首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Expansion of the neocortex requires symmetric divisions of neuroepithelial cells, the primary progenitor cells of the developing mammalian central nervous system. Symmetrically dividing neuroepithelial cells are known to form a midbody at their apical (rather than lateral) surface. We show that apical midbodies of neuroepithelial cells concentrate prominin-1 (CD133), a somatic stem cell marker and defining constituent of a specific plasma membrane microdomain. Moreover, these apical midbodies are released, as a whole or in part, into the extracellular space, yielding the prominin-1-enriched membrane particles found in the neural tube fluid. The primary cilium of neuroepithelial cells also concentrates prominin-1 and appears to be a second source of the prominin-1-bearing extracellular membrane particles. Our data reveal novel origins of extracellular membrane traffic that enable neural stem and progenitor cells to avoid the asymmetric inheritance of the midbody observed for other cells and, by releasing a stem cell membrane microdomain, to potentially influence the balance of their proliferation versus differentiation.  相似文献   

3.
During mammalian development, neuroepithelial cells function as mitotic progenitors, which self-renew and generate neurons. Although spindle orientation is important for such polarized cells to undergo symmetric or asymmetric divisions, its role in mammalian neurogenesis remains unclear. Here we show that control of spindle orientation is essential in maintaining the population of neuroepithelial cells, but dispensable for the decision to either proliferate or differentiate. Knocking out LGN, (the G protein regulator), randomized the orientation of normally planar neuroepithelial divisions. The resultant loss of the apical membrane from daughter cells frequently converted them into abnormally localized progenitors without affecting neuronal production rate. Furthermore, overexpression of Inscuteable to induce vertical neuroepithelial divisions shifted the fate of daughter cells. Our results suggest that planar mitosis ensures the self-renewal of neuroepithelial progenitors by one daughter inheriting both apical and basal compartments during neurogenesis.  相似文献   

4.
Neural progenitor cells have a central role in the development and evolution of the vertebrate brain. During early brain development, neural progenitors first expand their numbers through repeated proliferative divisions and then begin to exhibit neurogenic divisions. The transparent and experimentally accessible optic tectum of Xenopus laevis is an excellent model system for the study of the cell biology of neurogenesis, but the precise spatial and temporal relationship between proliferative and neurogenic progenitors has not been explored in this system. Here we construct a spatial map of proliferative and neurogenic divisions through lineage tracing of individual progenitors and their progeny. We find a clear spatial separation of proliferative and neurogenic progenitors along the anterior‐posterior axis of the optic tectum, with proliferative progenitors located more posteriorly and neurogenic progenitors located more anteriorly. Since individual progenitors are repositioned toward more anterior locations as they mature, this spatial separation likely reflects an increasing restriction in the proliferative potential of individual progenitors. We then examined whether the transition from proliferative to neurogenic behavior correlates with cellular properties that have previously been implicated in regulating neurogenesis onset. Our data reveal that the transition from proliferation to neurogenesis is associated with a small change in cleavage plane orientation and a more pronounced change in cell cycle kinetics in a manner reminiscent of observations from mammalian systems. Our findings highlight the potential to use the optic tectum of Xenopus laevis as an accessible system for the study of the cell biology of neurogenesis. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1328–1341, 2016  相似文献   

5.
The cell biology of neurogenesis   总被引:19,自引:0,他引:19  
During the development of the mammalian central nervous system, neural stem cells and their derivative progenitor cells generate neurons by asymmetric and symmetric divisions. The proliferation versus differentiation of these cells and the type of division are closely linked to their epithelial characteristics, notably, their apical-basal polarity and cell-cycle length. Here, we discuss how these features change during development from neuroepithelial to radial glial cells, and how this transition affects cell fate and neurogenesis.  相似文献   

6.
7.
The cell division axis determines the position of daughter cells and is therefore critical for cell fate. During vertebrate neurogenesis, most cell divisions take place within the plane of the neuroepithelium (Das, T., Payer, B., Cayouette, M., and Harris, W.A. (2003). In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina. Neuron 37, 597-609. Haydar, T.F., Ang, E., Jr., and Rakic, P. (2003). Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc Natl Acad Sci U S A 100, 2890-5. Kosodo, Y., Roper, K., Haubensak, W., Marzesco, A. M., Corbeil, D., and Huttner, W. B. (2004). Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314-24). The cellular constraints responsible for this preferential orientation are poorly understood. Combining electroporation and time-lapse confocal imaging of chick neural progenitors, the events responsible for positioning the mitotic spindle and their dependence on RhoA were investigated. The results indicate that the spindle forms with a random orientation. However, the final orientation of cell divisions is dependent on two main factors: (i) an early rotation of the spindle that aligns it within the plane of the neuroepithelium, and (ii) a specific limitation of spindle oscillations, despite free rotation around the apico-basal axis. Expressing a dominant-negative RhoA leads to apico-basal cell divisions after a correct initial rotation of the spindle. Our data reveal a specific role for RhoA in the maintenance of spindle orientation, prior to anaphase. Thus, RhoA could be a key player potentially regulated by the neurogenic program or by the neural stem cell environment to control the balance between planar and apico-basal divisions, during normal or pathological development.  相似文献   

8.
During mammalian neurogenesis, progenitor cells can divide with the mitotic spindle oriented parallel or perpendicular to the surface of the neuroepithelium. Perpendicular divisions are more likely to be asymmetric and generate one progenitor and one neuronal precursor. Whether the orientation of the mitotic spindle actually determines their asymmetric outcome is unclear. Here, we characterize a mammalian homolog of Inscuteable (mInsc), a key regulator of spindle orientation in Drosophila. mInsc is expressed temporally and spatially in a manner that suggests a role in orienting the mitotic spindle in the developing nervous system. Using retroviral RNAi in rat retinal explants, we show that downregulation of mInsc inhibits vertical divisions. This results in enhanced proliferation, consistent with a higher frequency of symmetric divisions generating two proliferating cells. Our results suggest that the orientation of neural progenitor divisions is important for cell fate specification in the retina and determines their symmetric or asymmetric outcome.  相似文献   

9.
Neurogenesis and asymmetric cell division   总被引:1,自引:0,他引:1  
The astonishing cellular diversity in the central nervous system (CNS) arises from neural progenitors which can undergo different modes of symmetric and asymmetric divisions to self-renew as well as produce differentiated neuronal and glial progeny. Drosophila CNS neural progenitor cells, neuroblasts, have been utilised as a model to stimulate the understanding of the processes of asymmetric division, generation of neuronal lineages and, more recently, stem cell biology in vertebrates. Here we review some recent developments involving Drosophila and mammalian neural progenitor cells, highlighting some similarities and differences in the mechanisms that regulate their divisions during neurogenesis.  相似文献   

10.
Neuroepithelium is an apicobasally polarized tissue that contains neural stem cells and gives rise to neurons and glial cells of the central nervous system. The cleavage orientation of neural stem cells is thought to be important for asymmetric segregation of fate-determinants, such as Numb. Here, we show that an intermediate filament protein, transitin, colocalizes with Numb in the cell cortex of mitotic neuroepithelial cells, and that transitin anchors Numb via a physical interaction. Detailed immunohistological and time-lapse analyses reveal that basal Numb-transitin complexes shift laterally during mitosis, allowing asymmetric segregation of Numb-transitin to one of the daughter cells, even when the cell cleavage plane is perpendicular to the ventricular surface. In addition, RNA interference (RNAi) knockdown of the transitin gene reveals its involvement in neurogenesis. These results indicate that transitin has important roles in determining the intracellular localization of Numb, which regulates neurogenesis in the developing nervous system of avian embryos.  相似文献   

11.
The switch of neural stem and progenitor cells from proliferation to differentiation during development is a crucial determinant of brain size. This switch is intimately linked to the architecture of the two principal classes of neural stem and progenitor cells, the apical (neuroepithelial, radial glial) and basal (intermediate) progenitors, which in turn is crucial for their symmetric versus asymmetric divisions. Focusing on the developing rodent neocortex, we discuss here recent advances in understanding the cell biology of apical and basal progenitors, place key regulatory molecules into subcellular context, and highlight their roles in the control of proliferation versus differentiation.  相似文献   

12.
For the correct development of the central nervous system, the balance between self-renewing and differentiating divisions of the neuronal progenitors must be tightly regulated. To maintain their self-renewing identity, the progenitors need to retain both apical and basal interfaces. However, the identities of fate-determining signals which cells receive via these connections, and the exact mechanism of their action, are poorly understood. The conditional inactivation of Fibroblast growth factor (FGF) receptors 1 and 2 in the embryonic mouse midbrain–hindbrain area results in premature neuronal differentiation. Here, we aim to elucidate the connection between FGF signaling and neuronal progenitor maintenance. Our results reveal that the loss of FGF signaling leads to downregulation of Hes1 and upregulation of Ngn2, Dll1, and p57 in the ventricular zone (VZ) cells, and that this increased neurogenesis occurs cell-autonomously. Yet the cell cycle progression, apico-basal-polarity, cell–cell connections, and the positioning of mitotic spindle in the mutant VZ appear unaltered. Interestingly, FGF8-protein is highly concentrated in the basal lamina. Thus, FGFs may act through basal processes of neuronal progenitors to maintain their progenitor status. Indeed, midbrain neuronal progenitors deprived in vitro of FGFs switched from symmetrical proliferative towards symmetrical neurogenic divisions. We suggest that FGF signaling in the midbrain VZ is cell-autonomously required for the maintenance of symmetrical proliferative divisions via Hes1-mediated repression of neurogenic genes.  相似文献   

13.
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin-driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors.  相似文献   

14.
15.
The mechanisms that guide progenitor cell fate and differentiation in the vertebrate central nervous system (CNS) are poorly understood. Gain-of-function experiments suggest that Notch signaling is involved in the early stages of mammalian neurogenesis. On the basis of the expression of Notch1 by putative progenitor cells of the vertebrate CNS, we have addressed directly the role of Notch1 in the development of the mammalian brain. Using conditional gene ablation, we show that loss of Notch1 results in premature onset of neurogenesis by neuroepithelial cells of the midbrain-hindbrain region of the neural tube. Notch1-deficient cells do not complete differentiation but are eliminated by apoptosis, resulting in a reduced number of neurons in the adult cerebellum. We have also analyzed the effects of Notch1 ablation on gliogenesis in vivo. Our results show that Notch1 is required for both neuron and glia formation and modulates the onset of neurogenesis within the cerebellar neuroepithelium.  相似文献   

16.
17.
Neuroepithelial (NE) cells, the primary stem and progenitor cells of the vertebrate central nervous system, are highly polarized and elongated. They retain a basal process extending to the basal lamina, while undergoing mitosis at the apical side of the ventricular zone. By studying NE cells in the embryonic mouse, chick and zebrafish central nervous system using confocal microscopy, electron microscopy and time-lapse imaging, we show here that the basal process of these cells can split during M phase. Splitting occurred in the basal-to-apical direction and was followed by inheritance of the processes by either one or both daughter cells. A cluster of anillin, an essential component of the cytokinesis machinery, appeared at the distal end of the basal process in prophase and was found to colocalize with F-actin at bifurcation sites, in both proliferative and neurogenic NE cells. GFP-anillin in the basal process moved apically to the cell body prior to anaphase onset, followed by basal-to-apical ingression of the cleavage furrow in telophase. The splitting of the basal process of M-phase NE cells has implications for cleavage plane orientation and the relationship between mitosis and cytokinesis.  相似文献   

18.
《Fly》2013,7(3):237-241
Stem cells proliferate through symmetric division or self-renew through asymmetric division whilst generating differentiating cell types. The balance between symmetric and asymmetric division requires tight control to either expand a stem cell pool or to generate cell diversity. In the Drosophila optic lobe, symmetrically dividing neuroepithelial cells transform into asymmetrically dividing neuroblasts. The switch from neuroepithelial cells to neuroblasts is triggered by a proneural wave that sweeps across the neuroepithelium. Here we review recent findings showing that the orchestrated action of the Notch, EGFR, Fat-Hippo, and JAK/STAT signalling pathways controls the progression of the proneural wave and the sequential transition from symmetric to asymmetric division. The neuroepithelial to neuroblast transition in the optic lobe bears many similarities to the switch from neuroepithelial cell to radial glial cell in the developing mammalian cerebral cortex. The Notch signalling pathway has a similar role in the transition from proliferating to differentiating stem cell pools in the developing vertebrate retina and in the neural tube. Therefore, findings in the Drosophila optic lobe provide insights into the transitions between proliferative and differentiative division in the stem cell pools of higher organisms.  相似文献   

19.
Egger B  Gold KS  Brand AH 《Fly》2011,5(3):237-241
Stem cells proliferate through symmetric division or self-renew through asymmetric division whilst generating differentiating cell types. The balance between symmetric and asymmetric division requires tight control to either expand a stem cell pool or to generate cell diversity. In the Drosophila optic lobe, symmetrically dividing neuroepithelial cells transform into asymmetrically dividing neuroblasts. The switch from neuroepithelial cells to neuroblasts is triggered by a proneural wave that sweeps across the neuroepithelium. Here we review recent findings showing that the orchestrated action of the Notch, EGFR, Fat-Hippo, and JAK/STAT signalling pathways controls the progression of the proneural wave and the sequential transition from symmetric to asymmetric division. The neuroepithelial to neuroblast transition in the optic lobe bears many similarities to the switch from neuroepithelial cell to radial glial cell in the developing mammalian cerebral cortex. The Notch signalling pathway has a similar role in the transition from proliferating to differentiating stem cell pools in the developing vertebrate retina and in the neural tube. Therefore, findings in the Drosophila optic lobe provide insights into the transitions between proliferative and differentiative division in the stem cell pools of higher organisms.  相似文献   

20.
To gain insights into the cellular mechanisms of neurogenesis, we analyzed retinal neuroepithelia deficient for Llgl1, a protein implicated in apicobasal cell polarity, asymmetric cell division, cell shape and cell cycle exit. We found that vertebrate retinal neuroepithelia deficient for Llgl1 retained overt apicobasal polarity, but had expanded apical domains. Llgl1 retinal progenitors also had increased Notch activity and reduced rates of neurogenesis. Blocking Notch function by depleting Rbpj restored normal neurogenesis. Experimental expansion of the apical domain, through inhibition of Shroom3, also increased Notch activity and reduced neurogenesis. Significantly, in wild-type retina, neurogenic retinal progenitors had smaller apical domains compared with proliferative neuroepithelia. As nuclear position during interkinetic nuclear migration (IKNM) has been previously linked with cell cycle exit, we analyzed this phenomenon in cells depleted of Llgl1. We found that although IKNM was normal, the relationship between nuclear position and neurogenesis was shifted away from the apical surface, consistent with increased pro-proliferative and/or anti-neurogenic signals associated with the apical domain. These data, in conjunction with other findings, suggest that, in retinal neuroepithelia, the size of the apical domain modulates the strength of polarized signals that influence neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号