首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hsc/Hsp70-interacting protein (HIP) is a rapidly evolving Hsp70 cofactor. Analyses of multiple Drosophila species indicate that the HIP gene is duplicated only in D. melanogaster. The HIP region, in fact, contains seven distinctly evolving duplicated genes. The regional duplication occurred in two steps, fixed rapidly, and illustrates multiple modes of duplicate gene evolution. HIP and its duplicate HIP-R are adaptively evolving in a manner unique to the region: they exhibit elevated divergence from other drosophilids and low polymorphism within D. melanogaster. HIP and HIP-R are virtually identical, share polymorphisms, and are subject to gene conversion. In contrast, two other duplicate genes in the region, CG33221 and GP-CG32779, are pseudogenes, and the chimeric gene Crg1 is subject to balancing selection. HIP and HIP-R are evolving rapidly and adaptively; however, positive selection is not sufficient to explain the molecular evolution of the region as a whole. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
More than 500 isolates of bacteria were obtained from the aerial part and rhizosphere of sweet pepper (Capsicum annuum L.) plants harvested from different places in the Region of Murcia (Spain). The isolates were purified and assayed in vitro against Phytophthora capsici and Alternaria alternata. Sixty isolates (12 %) produced an inhibition zone against at least one of the pathogens, while ten had a strongly inhibitory effect on both pathogens assayed. Microscopic observation of interactions zone showed cell vacuolisation, hyphae lysis and spilling of cytoplasm content of the pathogens in the culture media. These ten isolates were then chosen for biocontrol of Phytophthora root rot and Alternaria leaf spots of pepper plants in vivo. Four of them denominated HS93, LS234, LS523 and LS674 reduced P. capsici root rot by 80, 51, 49 and 54 %, respectively, and A. alternata leaf spots by 54, 74, 62 and 53 %. HS93 belongs to the genus Bacillus and probably the species subtilis, while LS234, LS523 and LS674 belong to the genus Bacillus and probably the species licheniformis. Dry mass of plants treated with these bacteria was significantly higher than that of non-treated and inoculated plants.  相似文献   

4.
5.
The yeast genes IXR1 and HMO1 encode proteins belonging to the family of chromatin nonhistone proteins, which are able to recognize and bind to irregular DNA structures. The full deletion of gene IXR1 leads to an increase in cell resistance to the lethal action of UV light, γ-rays, and MMS, increases spontaneous mutagenesis and significantlly decreases the level of UV-induced mutations. It was earlier demonstrated in our works that the hmo1 mutation renders cells sensitive to the lethal action of cisplatin and virtually does not affect the sensitivity to UV light. Characteristically, the rates of spontaneous and UV-induced mutagenesis in the mutant are increased. Epistatic analysis of the double mutation hmo1 ixr1 demonstrated that the interaction of these genes in relation to the lethal effect of cisplatin and UV light, as well as UV-induced mutagenesis, is additive. This suggests that the products of genes HMO1 and IXR1 participate in different repair pathways. The ixr1 mutation significantly increases the rate of spontaneous mutagenesis mediated by replication errors, whereas mutation hmo1 increases the rate of repair mutagenesis. In wild-type cells, the level of spontaneous mutagenesis was nearly one order of magnitude lower than that obtained in cells of the double mutant. Consequently, the combined activity of the Hmo1 and the Ixr1 proteins provides efficient correction of both repair and replication errors.  相似文献   

6.
Zhu YJ  Agbayani R  Moore PH 《Planta》2007,226(1):87-97
Phytophthora spp., some of the more important casual agents of plant diseases, are responsible for heavy economic losses worldwide. Plant defensins have been introduced as transgenes into a range of species to increase host resistance to pathogens to which they were originally susceptible. However, the effectiveness and mechanism of interaction of the defensins with Phytophthora spp. have not been clearly characterized in planta. In this study, we expressed the Dahlia merckii defensin, DmAMP1, in papaya (Carica papaya L.), a plant highly susceptible to a root, stem, and fruit rot disease caused by Phytophthora palmivora. Extracts of total leaf proteins from transformed plants inhibited growth of Phytophthora in vitro and discs cut from the leaves of transformed plants inhibited growth of Phytophthora in a bioassay. Results from our greenhouse inoculation experiments demonstrate that expressing the DmAMP1 gene in papaya plants increased resistance against P. palmivora and that this increased resistance was associated with reduced hyphae growth of P. palmivora at the infection sites. The inhibitory effects of DmAMP1 expression in papaya suggest this approach has good potential to impart transgenic resistance against Phytophthora in papaya.  相似文献   

7.
As a step toward greater understanding of the genetics of verticillium wilt resistance in plants, we report the sequencing of a candidate wilt resistance gene, mVe1, from the mint diploid model species, Mentha longifolia (Lamiaceae). mVe1 is a putative homolog of tomato (Solanum lycopersicum L.) verticillium wilt (Ve) resistance genes. The mVe1 gene has a coding region of 3,051 bp. The predicted mVe1 protein contains a leucine-rich repeat domain, a common feature of plant disease resistance proteins. We compared 13 mVe1 alleles from three mint species. These alleles shared 96.2–99.6% nucleotide identity. We analyzed four M. longifolia populations segregating with respect to mVe1 alleles and wilt resistance versus susceptibility and found one association between mVe1 genotype and wilt phenotype. We conclude that mVe1 may play a role in mint verticillium wilt resistance, but variation for resistance in our segregating progenies is likely polygenic. Therefore, further investigations of mVe1 and identification of additional candidate genes are both warranted.  相似文献   

8.

Background  

In comparative analyses of bacterial pathogens, it has been common practice to discriminate between two types of genes: (i) those shared by pathogens and their non-pathogenic relatives (core genes), and (ii) those found exclusively in pathogens (pathogen-specific accessory genes). Rather than attempting to a priori delineate genes into sets more or less relevant to pathogenicity, we took a broad approach to the analysis of Streptococcus species by investigating the strength of natural selection in all clusters of homologous genes. The genus Streptococcus is comprised of a wide variety of both pathogenic and commensal lineages, and we relate our findings to the pre-existing knowledge of Streptococcus virulence factors.  相似文献   

9.
10.
In vitro regeneration of black nightshade (Solanum nigrum L.) plants was achieved through callus-mediated shoot organogenesis followed by 30 d indoor ex vitro adaptation to nutritional stress under environmental ambience and thereafter 6-d outdoor acclimatization in pots prior to field establishment. Relevant physiological parameters including pigment content, chlorophyll a fluorescence, net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) of in vitro-regenerated plants were investigated during the course of ex vitro adaptation. During the first 4 d of indoor transplantation to potting substrate, there was a marginal reduction in the leaf chlorophyll and carotenoid contents but P N and E were strongly reduced. The stomatal conductance and E/P N ratio were significantly higher in plants up to 20 d of indoor adaptation than those of comparable age grown naturally from seeds. The shape of the OJIP fluorescence transient varied significantly with acclimatization, and the maximum change was observed at 2.0 ms. The 2.0 ms variable fluorescence (V j), 30 ms relative fluorescence (M 0), photon trapping probability (TR0/Abs), and photosystem II (PSII) trapping rate (TR0/RC) showed initial disturbance and subsequent stabilization during 30 d of indoor acclimatization. Energy dissipation (DI0/RC) and electron transport probability (ET0/TR0) showed an initial phase of increase during the 4 d after plants were transplanted outdoors. During the 6-d outdoor acclimatization after transfer of plants to soil, no significant change in total chlorophylls and carotenoids, E, and g s were observed, but P N improved after reduction on the first d. The OJIP-derived parameters experienced change on the first d but were stabilized quickly thereafter. There was no significant difference between outdoor acclimatized plants and those of the seed-grown plants of comparable age with respect to photosynthetic and fluorescence parameters. Direct transfer of plants without indoor acclimatization, however, showed a completely different trend with respect to P N, E, and OJIP fluorescence transients. The bearing of this study on optimizing micropropagation is discussed.  相似文献   

11.
12.
13.
Some exotic plants are able to invade habitats and attain higher fitness than native species, even when the native species are closely related. One explanation for successful plant invasion is that exotic invasive plant species receive less herbivory or other enemy damage than native species, and this allows them to achieve rapid population growth. Despite many studies comparing herbivory and fitness of native and invasive congeners, none have quantified population growth rates. Here, we examined the contribution of herbivory to the population dynamics of the invasive species, Lespedeza cuneata, and its native congener, L. virginica, using an herbivory reduction experiment. We found that invasive L. cuneata experienced less herbivory than L. virginica. Further, in ambient conditions, the population growth rate of L. cuneata (λ = 20.4) was dramatically larger than L. virginica (λ = 1.7). Reducing herbivory significantly increased fitness of only the largest L. virginica plants, and this resulted in a small but significant increase in its population growth rate. Elasticity analysis showed that the growth rate of these species is most sensitive to changes in the seed production of small plants, a vital rate that is relatively unaffected by herbivory. In all, these species show dramatic differences in their population growth rates, and only 2% of that difference can be explained by their differences in herbivory incidence. Our results demonstrate that to understand the importance of consumers in explaining the relative success of invasive and native species, studies must determine how consumer effects on fitness components translate into population-level consequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.

Background  

Clostridium tetani and Clostridium perfringens are among the medically important clostridial pathogens causing diseases in man and animals. Several homologous open reading frames (ORFs) have been identified in the genomes of the two pathogens by comparative genomic analysis. We tested a likelihood of extensive sharing of common epitopes between homologous proteins of these two medically important pathogens and the possibility of cross-protection using active immunization.  相似文献   

16.
17.
18.
Canola (Brassica napus L.) is an agriculturally and economically important crop in Canada, and its growth and yield are frequently influenced by fungal pathogens. Sclerotinia sclerotiorum is among those fungal pathogens and causes stem rot disease in B. napus whereas it has been reported that Brassica carinata is moderately tolerant to S. sclerotiorum. Jasmonic acid/ethylene (JA/ET) and salicylic acid (SA) are phytohormones that are known to be involved in plant disease responses. To investigate the defense signaling cascades involved in the interaction of B. napus and B. carinata with S. sclerotiorum, we examined the expression of five orthologs of B. napus genes involved in JA/ET or SA signaling pathways using quantitative RT-PCR. Our results indicated that there are differences in the timing of JA/ET and SA signaling pathways between B. napus and B. carinata. Our results in these two Brassica species also support previous observations that necrotrophic pathogens trigger JA/ET signaling in response to infection. Finally, we observed that transgenic canola expressing 1-aminocyclopropane-1-carboxylate-deaminase producing low levels of ET was relatively more susceptible to S. sclerotiorum than its wild-type counterpart, suggesting that ET inhibits S. sclerotiorum-induced symptom development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号