首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The reactions of a few representative gold(III) complexes -[Au(ethylenediamine)2]Cl3, [Au(diethylentriamine)Cl]Cl2, [Au(1,4,8,11-tetraazacyclotetradecane)](ClO4)2Cl, [Au(2,2',2'-terpyridine)Cl]Cl2, [Au(2,2'-bipyridine)(OH)2][PF6] and the organometallic compound [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine-H)(OH)][PF6]- with BSA were investigated by the joint use of various spectroscopic methods and separation techniques. Weak metal-protein interactions were revealed for the [Au(ethylenediamine)2]3+ and [Au(1,4,8,11-tetraazacyclotetradecane)]3+ species, whereas progressive reduction of the gold(III) centre was observed in the cases of [Au(2,2'-bipyridine)(OH)2]+ and [Au(2,2',2'-terpyridine)Cl]2+. In contrast, tight metal-protein adducts are formed when BSA is reacted with either [Au(diethylentriamine)Cl]2+ and [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine-H)(OH)]+. Notably, binding of the latter complex to serum albumin results in the appearance of characteristic CD bands in the visible spectrum. It is suggested that adduct formation for both of these gold(III) complexes occurs through coordination at the level of surface histidines. Stability of these gold(III) complexes/serum albumin adducts was tested under physiologically relevant conditions and found to be appreciable. Metal binding to the protein is tight; complete detachment of the metal from the protein has been achieved only after the addition of excess potassium cyanide. The implications of the present results for the pharmacological activity of these novel cytotoxic agents are discussed.  相似文献   

2.
Biomimetic pathways for the oxidation of [Au(CN)(2)](-), a gold metabolite, and further cyanation of the gold(III) products to form Au(CN)(4)(-) were investigated using 13C NMR and UV-Visible spectroscopic methods. Hypochlorite ion, an oxidant released during the oxidative burst of immune cells, was employed. The reaction generates mixed dicyanoaurate(III) complexes, trans-[Au(CN)(2)X(2)](-), where X(-) represents equilibrating hydroxide and chloride ligands, and establishes the chemical feasibility of dicyanoaurate oxidation by OCl(-) to gold(III) species. This oxidation reaction suggests a new procedure for synthesis of H[Au(CN)(2)Cl(2)]. Reaction of trans-[Au(CN)(2)X(2)](-) (X(-)=Cl(-) and Br(-)) or [AuCl(4)](-) with HCN in aqueous solution at pH 7.4 leads directly to [Au(CN)(4)](-) without detection of the anticipated [Au(CN)(x)X(4-x)](-)intermediates, which is attributed to the cis- and trans-accelerating effects of the cyanides. The reduction of [Au(CN)(4)](-) by glutathione and other thiols is a complex, pH-dependent process that proceeds through two intermediates and ultimately generates [Au(CN)(2)](-). These studies provide further insight into the possible mechanisms of an immunogenically generated gold(I)/gold(III) redox cycle in vivo.  相似文献   

3.
Upon weekly i.m. injections of disodium gold thiomalate (Na2AuTM) 100% of A.SW mice produced IgG autoantibodies to antinuclear Ag and nucleolar Ag, respectively; about 70% of C57BL/6 mice produced IgG antinuclear Ag, whereas DBA/2 mice were resistant. Moreover, C57BL/6 mice, but not DBA/2 mice, showed increased mesangial deposits of IgG. These alterations were due not to disodium thiomalate, but to the gold ion of Na2AuTM. An assumed T cell reactivity of susceptible mouse strains to Na2AuTM was tested by means of the direct popliteal lymph node (PLN) assay. However, no distinct PLN reaction to Na2AuTM was detectable. Likewise, AuCl did not induce a PLN reaction. Both Na2AuTM and AuCl contain gold in the Au(I) state. The poor PLN responses to Au(I) contrasted with the strong PLN responses to Au(III) compounds. PLN reactions to Au(III) were dose dependent, T cell dependent, and specific. When Au(III) was reduced to Au(I) by addition of Na2TM or methionine before testing in the PLN assay its sensitizing capacity was significantly decreased. Thus, the oxidation state of gold, i.e., Au(III) vs Au(I), plays a major role for its sensitizing capacity. Therefore, we propose that the Au(I) of Na2AuTM is oxidized to Au(III) before T cells are sensitized and adverse immunologic reactions develop. Results obtained with the adoptive transfer PLN assay indicated that, indeed, repeated i.m. injections of Na2AuTM sensitized A.SW and C57BL/6 splenic T cells to Au(III).  相似文献   

4.
The reduction of auricyanide ([Au(CN)(4)](-), a potential gold(III) metabolite of antiarthritic gold(I) compounds), by glutathione (G(-)SH, an anionic biological reductant) proceeds through two intermediates (I(230) and I(290)) which have previously been identified by their UV-vis spectra, but not isolated. Negative-ion electrospray ionization-mass spectroscopy (ESI-MS) has unambiguously identified them as [Au(CN)(3)(SG)](2-) and [Au(CN)(2)(SG)(2)](3-), respectively, and allowed their formation and decay to be monitored. The spectra also confirm that the products are aurocyanide ([Au(CN)(2)](-), a known metabolite of chrysotherapy agents) and oxidized glutathione (GSSG(2-)). The reactions are dependent on the presence or absence of buffering agents and the pH of the reaction media. The reaction can be driven to the first intermediate by using an excess of auricyanide or by running the reaction at low pH which prevents further reaction. At neutral pH and/or with excess of glutathione present, the reaction proceeds to the second intermediate, which is then reduced to aurocyanide. The monoanions, [Au(CN)(3)(SGH)](-) at m/z=581.2 and [Au(CN)(2)(SGH)(2)](-) at m/z=861.5 generate more intense signals than their respective dianions, [Au(CN)(3)(SG)](2-) at m/2=290.2 and [Au(CN)(2)(SG)(SGH)](2-)m/2=430.9, respectively, whereas the trianion [Au(CN)(2)(SG)(2)](3-) (m/3=281.2) was not observed. These studies demonstrate the value of ESI-MS methods for characterizing reactions of metallopharmaceuticals under biomimetic conditions and suggest that they will be useful for other systems which give strong ESI-MS signals.  相似文献   

5.
Two gold(III) compounds [Au(TACN)Cl(2)]Cl (1) and [Au(TACN)Cl(2)][AuCl(4)] (2) (where TACN=1,4,7-triazacyclononane), have been synthesized and characterized by electrospray ionization mass spectrometry (ESI-MS), (1)H NMR spectroscopy and elemental analyses. The structure of compound 2 was determined by X-ray crystallography, in which TACN coordinates to the gold(III) center in a bidentate mode and the unbound amine group forms a very short intramolecular Au-H(-N) contact (1.91A). Biological activity data showed that compound 1 is more cytotoxic than cisplatin against A-549 and HCT-116 tumor cell lines. The interactions of compound 1 with CT-DNA were studied by UV-Vis, fluorescence and CD spectroscopy, which suggests that compound 1 can induce the distortion of DNA double helix.  相似文献   

6.
A series of new gold(I) and gold(III) complexes based on the saccharinate (sac) ligand, namely M[Au(sac)2] (with M being Na+, K+ or NH4+), [(PTA)Au(sac)], K[Au(sac)3Cl] and Na[Au(sac)4], were synthesized and characterized, and some aspects of their biological profile investigated. Spectrophotometric analysis revealed that these gold compounds, upon dissolution in aqueous media, at physiological pH, manifest a rather favourable balance between stability and reactivity. Their reactions with the model proteins cytochrome c and lysozyme were monitored by mass spectrometry to predict their likely interactions with protein targets. In the case of disaccharinato gold(I) complexes, cytochrome c adducts bearing four coordinated gold(I) ions were preferentially formed in high yield. In contrast, [(PTA)Au(sac)] (PTA = 1,3,5-triaza-7-phosphaadamantane) turned out to be poorly effective, only producing a mono-metalated adduct in very low amount. In turn, the gold(III) saccharinate derivatives were less reactive than their gold(I) analogues: K[Au(sac)3Cl] and Na[Au(sac)4] caused moderate protein metalation, again with evidence of formation of tetragold adducts. Finally, the above mentioned gold compounds were challenged against the reference human tumor cell line A2780S and its cisplatin resistant subline A2780R and their respective cytotoxic profiles determined. [(PTA)Au(sac)] turned out to be highly cytotoxic whereas moderate cytotoxicities were observed for the gold(III) complexes and only modest activities for disaccharinato gold(I) complexes. The implications of these results are thoroughly discussed in the light of current knowledge on gold based drugs.  相似文献   

7.
The syntheses and reactivity of dimethylgold(III) complexes with multidentate ligands as TRIPHOS (i.e., 1,1,1-tris(diphenylphosphinomethyl)ethane) and TREN (i.e. 2,2′,2″-triaminotriethylamine) have been examined. I.r. spectra for the compounds in the solid state, conductivity and PMR data for solutions, lead to the assignment of an ionic formula [CH3)2Au TRIPHOS]+[(CH3)2AuCl2] where the gold(III) atoms are presumably four-coordinate. The complex (CH3)2 AuCl TREN in DMSO solution undergoes a reductive elimination reaction, as found for analogous dimethylgold(III) derivatives.  相似文献   

8.
The kinetics and mechanisms of the reactions of gallic acid, gallic acid methyl ester and adrenaline with aluminium(III) have been investigated in aqueous solution at 25 degrees C and an ionic strength of 0.5 M. A mechanism has been proposed which accounts satisfactorily for the kinetic data. This is consistent with a mechanism in which complex formation takes place almost exclusively by reaction of [Al(H2O)5OH]2+ with the ligands. [Al(H2O)5OH]2+ reacts with gallic acid, gallic acid methyl ester and adrenaline with rate constants of 1145, 1330 and 316 M(-1) s(-1) respectively. These data together with the equilibrium data enable the rate constants for reaction of [Al(H2O)6]3+ with both gallic acid and gallic acid methyl ester to be calculated. In view of the dissociative nature of water exchange on [Al(H2O)6]3+ and [Al(H2O)5(OH)]2+ the complex formation rate constants are discussed in terms of the Eigen-Wilkins-Tamm mechanism. The overall mechanisms have been validated using global analysis. The results are compared with previously published data on the complex formation reactions of aluminium(III). In addition, the rate constants and mechanisms for replacement of maltol by gallic acid methyl ester and diethylenetriaminepentaacetic acid (dtpa) have been investigated.  相似文献   

9.
The effects of gold(I) complexes (auranofin, triethylphosphine gold and aurothiomalate), gold(III) complexes ([Au(2,2'-diethylendiamine)Cl]Cl(2), [(Au(2-(1,1-dimethylbenzyl)-pyridine) (CH(3)COO)(2)], [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine)(OH)](PF(6)), [Au(bipy(dmb)-H)(2,6-xylidine)](PF(6))), metal ions (zinc and cadmium acetate) and metal complexes (cisplatin, zinc pyrithione and tributyltin) on mitochondrial thioredoxin reductase and mitochondrial functions have been examined. Both gold(I) and gold(III) complexes are extremely efficient inhibitors of thioredoxin reductase showing IC(50) ranging from 0.020 to 1.42 microM while metal ions and complexes not containing gold are less effective, exhibiting IC(50) going from 11.8 to 76.0 microM. At variance with thioredoxin reductase, auranofin is completely ineffective in inhibiting glutathione peroxidase and glutathione reductase, while gold(III) compounds show some effect on glutathione peroxidase. The mitochondrial respiratory chain is scarcely affected by gold compounds while the other metal complexes and metal ions, in particular zinc ion and zinc pyrithione, show a more marked inhibitory effect that is reflected on a rapid induction of membrane potential decrease that precedes swelling. Therefore, differently from gold compounds, the various metal ions and metal complexes exert their effect on different targets indicating a lower specificity. It is concluded that gold compounds are highly specific inhibitors of mitochondrial thioredoxin reductase and this action influences other functions such as membrane permeability properties. Metal ions and metal complexes markedly inhibit the activity of thioredoxin reductase although to an extent lower than that of gold compounds. They also inhibit mitochondrial respiration, decrease membrane potential and, finally, induce swelling.  相似文献   

10.
The P,N-[3]ferrocenophane ligand 3 forms a (κP-ligand)AuCl complex (5) upon treatment with (Me2S)AuCl. The corresponding P,P-[3]ferrocenophane system 4 yields a binuclear (κPP-chelate ligand)(AuCl)2 complex (6) when reacted with 2 equivalents of the (Me2S)AuCl reagent. Complex 6 features an intramolecular aurophilic Au?Au interaction. Treatment of the P,P-[3]ferrocenophane 4 with 1.0 equiv. of (PPh3)AuCl gives the tetra-coordinated mono-gold(I) complex (P,P-ligand)(PPh3)AuCl (7), whereas the cationic [(P,P-ligand)2Au]+[Cl] system is obtained from 4 and 0.5 equivalents of (Me2S)AuCl. The [(P,P-ligand)2Au]+ system is obtained in different diastereoisomeric forms (8 and 9) depending on the stereochemistry of the pair of P,P-[3]ferrocenophane chelate ligand used. Examples of the complexes 5, 6, 7 and 8 were characterized by X-ray diffraction.  相似文献   

11.
DNA represents the primary target for platinum antitumor metal complexes and is the probable target for newly developed cytotoxic gold(III) complexes. To test this hypothesis the reactions with calf thymus DNA of five representative gold(III) complexes--namely [Au(en)(2)]Cl(3), [Au(dien)Cl]Cl(2), [Au(cyclam)](ClO(4))(2)Cl, [Au(terpy)Cl]Cl(2) and [Au(phen)Cl(2)]Cl--were analyzed in vitro through various physicochemical techniques including circular dichroism, absorption spectroscopy, DNA melting, and ultradialysis. It is shown that all tested complexes interact with DNA and modify significantly its solution behavior. The solution conformation of DNA is affected to variable extents by the individual complexes as shown by CD titration experiments. Notably, in all cases, the gold(III) chromophore is not largely perturbed by addition of calf thymus DNA ruling out occurrence of gold(III) reduction. Ultradialysis experiments point out that the binding affinity of the various complexes for the DNA double helix is relatively low; in most cases the gold(III)/DNA interaction is electrostatic in nature and reversible. The implications of these findings for the mechanism of action of antitumor gold(III) complexes are discussed.  相似文献   

12.
Gaseous multiply protonated disulfide-linked peptides have been subjected to reactions with AuCl2(-) ions to explore the possibility of effecting cation switching of Au+ for two protons and to determine whether cationization by Au+ ions affords selective dissociation of disulfide linkages. The incorporation of Au+ into several model disulfide-linked peptides proved to be straightforward. The primary ion/ion reaction channels were proton transfer, which does not lead to Au+ incorporation, and attachment of AuCl2(-) ions to the polypeptide cation, which does incorporate Au+. Fragmentation of the attachment product, the extent of which varied with peptide and charge state, led to losses of one or more molecules of HCl and, to some extent, cleavage of polypeptides at the disulfide linkage into its two constituent chains. Collisional activation of the intact metal-ion-incorporated peptides showed cleavage of the disulfide linkage to be a major, and in some cases exclusive, process. Cations with protons as the only cationizing agents showed only small contributions from cleavage of the disulfide linkage. These results indicate that Au+ incorporation into a disulfide-linked polypeptide ion is a promising way to effect selective dissociation of disulfide bonds. Cation switching via ion/ion reactions is a convenient means for incorporating gold and is attractive because it avoids the requirement of adding metal salts to the analyte solution.  相似文献   

13.
For the first time, the Ir(III) catalysis of the iodate oxidation of xylose and maltose in aqueous alkaline medium has been investigated. The reactions exhibit first-order kinetics with respect to lower [IO(3)(-)] and [OH(-)] and show zero-order kinetics at their higher concentrations. Unity order at low concentrations of maltose becomes zero order at its higher concentrations, whereas zero-order kinetics with respect to [xylose] was observed throughout its variation. The reaction rate is found to be directly proportional to [Ir(III)] in the oxidation of both reducing sugars. Negligible effect of [Cl(-)] and nil effect of ionic strength (mu) on the rate of oxidation have also been noted. The species, [IrCl(3)(H(2)O)(2)OH](-) was ascertained as the reactive species of Ir(III) chloride for both the redox systems. Various activation parameters have been calculated. Formic acid and arabinonic acid for maltose and formic acid and threonic acid for xylose were identified as the main oxidation products of the reactions. Mechanisms consistent with the observed kinetic data and spectral evidence have been proposed for the oxidation of xylose and maltose.  相似文献   

14.
In the last few years gold(III) complexes have attracted growing attention in the medicinal chemistry community as candidate anticancer agents. In particular some organogold(III) compounds manifested quite attractive pharmacological behaviors in preclinical studies. Here we compare the chemical and biological properties of the novel organogold(III) complex [Au(bipydmb?H)(NH(CO)CH3)][PF6] (Aubipyaa) with those of its parent compounds [Au(bipydmb?H)(OH)][PF6] (Aubipyc) and [Au2(bipydmb?H)2)(μ?O)][PF6]2 (Au2bipyc), previously synthesized and characterized. The three study compounds were comparatively assessed for their antiproliferative actions against HCT-116 cancer cells, revealing moderate cytotoxic effects. Proapoptotic and cell cycle effects were also monitored. Afterward, to gain additional mechanistic insight, the three gold compounds were challenged against the model proteins HEWL, RNase A and cytochrome c and reactions investigated through UV–Vis and ESI–MS analysis. A peculiar and roughly invariant protein metalation profile emerges in the three cases consisting of protein binding of {Au(bipydmb?H)} moieties. The implications of these results are discussed in the frame of current knowledge on anticancer gold compounds.  相似文献   

15.
The 2:1 and 1:2 adducts of Au(I) and 1:2 adducts of Ag(I) with the diphosphine 2,3-bis(diphenylphosphino)maleic acid (dpmaa) have been prepared in high yields. Crystal structures have been determined for the neutral digold complex (AuCl)2(dpmaa) · 2thf (1) and the bis-chelated complex [Au(dpmaa)2]Cl · H2O · CH3OH (2). For 1, conformational rigidity imposed by the ethylenic bridge facilitates the formation of short intramolecular Au-Au contacts with no evidence of similar intermolecular contacts. Complex 2 crystallizes with [Au(dpmaa)2]+ cations hydrogen bonded through the carboxyl groups to a water molecule and chloride anion to form a H-bonded chain along the a axis. 31P NMR titration of 1 with dpmaa in acetone shows conversion to 2 at Au:P-P ratios less than 1:1 indicating similar high thermodynamic and kinetic stabilities to other bis-chelated [Au(P-P)2]+ complexes containing 5- or 6-membered chelate rings. The ionic Au(I) complex 2 and the analogous Ag(I) complex [Ag(dpmma)2]NO3 (3) are highly water soluble. The in vitro cytotoxic activity of 2 was assessed against eight different cell lines and no significant activity was found. The solubility properties and solution behaviour of the complexes are compared to the analogous 1,2-bis(diphenylphosphino)ethane (dppe) complexes and the potential significance of these results to the antitumour properties of chelated 1:2 Au(I)diphosphine complexes are discussed.  相似文献   

16.
We have studied the kinetics of the complex formation of gold(III) complexes, [AuCl2(en)]+ (dichlorido(ethylenediamine)aurate(III)-ion) and [AuCl2(SMC)] (dichlorido (S-methyl-l-cysteine)aurate(III)) with four biologically N-donor nucleophiles. It was shown that studied ligands have a high affinity for gold(III) complex, which may have important biological implications, since the interactions of Au(III) with DNA is thought to be responsible for the anti-tumour activity. The [AuCl2(SMC)] complex is more reactive than [AuCl2(en)]+. L-His reacts faster than the other N-donor nucleophiles in the reaction with [AuCl2(en)]+, but in the reaction with [AuCl2(SMC)] 5′-GMP is the best nucleophile. Gold(III) complexes are much more reactive than Pt(II) complexes with the same nucleophiles. The activation parameters for all studied reactions suggest an associative substitution mechanism. The cytotoxicity of gold(III) complexes, [AuCl2(en)]+, [AuCl2(SMC)] and [AuCl2(DMSO)2]+ was evaluated in vitro against chronic lymphocytic leukemia cells, obtained from blood of patients with chronic lymphocytic leukemia (CLL). The [AuCl2(en)]+ complex show comparable cytotoxicity profiles compared to cisplatin.  相似文献   

17.
The animal byproduct, hen eggshell membrane (ESM), was evaluated for its ability to sorb gold ions (dicyanoaurate(I) and tetrachloroaurate(III)) from solutions and electroplating wastewater. The gold uptake was dependent on pH, temperature and co-ions present in the solutions, with pH 3.0 being the optimum value. The equilibrium data followed the Langmuir isotherm model with maximum capacities of 147 mg Au(I)/g dry weight and 618 mg Au(III)/g, respectively. Desorption of sorbed gold(I) with 0.1 mol/l NaOH resulted in no changes of the biosorbent gold uptake capacity through five consecutive sorption/desorption cycles. In column experiments, selective recovery of gold from electroplating wastewater containing various metal ions was noted. The affinity of metal sorption was in the order Au > Ag > Co > Cu > Pb > Ni > Zn.  相似文献   

18.
(-)-Epigallocatechin-gallate ((-)-EGCg) and (-)-epicatechin-gallate ((-)-ECG) are important antioxidants which are found in green tea. The kinetics and mechanisms of the reactions of a pseudo-first order excess of iron(III) with EGCg and ECG have been investigated in aqueous solution at 25 degrees C and an ionic strength of 0.5M NaClO(4). Mechanisms have been proposed which account satisfactorily for the kinetic data. These are consistent with a mechanism in which the 2:1 metal:ligand complex initially formed on reaction of iron(III) with the ligand subsequently decomposes in an electron transfer step. Complex formation takes place at two separate binding sites via coupled reactions. Rate constants of 4.28(+/-0.06) x 10(6) M(-2) s(-1) and 2.83(+/-0.04) x 10(6) M(-2) s(-1) have been evaluated for the reaction of monohydroxy Fe(OH)2+ species with EGCg and ECG, respectively while rate constants for of 2.94(+/-0.4) x 10(4) M(-2) s(-1) and 2.41(+/-0.25) x 10(4) M(-2) s(-1) have been evaluated for the reaction of Fe3+ species with EGCg and ECG, respectively. The iron(III) assisted decomposition of the initial iron(III) complex formed was also investigated and the rate constants evaluated. Both the complex formation and subsequent electron transfer reactions of iron(III) with EGCg and ECG were monitored using UV-visible spectrophotometry. All of the suggested mechanisms and calculated rate constants are supported by calculations carried out using global analysis of time dependant spectra. The results obtained show that one molecule of either EGCg or EGC is capable of reducing up to four iron(III) species, a fact which is consistent with the powerful antioxidant properties of the ligands.  相似文献   

19.
Electrospray ionization spectra of potential cyanide-containing gold-drug metabolites revealed additional, weak, unanticipated peaks at approximately twice the mass of the gold(I) and gold(III) cyanide complexes. The exact masses correspond to proton-linked bimetallic complexes, [H[Au(CN)(m)](2)](-), (m=2,4). Further investigation revealed a total of 12 examples, including trimetallic complexes, [H(2)[Au(CN)(m)](3)](-); mixed species with two complexes, [H[Au(CN)(2)][Au(CN)(4)]](-); and thiolato species, [H[(RS)Au(CN)(3)](2)](-). trans-[AuX(2)(CN)(2)Cl(2)](-) and trans-[AuX(2)(CN)(2)Br(2)](-) generated (35)Cl/(37)Cl and (79)Br/(81)Br isotopic patterns for the protonated bi- and tri-metallic analogues which were in good agreement with the presence of four or six halide ligands, respectively. Concentration-dependent studies demonstrated that the signals are independent of the solution concentrations of mono-metallic precursors, suggesting formation in the gas phase during or following droplet desolvation.  相似文献   

20.
Several bioconjugates of ferrocene with biological compounds such as aminoacid esters and related species have been prepared by reaction of chlorocarbonyl ferrocene with the corresponding amino acid ester (histidine methyl ester, tryptophan methyl ester, methionine methyl ester and lysine ethyl ester) or histamine or prolinamide in the presence of NEt3. The reaction of the tryptophan or prolinamide ferrocene conjugates with [Au(acac)(PR3)] (acac = acetylacetonate) results in the substitution of the proton of the cyclic NH groups by the fragment AuPR3+ affording the complexes [Au(FcCO-tryptophan-OMe)(PR3)] or [Au(FcCO-prolinamide)(PR3)] (Fc = ferrocenyl group). The reaction of FcCO-Met-OMe with [Au(OTf)(PR3)] (OTF = trifluoromethysulfonate) or [Au(C6F5)3(OEt2)] yields the gold(I) or gold(III) derivatives [Au(FcCO-Met-OMe)(PR3)]OTf or [Au(C6F5)3(FcCO-Met-OMe)], respectively. Cytotoxicity studies towards several cancer lines such as MCF-7, HeLa or NIE-115 have been performed. The ferrocene bioconjugates show no activity whereas the gold complexes exhibit antiproliferative effect. Preliminary studies of interaction of compounds with cells were carried out with the goal of increasing our knowledge on the mechanism of action of these potential drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号