首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA damage plays a major role in various pathophysiological conditions including carcinogenesis, aging, inflammation, diabetes and neurodegenerative diseases. Oxidative stress and cell processes such as lipid peroxidation and glycation induce the formation of highly reactive endogenous aldehydes that react directly with DNA, form aldehyde-derived DNA adducts and lead to DNA damage. In occasion of persistent conditions that influence the formation and accumulation of aldehyde-derived DNA adducts the resulting unrepaired DNA damage causes deregulation of cell homeostasis and thus significantly contributes to disease phenotype. Some of the most highly reactive aldehydes produced endogenously are 4-hydroxy-2-nonenal, malondialdehyde, acrolein, crotonaldehyde and methylglyoxal. The mutagenic and carcinogenic effects associated with the elevated levels of these reactive aldehydes, especially, under conditions of stress, are attributed to their capability of causing directly modification of DNA bases or yielding promutagenic exocyclic adducts. In this review, we discuss the current knowledge on DNA damage induced by endogenously produced reactive aldehydes in relation to the pathophysiology of human diseases.  相似文献   

2.
Using a filter-binding assay based on precipitation of pUC13 plasmid DNA bound to calf-thymus histones, we have determined the efficiency of formation of DNA-protein crosslink formation induced by several aldehyde compounds in vitro. Formaldehyde, glutaraldehyde and acrolein were the most potent, causing 1 crosslink per 2.7 kbp of DNA at 1.5, 8 and 150 microM, respectively. All other compounds tested gave 1 crosslink per plasmid molecule in the mM concentration range as follows: acetaldehyde, 115 mM; propionaldehyde, 295 mM; butyraldehyde, 360 mM; crotonaldehyde, 8.5 mM; trans-2-pentenal, 6.3 mM. Significant decreases in the efficiency of DPXL formation were observed with monofunctional aldehydes of higher carbon chain length. For example, the concentration of formaldehyde needed to give 1 crosslink per molecule was almost 10(5) times less than that of acetaldehyde. Acetaldehyde differs from formaldehyde only by one saturated carbon. The presence of an unsaturated bond between the 2-3 carbons improved the potential for crosslink formation. For example, acrolein was over 500-fold more potent than propionaldehyde. Glutaraldehyde was almost as potent as formaldehyde, indicating that the bifunctional nature of this 5-carbon saturated aldehyde may be crucial to its high efficiency of DNA-protein crosslinking.  相似文献   

3.
Hao Q  Maret W 《The FEBS journal》2006,273(18):4300-4310
Oxidative stress, lipid peroxidation, hyperglycemia-induced glycations and environmental exposures increase the cellular concentrations of aldehydes. A novel aspect of the molecular actions of aldehydes, e.g. acetaldehyde and acrolein, is their reaction with the cysteine ligands of zinc sites in proteins and concomitant zinc release. Stoichiometric amounts of acrolein release zinc from zinc-thiolate coordination sites in proteins such as metallothionein and alcohol dehydrogenase. Aldehydes also release zinc intracellularly in cultured human hepatoma (HepG2) cells and interfere with zinc-dependent signaling processes such as gene expression and phosphorylation. Thus both acetaldehyde and acrolein induce the expression of metallothionein and modulate protein tyrosine phosphatase activity in a zinc-dependent way. Since minute changes in the availability of cellular zinc have potent effects, zinc release is a mechanism of amplification that may account for many of the biological effects of aldehydes. The zinc-releasing activity of aldehydes establishes relationships among cellular zinc, the functions of endogenous and xenobiotic aldehydes, and redox stress, with implications for pathobiochemical and toxicologic mechanisms.  相似文献   

4.
Aldehydes constitute a group of relatively reactive organic compounds. They occur as natural (flavoring) constituents in a wide variety of foods and food components, often in relatively small, but occasionally in very large concentrations, and are also widely used as food additives. Evidence of carcinogenic potential in experimental animals is convincing for formaldehyde and acetaldehyde, limited for crotonaldehyde, furfural and glycidaldehyde, doubtful for malondialdehyde, very weak for acrolein and absent for vanillin. Formaldehyde carcinogenesis is a high-dose phenomenon in which the cytotoxicity plays a crucial role. Cytotoxicity may also be of major importance in acetaldehyde carcinogenesis but further studies are needed to prove or disprove this assumption. For a large number of aldehydes (relevant) data on neither carcinogenicity nor genotoxicity are available. From epidemiological studies there is no convincing evidence of aldehyde exposure being related to cancer in humans. Overall assessment of the cancer risk of aldehydes in the diet leads to the conclusion that formaldehyde, acrolein, citral and vanillin are no dietary risk factors, and that the opposite may be true for acetaldehyde, crotonaldehyde and furfural. Malondialdehyde, glycidaldehyde, benzaldehyde, cinnamaldehyde and anisaldehyde cannot be evaluated on the basis of the available data. A series of aldehydes should be subjected to at least mutagenicity, cytogenicity and cytotoxicity tests. Priority setting for testing should be based on expected mechanism of action and degree of human exposure.  相似文献   

5.
Carnosine has been shown to react with low-molecular-weight aldehydes and ketones and has been proposed as a naturally occurring anti-glycating agent. It is suggested here that carnosine can also react with ("carnosinylate") proteins bearing carbonyl groups, and evidence supporting this idea is presented. Accumulation of protein carbonyl groups is associated with cellular ageing resulting from the effects of reactive oxygen species, reducing sugars, and other reactive aldehydes and ketones. Carnosine has been shown to delay senescence and promote formation of a more juvenile phenotype in cultured human fibroblasts. It is speculated that carnosine may intracellularly suppress the deleterious effects of protein carbonyls by reacting with them to form protein-carbonyl-carnosine adducts, i.e., "carnosinylated" proteins. Various fates of the carnosinylated proteins are discussed including formation of inert lipofuscin and proteolysis via proteosome and RAGE activities. It is proposed that the anti-ageing and rejuvenating effects of carnosine are more readily explainable by its ability to react with protein carbonyls than its well-documented antioxidant activity.  相似文献   

6.
The stacking coefficients (K's) of nucleic acids have been thought to influence the color contrast between DNA and RNA in tissue sections stained with metachromatic dyes. This idea was tested by titrating toluidine blue (TB) and acridine orange (AO) in solution against DNA and RNA, native or treated with formaldehyde, acrolein, or Carnoy's fluid. Absorption spectra at varying polymer-dye ratios were used to compute K values by the methods of Bradley and colleagues. Results with both dyes fit Bradley's stacking equations. Fixatives did not block dye-binding sites but markedly altered K values. K of DNA was low, unaffected by aldehyde fixative, increased by Carnoy's fluid or heat denaturation. K of RNA was higher than that of DNA and was increased greatly by formaldehyde, almost as much by acrolein, considerably less by Carnoy's fluid. Aldehyde effects were partially reversed upon removal of aldehyde by dialysis. These observations accord with known effects of aldehydes and denaturation upon nucleic acid conformation. Differences between K's of DNA and RNA were greater after aldehyde treatment than after Carnoy's, and were greater with AO than with TB. This is generally consistent with the magnitude of the color contrasts observed in tissues. Additional factors must contribute to the intense color contrast observed in acrolein-fixed tissues stained with TB.  相似文献   

7.
Biological interactions of alpha,beta-unsaturated aldehydes   总被引:5,自引:0,他引:5  
This article describes the chemical nature of alpha,beta-unsaturated aldehydes and some of their toxicological effects based on their ability to function as direct-acting alkylating agents. Selected compounds discussed include alpha,beta-unsaturated aldehydic environmental pollutants, metabolites of xenobiotics and natural products, and lipid peroxidation--and DNA oxidation products derived from cellular constituents. Briefly reviewed are sources and mechanisms of formation of the aldehydes, their reactivity with respect to glutathione and amino-groups, their toxicity based on interaction with sulfhydryl and amino targets in cells, and modulation of their toxicity by metabolism.  相似文献   

8.
DNA-protein cross-links (DPCs) are formed upon exposure to a variety of chemical and physical agents and pose a threat to genomic integrity. In particular, acrolein and related aldehydes produce DPCs, although the chemical linkages for such cross-links have not been identified. Here, we report that oligodeoxynucleotides containing 1,N(2)-deoxyguanosine adducts of acrolein, crotonaldehyde, and trans-4-hydroxynonenal can form cross-links with the tetrapeptide Lys-Trp-Lys-Lys. We concluded that complex formation is mediated by a Schiff base linkage because DNA-peptide complexes were covalently trapped following reduction with sodium cyanoborohydride, and pre-reduction of adducted DNAs inhibited complex formation. A previous NMR study demonstrated that duplex DNA catalyzes ring opening for the acrolein-derived gamma-hydroxy-1,N(2)-propanodeoxyguanosine adduct to yield an aldehydic function (de los Santos, C., Zaliznyak, T., and Johnson, F. (2001) J. Biol. Chem. 276, 9077-9082). Consistent with this earlier observation, the adducts under investigation were more reactive in duplex DNA than in single-stranded DNA, and we concluded that the ring-open aldehydic moiety is the induced tautomer in duplex DNA for adducts exhibiting high relative reactivity. Adducted DNA cross-linked to Arg-Trp-Arg-Arg and Lys-Trp-Lys-Lys with comparable efficiency, and N(alpha)-acetylation of peptides dramatically inhibited trapping; thus, the reactive nucleophile is located at the N-terminal alpha-amine of the peptide. These data suggest that Schiff base chemistry can mediate DPC formation in vivo following the formation of stable aldehyde-derived DNA adducts.  相似文献   

9.
S A Little  P E Mirkes 《Teratology》1990,41(2):223-231
4-Hydroperoxydechlorocyclophosphamide (4-OOHdeCl-CP) is a preactivated analogue of cyclophosphamide (CP) that undergoes an elimination reaction to yield acrolein and the nonalkylating derivative of phosphoramide mustard (PM), i.e., dechlorophosphoramide mustard. We used this analogue to assess the role of acrolein in CP-induced embryotoxicity. Embryotoxicity was assessed using day 10 rat embryos cultured in vitro. 4-OOHdeC1-CP was embryotoxic over a concentration range of approximately 75-150 microM and produced complete embryolethality at concentrations of 175 microM and above. This analogue induced abnormal development characterized by tail defects at low drug concentrations and microencephaly or prosencephalic hypoplasia at high concentrations. Using the technique of alkaline elution, we also assessed DNA damage induced by embryotoxic concentrations of drug. When embryos were cultured in serum-containing medium during drug exposure, no DNA damage was detected, even at embryolethal drug concentrations. However, if cellular glutathione (GSH) was depleted with buthionine sulfoximine (BSO) before drug exposure and embryos were cultured in serum-free medium during drug exposure, DNA damage, primarily DNA single-strand breaks, was detected, but only at embryolethal concentrations. Using radiolabeled CP, we showed that acrolein does reach the embryo; however, more acrolein is incorporated into the yolk sac. Binding studies revealed that acrolein binds preferentially to cellular protein, whereas PM binds preferentially to DNA. These results suggest that, unlike the case with PM, the embryotoxic target for acrolein is protein and not DNA. Furthermore, our results indicate that acrolein may mediate its effects on the embryo via the yolk sac.  相似文献   

10.
Parathyroid glands of cattle, dogs, cats, mice and rats were immersed in glutaraldehyde or mixtures consisting of glutaraldehyde, formaldehyde and acrolein in either Na-phosphate, Na/K-phosphate or Na-cacodylate buffer, and postfixed with OsO4 in the same buffers or, alternatively, in s-collidine. Excellent preservation of bovine, feline and murine parathyroid glands was achieved with fixation mixtures containing 1% glutaraldehyde, 1.5-2% formaldehyde and 2.5-5% acrolein in 0.1 M Na-cacodylate with or without Ca2+ and Mg2+, Na-phosphate or Na/K-phosphate at 4 degrees C followed by postfixation with 1% OsO4 in the same buffers or in s-collidine containing sucrose, Ca2+ and Mg2+. This procedure largely abolished the occurrence of parathyroid cell variants. Bovine parathyroid glands were also satisfactorily preserved with 1% glutaraldehyde and 2% formaldehyde whereas 1% glutaraldehyde and 2.5 or 5% acrolein, lower or higher buffer osmolarity, or immersion at room temperature led to vacuolization of RER and to breakdown of membranes. In contrast, all fixation protocols led to the formation of dark and light cell variants and to multinucleated syncytial cells in dog and rat parathyroids. The results thus show that parathyroid cell variants arise during immersion fixation and that aldehydes, buffers and temperature are important factors for provoking parathyroid cell variants.  相似文献   

11.
Aldehydes are ubiquitous pollutants generated during the combustion of organic materials and are present in air, water, and food. Several aldehydes are also endogenous products of lipid peroxidation and by-products of drug metabolism. Despite well-documented high reactivity of unsaturated aldehydes, little is known regarding their cardiovascular effects and their role in cardiac pathology. Accordingly, we examined the myocardial effects of the model unsaturated aldehyde acrolein. In closed-chest mice, intravenous acrolein (0.5 mg/kg) induced rapid but reversible left ventricular dilatation and dysfunction. In mouse myocytes, micromolar acrolein acutely depressed myofilament Ca(2+) responsiveness without altering catecholamine sensitivity, similar to the phenotype of stunned myocardium. Immunoblotting revealed increased acrolein-protein adducts and protein-carbonyls in both acrolein-exposed myocardium (1.8-fold increase, P < 0.002) and myocytes (6.4-fold increase, P < 0.02). Both the contractile dysfunction and adduct formation were markedly attenuated by pretreatment with the thiol donor N-acetylcysteine (5 mM). Two-dimensional gel electrophoresis and mass-assisted laser desorption/ionization time-of-flight mass spectrometry analysis revealed two groups of adducted proteins, sarcomeric/cytoskeletal proteins (cardiac alpha-actin, desmin, myosin light polypeptide 3) and energy metabolism proteins (mitochondrial creatine kinase-2, ATP synthase), indicating site-specific protein modification that was confirmed by immunohistochemical colocalization. We conclude that direct exposure to acrolein induces selective myofilament impairment, which may be, in part, related to the modification of proteins involved in myocardial contraction and energy metabolism. Myocardial dysfunction induced by acrolein and related aldehydes may be symptomatic of toxicological states associated with ambient or occupational exposures or drug toxicity. Moreover, aldehydes such as acrolein may mediate cardiac dysfunction in pathologies characterized by high-oxidative stress.  相似文献   

12.
Chromium (Cr) compounds are widely used industrial chemicals and well known carcinogens. Cr(III) was earlier found to induce oxidative damage as documented by examining the levels of 8-hydroxydeoxyguanosine (8-OH-dG), an index for DNA damage, in isolated calf thymus DNA incubated with CrCl(3) and H(2)O(2). In the present in vitro study, we compared the ability of the free radical scavengers melatonin, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), resveratrol and uric acid to reduce DNA damage induced by Cr(III). Each of these scavengers markedly reduced the DNA damage in a concentration-dependent manner. The concentrations that reduced 8-OH-dG formation by 50% (IC(50)) were 0.10 microM for both resveratrol and melatonin, and 0.27 microM for AFMK. However, the efficacy of the fourth endogenous antioxidant, i.e. uric acid, in terms of its inhibition of DNA damage in the same in vitro system was about 60--150 times less effective than the other scavengers; the IC(50) for uric acid was 15.24 microM. These findings suggest that three of the four antioxidants tested in these studies may have utility in protecting against the environmental pollutant Cr and that the protective effects of these free radical scavengers against Cr(III)-induced carcinogenesis may relate to their direct hydroxyl radical scavenging ability. In the present study, the formation of 8-OH-dG was likely due to a Cr(III)-mediated Fenton-type reaction that generates hydroxyl radicals, which in turn damage DNA. Once formed, 8-OH-dG can mutate eventually leading to cancer; thus the implication is that these antioxidants may reduce the incidence of Cr-related cancers.  相似文献   

13.
The pulmonary edema of smoke inhalation is caused by the toxins of smoke and not the heat. We investigated the potential of smoke consisting of carbon in combination with either acrolein or formaldehyde (both common components of smoke) to cause pulmonary edema in anesthetized sheep. Seven animals received acrolein smoke, seven animals received a low-dose formaldehyde smoke, and five animals received a high-dose formaldehyde smoke. Pulmonary arterial pressure, pulmonary capillary wedge pressure, and cardiac output were not affected by smoke in any group. Peak airway pressure increased after acrolein (14 +/- 1 to 21 +/- 2 mmHg; P less than 0.05) and after low- and high-dose formaldehyde (14 +/- 1 to 21 +/- 1 and 20 +/- 1 mmHg, respectively; both P less than 0.05). The partial pressure of O2 in arterial blood fell sharply after acrolein [219 +/- 29 to 86 +/- 9 (SE) Torr; P less than 0.05] but not after formaldehyde. Only acrolein resulted in a rise in lung lymph flow (6.5 +/- 2.2 to 17.9 +/- 2.6 ml/h; P less than 0.05). Lung lymph-to-plasma protein ratio was unchanged for all three groups, but clearance of lymph protein was increased after acrolein. After acrolein, the blood-free extravascular lung water-to-lung dry weight ratio was elevated (P less than 0.05) compared with both low- and high-dose formaldehyde groups (4.8 +/- 0.4 to 3.3 +/- 0.2 and 3.6 +/- 0.2, respectively). Lymph clearance (ng/h) of thromboxane B2, leukotriene B4, and the sulfidopeptide leukotrienes was elevated after acrolein but not formaldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, and acrolein, all of which are constituents of tobacco smoke, were reacted in 5 mM concentration with the purified major fraction of normal adult human hemoglobin (hemoglobin Ao) in 1 mM concentration. A cigarette smoke condensate, diluted to contain 5 mM total aldehydes, was also reacted with 1 mM hemoglobin Ao. Cationic exchange high-performance liquid chromatography (HPLC) showed that the products formed from simple aliphatic aldehydes, with the exception of formaldehyde, were analogues of those formed from acetaldehyde, earlier shown by us to be imidazolidinone derivatives, that is, cyclic addition products of the N-terminal aminoamide function of α and β chains. Formaldehyde and acrolein produced a heterogeneous mixture of derivatives including crosslinked hemoglobin dimers. The greater proportion of modified hemoglobins produced by condensate aldehydes resembled those formed from acetaldehyde, the most abundant aldehyde in the condensate. A smaller fraction consisted of crosslinked hemoglobin dimers, presumably due to the action of formaldehyde. Mass spectrometric and HPLC analyses of the 2,4-dinitrophenylhydrazones precipitated from the condensate documented the presence of formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, furfsral, and methylfurfural. The toxicity of aldehydes is briefly discussed in the context of the findings of this study.  相似文献   

15.
Increased risks of cancers and oxidative DNA damage have been observed in diabetic patients. Many endogenous aldehydes such as 3-deoxyglucosone and glyceraldehyde (GA) increase under hyperglycemic conditions. We showed that these aldehydes induced Cu(II)-mediated DNA damage, including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation. GA had the strongest ability to damage DNA, and addition of low concentrations of H2O2 markedly enhanced the DNA damage. GA significantly increased 8-oxodG formation in human cultured cells (HL-60), and H2O2 enhanced it. We conclude that oxidative DNA damage by hyperglycemia-related aldehydes, especially GA, and marked enhancement of DNA damage by H2O2 may participate in diabetes-associated carcinogenesis.  相似文献   

16.
The antiviral activity of oxidized spermine was compared with that of other aldehydes. Suspensions of vaccinia virus were incubated at 37 C with various concentrations of the aldehydes, and the infectivity of the viruses was determined by the plaque assay. Oxidized spermine at a concentration of 0.82 mM completely inactivated a suspension of vaccinia virus (1.4 x 10(8) plaque-forming units) after incubation at 37 C for 10 hr. Glutaraldehyde and formaldehyde were less active when compared on a molar basis, but acrolein resembled oxidized spermine in its antiviral activity. Because acrolein is produced from oxidized spermine at only 20 to 30% yield, it is unlikely that the biological activity of the latter is due to acrolein formed during the spontaneous degradation of oxidized spermine.  相似文献   

17.
The toxicity of extracellular spermine, determined in the presence of fetal calf serum, was studied using three cell lines: FM3A, L1210, and NIH3T3 cells. Amine oxidase in fetal calf serum produces aminodialdehyde generating acrolein spontaneously, H(2)O(2), and ammonia from spermine. Spermine toxicity was prevented by aldehyde dehydrogenase, but not by catalase. Similar concentrations of spermine and acrolein were needed to produce toxicity. Other aldehydes (formaldehyde, acetaldehyde, and propionaldehyde) and hydrogen peroxide were less toxic than acrolein. Spermidine and 3-aminopropanal, which produces acrolein, also exhibited severe cytotoxicity. The degree of cytotoxicity of spermine, spermidine, and 3-aminopropanal was nearly parallel with the amount of acrolein produced from each compound. Thus, it was deduced that acrolein is a major toxic compound produced from polyamines (spermine and spermidine) by amine oxidase.  相似文献   

18.
Aldo-keto reductase (AKR) enzymes are critical for the detoxication of endogenous and exogenous aldehydes. Previous studies have shown that the AKR7A2 enzyme is catalytically active toward aldehydes arising from lipid peroxidation, suggesting a potential role against the consequences of oxidative stress, and representing an important detoxication route in mammalian cells. The aim of this study was to determine the ability of AKR7A2 to protect cells against aldehyde cytotoxicity and genotoxicity and elucidate its potential role in providing resistance to oxidative stress. A transgenic mammalian cell model was developed in which AKR7A2 was overexpressed in V79-4 cells and used to evaluate the ability of AKR7A2 to provide resistance against toxic aldehydes. Results show that AKR7A2 provides increased resistance to the cytotoxicity of 4-hydroxynonenal (HNE) and modest resistance to the cytotoxicity of trans, trans-muconaldehyde (MUC) and methyglyoxal, but provided no protection against crotonaldehyde and acrolein. Cells expressing AKR7A2 were also found to be less susceptible to DNA damage, showing a decrease in mutation rate cause by 4-HNE compared to control cells. Furthermore, the role of the AKR7A2 enzyme on the cellular capability to cope with oxidative stress was assessed. V79 cells expressing AKR7A2 were more resistant to the redox-cycler menadione and were able to lower menadione-induced ROS levels in both a time and dose dependent manner. In addition, AKR7A2 was able to maintain intracellular GSH levels in the presence of menadione. Together these findings indicate that AKR7A2 is involved in cellular detoxication pathways and may play a defensive role against oxidative stress in vivo.  相似文献   

19.
The screening of possible candidates for vapour fixation formicrogravity experiments indicated that the only useful agentswere acrolein and formaldehyde. Acrolein, alone or in combinationwith formaldehyde, gives consistently good preservation of non-vacuolatecells with good cytoplasmic detail. Formaldehyde also producesgood preservation. In highly vacuolate cells plasmolysis occursand is probably unavoidable in vapour fixation. The duration of fixation can be varied considerably withoutgross differences in the fixation image. The identification of a successful inactivation procedure meansthat acrolein vapour fixation has the potential to be appliedin practice. Acrolein, aldehydes, vapour fixation, Arabidopsis thaliana, microgravity, space biology  相似文献   

20.
Purification of DNA from formaldehyde fixed and paraffin embedded human tissue   总被引:71,自引:0,他引:71  
The ability to isolate DNA from preserved human tissues would provide numerous experimental opportunities. In this report it is shown that DNA can be extracted from tissues prepared for routine histopathological examination (i.e., fixed with formaldehyde and embedded in paraffin). Although the extracted DNA is not intact, it is double stranded, cleavable with restriction endonucleases, and suitable for a variety of standard techniques used in molecular biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号