolocalization studies showed a differential ABA accumulation in chloroplasts of vtc-1 mutants, which displayed the highest ABA labeling in irrigated plants. Our results indicate an altered pattern of ABA accumulation in the vtc-1 mutant compared to the wild type, under both irrigated conditions and water-stress conditions, which is strongly dependent on the ascorbate redox state.  相似文献   

14.
The phytochrome chromophore-deficient mutant, pew1, of Nicotiana plumbaginifolia exhibited decreased germination and slower dehydration of detached leaves during water stress as compared with the wild-type. These physiological processes are controlled by abscisic acid (ABA) and we examined, therefore, whether phytochrome plays a specific role in the regulation of ABA metabolism using the pew1 mutant. The ABA contents of mature seeds and young leaves were analysed and in both cases mutant material was found to contain higher amounts of ABA as compared with the wild-type. This indicates that the phytochrome activation can lead to a decrease of the ABA level in the wild-type plant. The role of phytochromes was investigated in greater detail using the ABA-deficient mutant aba1 of N. plumbaginifolia exhibiting an early and synchronous germination. This mutant accumulates at very high levels a metabolite derived from a precursor (ABA-aldehyde) in the ABA biosynthetic pathway. The first biochemical characterization of this molecule, which corresponds to the glucose-conjugated ABA-alcohol (ABA-AG) is described. A pew1-aba1 double mutant exhibiting both an etiolated growth and early germination was also obtained. The comparable accumulation of ABA-AG in the pew1-aba1 double mutant as compared with the aba1 mutant allowed the proposition that, in a wild-type plant, the phytochrome-mediated light signal enhances ABA degradation rather than inhibits its biosynthesis.  相似文献   

15.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

16.
17.
18.
A novel abscisic acid (ABA)-deficient mutant, aba4, was identified in a screen for paclobutrazol-resistant germination. Compared with wild-type, the mutant showed reduced endogenous ABA levels in both dehydrated rosettes and seeds. Carotenoid composition analysis demonstrated that the defective locus affects neoxanthin synthesis. The ABA4 gene was identified by map-based cloning, and found to be a unique gene in the Arabidopsis genome. The predicted protein has four putative helical transmembrane domains and shows significant similarity to predicted proteins from tomato, rice and cyanobacteria. Constitutive expression of the ABA4 gene in Arabidopsis transgenic plants led to increased accumulation of trans-neoxanthin, indicating that the ABA4 protein has a direct role in neoxanthin synthesis. aba4 mutant phenotypes were mild compared with previously identified ABA-deficient mutants that exhibit vegetative tissue phenotypes. Indeed, ABA levels in seeds of aba4 mutants were higher than those of aba1 mutants. As aba1 mutants are also affected in a unique gene, this suggests that ABA can be produced in the aba4 mutant by an alternative pathway using violaxanthin as a substrate. It appears, therefore, that in Arabidopsis both violaxanthin and neoxanthin are in vivo substrates for 9-cis-epoxycarotenoid dioxygenases. Furthermore, significantly reduced levels of ABA were synthesized in the aba4 mutant on dehydration, demonstrating that ABA biosynthesis in response to stress must occur mainly via neoxanthin isomer precursors.  相似文献   

19.
The mechanisms by which plants respond to reduced water availability (low water potential) include both ABA-dependent and ABA-independent processes. Pro accumulation and osmotic adjustment are two important traits for which the mechanisms of regulation by low water potential, and the involvement of ABA, is not well understood. The ABA-deficient mutant, aba2-1, was used to investigate the regulatory role of ABA in low water potential-induced Pro accumulation and osmotic adjustment in seedlings of Arabidopsis thaliana. Low water potential-induced Pro accumulation required wild-type levels of ABA, as well as a change in ABA sensitivity or ABA-independent events. Osmotic adjustment, in contrast, occurred independently of ABA accumulation in aba2-1. Quantification of low water potential-induced ABA and Pro accumulation in five ABA-insensitive mutants, abi1-1, abi2-1, abi3, abi4, and abi5, revealed that abi4 had increased Pro accumulation at low water potential, but a reduced response to exogenous ABA. Both of these responses were modified by sucrose treatment, indicating that ABI4 has a role in connecting ABA and sugar in regulating Pro accumulation. Of the other abi mutants, only abi1 had reduced Pro accumulation in response to low water potential and ABA application. It was also observed that abi1-1 and abi2-1 had increased ABA accumulation. The involvement of these loci in feedback regulation of ABA accumulation may occur through an effect on ABA catabolism or conjugation. These data provide new information on the function of ABA in seedlings exposed to low water potential and define new roles for three of the well-studied abi loci.  相似文献   

20.
The present study was conducted to evaluate phenotypic interactionin reciprocal grafts between wilty (w-1) sunflower mutant andnormal (W-1) plants. The w-1 genotype is a ‘leaky’ABA-deficient mutant, characterized by high stomatal conductance,in both light and dark conditions, and high transpiration rate. In well-watered conditions, mutant scions grafted on to normalrootstock (w-1/W-1) showed higher leaf relative water content,leaf water potential and ABA levels than those of control grafts(w-1/w-1). In addition, detached leaves of w-1/W-1 exhibitedlower water loss than w-1/w-1 grafts, while mutant rootstockdid not affect the transpiration rate of detached W-1 leaves.When drought stress was imposed to potted plants by withholdingwater, the mutant scions grafted on to normal roots showed apartial phenotypic reversion. A rapid stomatal closure and arise in ABA levels in response to a small decrease in leaf waterpotential was observed. By contrast, in w-1/w-1 grafts significantreductions in stomatal conductance and ABA accumulation weredetected only in conjunction with a severe water deficit. W-1scions on mutant stocks (W-1/w-1) maintained the normal phenotypeof control wild-type grafts (W1/W-1). Key words: ABA, grafting, Helianthus annuus, stomatal conductance, water relations, wilty mutant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号