首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of tight junctions (zonula occludens) in the formation of apical plasma membrane (PM) domains was investigated in the embryonic rat pancreas. In the present study, lectin-rhodamine (WGA-TRITC and RCAII-TRITC) and lectin-gold (WGA-Au and RCAII-Au) conjugates were used to monitor apical PM domain formation and freeze-fracture analysis was used to monitor tight junction formation in the pancreatic epithelium of embryonic, neonatal, and adult rats. Fluorescent and TEM analysis of WGA and RCAII binding indicated that an apical PM domain is formed as early as Day 13 of gestation in the pancreatic epithelium. While apical WGA binding remained into adult life, RCAII binding was lost by 1 day after birth. In contrast, tight junctions were not observed until Day 14 of gestation. At this time, tight junctions were found to be incomplete in formation and typically consisted of linear arrays of IMPs or discontinuous arrays of sealing strands (focal adherens). Continuous tight junctions were not completely formed until Day 15 of gestation. Continued development of tight junctions during gestation was characterized by (1) an increase in the number of sealing strands and (2) a more parallel arrangement of sealing strands within each junctional complex. By 8 weeks after birth, tight junctions were more loosely organized and contained fewer sealing strands as compared to that observed in the fetus. These results suggest that lateral diffusion of apical PM glycoconjugates may be restricted even in the absence of complete tight junctional complexes during development of the rat pancreas.  相似文献   

2.
We examined the expression of the metabotropic P2Y(1), P2Y(2), P2Y(4), and ionotropic P2X(7) purinergic receptor subtypes in the uterine epithelium during early pregnancy in the rat. On Day 1 of pregnancy, there was no expression of P2X(7), P2Y(2), or P2Y(4) in the uterine epithelium. P2Y(1) was detected only as a diffuse label. On Day 3, P2X(7) and P2Y(2) receptor distribution was confined to the lateral plasma membranes in the epithelium. There was no expression of P2Y(4) while P2Y(1) was again detected only as a diffuse label throughout the epithelium. At the time of implantation on Day 6, a strong, continuous and area-specific P2X(7) and P2Y(2) label was noted along the entire surface of the apical epithelium suggesting a major role in calcium-modified events preceding and facilitating attachment and implantation of the blastocyst. P2Y(1) and P2Y(4) were present as a ubiquitous and nonspecific label, although the latter exhibited a minor apical deposition. These and earlier experiments with P2X subtype-specific antibodies indicate that both P2X and P2Y purinergic receptors play a role in conditioning the entire uterine epithelium for blastocyst implantation regardless of the site of attachment.  相似文献   

3.
Turnover of the plasma membrane of mammalian cells.   总被引:5,自引:0,他引:5  
D Doyle  H Baumann 《Life sciences》1979,24(11):951-966
  相似文献   

4.
Lipid translocation across the plasma membrane of mammalian cells.   总被引:25,自引:0,他引:25  
The plasma membrane, which forms the physical barrier between the intra- and extracellular milieu, plays a pivotal role in the communication of cells with their environment. Exchanging metabolites, transferring signals and providing a platform for the assembly of multi-protein complexes are a few of the major functions of the plasma membrane, each of which requires participation of specific membrane proteins and/or lipids. It is therefore not surprising that the two leaflets of the membrane bilayer each have their specific lipid composition. Although membrane lipid asymmetry has been known for many years, the mechanisms for maintaining or regulating the transbilayer lipid distribution are still not completely understood. Three major players have been presented over the past years: (1) an inward-directed pump specific for phosphatidylserine and phosphatidylethanolamine, known as aminophospholipid translocase; (2) an outward-directed pump referred to as 'floppase' with little selectivity for the polar headgroup of the phospholipid, but whose actual participation in transport of endogenous lipids has not been well established; and (3) a lipid scramblase, which facilitates bi-directional migration across the bilayer of all phospholipid classes, independent of the polar headgroup. Whereas a concerted action of aminophospholipid translocase and floppase could, in principle, account for the maintenance of lipid asymmetry in quiescent cells, activation of the scramblase and concomitant inhibition of the aminophospholipid translocase causes a collapse of lipid asymmetry, manifested by exposure of phosphatidylserine on the cell surface. In this article, each of these transporters will be discussed, and their physiological importance will be illustrated by the Scott syndrome, a bleeding disorder caused by impaired lipid scrambling. Finally, phosphatidylserine exposure during apoptosis will be briefly discussed in relation to inhibition of translocase and simultaneous activation of scramblase.  相似文献   

5.
6.
Summary Using the patch clamp technique we have identified a small conductance ion channel that typically occurs in clusters on the apical plasma membrane of pancreatic duct cells. The cell-attached current/voltage (I/V) relationship was linear and gave a single channel conductance of about 4 pS. Since the reversal potential was close to the resting membrane potential of the cell, and unaffected by changing from Na+-rich to K+-rich pipette solutions, the channel selects for anions over cations in cell-attached patches. The open state probability was not voltagedependent. Adding 25mm-bicarbonate to the bath solution caused a slight outward rectification of theI/V relationship, but otherwise, the characteristics of the channel were unaffected. In excised, inside-out, patches theI/V relationship was linear and gave a single channel conductance of about 4 pS. A threefold chloride concentration gradient across the patch (sulphate replacement) shifted the single channel current reversal potential by –26 mV, indicating that the channel is chloride selective. Stimulation of duct cells with secretin (10nm), dibutyryl cyclic AMP (1mm) and forskolin (1 m) increased channel open state probability and also increased the number of channels, and/or caused disaggregation of channel clusters, in the apical plasma membrane. Coupling of this channel to a chloride/bicarbonate exchanger would provide a mechanism for electrogenic bicarbonate secretion by pancreatic duct cells.  相似文献   

7.
Freeze-fracture cytochemistry with the cholesterol-binding antibiotic filipin has been used to examine the plasma membrane of uterine epithelial cells at different stages of pregnancy in the rat. We find many more filipin-induced lesions on day 6 of pregnancy than on day 1 and suggest that this indicates a higher cholesterol content at this time. Since day 6 of pregnancy is the time at which blastocysts implant in the rat uterus, we consider the possible significance of an increased cholesterol content for implantation.  相似文献   

8.
We have investigated the topography of a glycosyl-phosphatidylinositol implicated in insulin action by a combination of two complementary methods: (a) chemical labelling with a non-permeable (isethionyl acetimidate) and a permeable (ethyl acetimidate) probe; and (b) enzymatic modifications with beta-galactosidase (EC 3.2.1.23) or phosphatidylinositol-specific phospholipase C (EC 3.1.4.3). Using the first approach the majority of the glycosyl-phosphatidylinositol is found in the outer surface of intact hepatocytes, adipocytes, fibroblasts and lymphocytes, but not in erythrocytes which presented only a 20% of the total labelled glycosyl-phosphatidylinositol to the exterior. Upon insulin addition (10 nM), about 60% of the total glycosyl-phosphatidylinositol was hydrolysed in both hepatocytes and adipocytes but not in erythrocytes. In agreement with the extracellular localization in hepatocytes and with the proposed role of this glycolipid in insulin action, treatment of rat hepatocytes with beta-galactosidase from Escherichia coli, an enzyme that hydrolyses the oligosaccharide moiety of the glycosyl-phosphatidylinositol, cleaved 65% of the total glycophospholipid and blocked the effect of insulin (but not of glucagon) on pyruvate kinase (EC 2.7.1.40). Similar treatment with phosphatidylinositol-specific phospholipase C from Bacillus cereus hydrolysed 62% of the total glycosyl-phosphatidylinositol. From the various approaches used it is concluded that the majority of this glycophospholipid is at the outer surface in a variety of insulin-sensitive cells.  相似文献   

9.
P M Ghosh  C R Keese    I Giaever 《Biophysical journal》1993,64(5):1602-1609
When an electrical potential of order one volt is induced across a cell membrane for a fraction of a second, temporary breakdown of ordinary membrane functions may occur. One result of such a breakdown is that molecules normally excluded by the membrane can now enter the cells. This phenomenon, generally referred to as electropermeabilization, is known as electroporation when actual pores form in the membrane. This paper presents a unique approach to the measurement of pore formation and closure in anchored mammalian cells. The cells are cultured on small gold electrodes, and by constantly monitoring the impedance of the electrode with a low-amplitude AC signal, small changes in cell morphology, cell motion, and membrane resistance can be detected. Because the active electrode is small, the application of a few volts across the cell-covered electrode causes pore formation in the cell membrane. In addition, the heat transfer is very efficient, and the cells can be porated in their regular growth medium. By this method, the formation and resealing of pores due to applied electric fields can be followed in real time for anchorage-dependent cells.  相似文献   

10.
Summary Cells from three cell lines were electrorotated in media of osmotic strengths from 330 mOsm to 60 mOsm. From the field-frequency dependence of the rotation speed, the passive electrical properties of the surfaces were deduced. In all cases, the area-specific membrane capacitance (Cm) decreased with osmolality. At 280 mOsm (iso-osmotic), SP2 (mouse myeloma) and G8 (hybridoma) cells had Cmvalues of 1.01 ± 0.04 F/cm2 and 1.09 ± 0.03 F/cm2, respectively, whereas dispase-treated L-cells (sarcoma fibroblasts) exhibited Cm=2.18±0.10/F/cm2. As the osmolality was reduced, the Cmreached a well-defined minimum at 150 mOsm (SP2) or 180 mOsm (G8). Further reduction in osmolality gave a 7% increase in Cm, after which a plateau close to 0.80F/cm22was reached. However, the whole-cell capacities increased about twofold from 200 mOsm to 60 mOsm. L-cells showed very little change in Cmbetween 280 mOsm and 150 mOsm, but below 150 mOsm the Cmdecreased rapidly. The changes in Cmcorrelate well with the swelling of the cells assessed by means of van't Hoff plots. The apparent membrane conductance (including the effect of surface conductance) decreased with Cm, but then increased again instead of exhibiting a plateau. The rotation speed of the cells increased as the osmolality was lowered, and eventually attained almost the theoretical value. All measurements indicate that hypo-osmotically stressed cells obtain the necessary membrane area by using material from microvilli. However, below about 200 mOsm the whole-cell capacities indicate the progressive incorporation of extra membrane into the cell surface.We thank Mr. B.G. Klarmann for his help with the measurements. This work was supported by grants of the DFG (SFB 176 B5 to U.Z. and W.M.A.) and of the BMFT (DARA 50 WB 9212 to U.Z.). We also thank the Umweltbundesamt, Berlin, for support enabling the construction of some of the rotation generators used in this work.  相似文献   

11.
Summary Pseudopod formation in response to thyrotropin can be obtained with porcine thyroid cell monolayers attached to floating collagen gels or collagen-coated Millipore filters, a model system that allows free access to ligands and antibodies to the apical plasma membrane. To obtain new insight concerning the molecular composition of the pseudopod membrane, (1) ligands were used allowing identification of anionic sites (ruthenium red, cationized ferritin) or carbohydrate units (wheat germ agglutinin, WGA) and (2) antibodies elicited against isolated porcine thyroid membranes or dog intestinal aminopeptidase were employed.Wheat germ agglutinin-binding sites, detected by fluorescence and electron microscopy, were heterogeneously dispersed on the apical membrane. In TSH-stimulated cells, the absence of WGA-binding sites was showed on the pseudopod membrane of thyroid cells, in addition to the previously reported absence of anionic sites. This absence of binding appeared to be independent of the conditions of incubation and/or times of stimulation. Aminopeptidase, which is an apical marker in thyroid cells, was redistributed and clustered on the pseudopod membrane in the cells exposed to TSH stimulation.These present findings support the view that the pseudopod surface constitutes a highly specialized microdomain within the thyroid apical plasma membrane during TSH acute stimulation.With the technical assistance of Brigitte Nguyen Than Dao, Laboratoire de Neuroendocrinologie A, U.S.T.L., Montpellier. Preliminary accounts of this study were presented at the XXI-Vème Colloque de la Société Française de Biologie Cellulaire, Montpellier, 1984  相似文献   

12.
Simultaneous studies were performed on changes in water permeability and on the ultrastructural organization of the frog urinary bladder epithelium in the presence of Co-ions under vasopressin-stimulated water flow. A possible inhibition of the vasopressin-stimulated water flows by Co-ions is supposed from the extracellular surface of the apical membrane of granular cells responsible for water permeability of this epithelium. Using the freeze-fracture technique for studying the apical membrane ultrastructure, it was shown that with the maximum water flow the square occupied by intramembrane particle aggregates was as much as 1.8% of the total square of membranes, to reduce to 0.3% with the smaller water flow, the average sizes of aggregates being 0.35 mkm and 0.08 mkm in both these cases, respectively. Application of 1 x 10(-3)-1 x 10(-4) M CoCl2 from the mucose part inhibits the vasopressin-stimulated water flow. In this case no aggregates are actually seen on the P-face of the apical membrane, the number of intramembrane particles of the E-face being similar to that when the water permeability was originally low. It is concluded that Co-ion may influence the structure and function of the apical plasma membrane from its extracellular surface.  相似文献   

13.
Summary Clusters of luminal dense bodies, limited by a triple-layered membrane, were found in all follicle lumina in thyroid glands of mice. After thyroxine treatment the number of luminal dense bodies increased, especially in the periphery of the lumen, where the intraluminal bodies often displayed a striking resemblance to microvilli. In hyperplastic goiters, obtained by feeding mice with propylthiouracil, luminal dense bodies were replaced by intraluminal vesicles. During goiter involution the vesicles were gradually replaced by luminal dense bodies; the presence of intermediate forms suggests that vesicles and dense bodies are basically the same formations. Luminal dense bodies were observed in colloid droplets indicating their removal by endocytosis. As demonstrated by electron-microscopic cytochemistry, luminal dense bodies contain a membranebound peroxidase, and electron-microscopic autoradiography after administration of 125I indicate that they possess an iodinating capacity.Our observations on mouse thyroid glands suggest that the luminal dense bodies, which appear as vesicles in hyperplastic glands, are formed by shedding of the apical plasma membrane of the follicle cell. The shedding process might be of importance for the turnover of plasma-membrane material.This study was supported by Grant No. 12X-537 from the Swedish Medical Research Council.  相似文献   

14.
15.
The apical plasma membrane of epithelia presents the interface between organs and the external environment. It has biochemical activities distinct from those of the basal and lateral plasma membranes, as it accommodates the production and assembly of ordered apical matrices involved in organ protection and physiology and determines the microenvironment in the apical extracellular milieu. Here, we emphasise the importance of the apical plasma membrane in tissue differentiation, by mainly focussing on the embryo of the fruit fly Drosophila melanogaster, and discuss the principal organisation of the apical plasma membrane into repetitive subdomains of specific topologies and activities essential for epithelial function.  相似文献   

16.
Protective antigen (PA) of anthrax toxin forms ion-conductive channels in planar lipid bilayers and liposomes under acidic pH conditions. We show here that PA has a similar permeabilizing action on the plasma membranes of CHO-K1 and three other mammalian cell lines (J774A.1, RAW264.7 and Vero). Changes in membrane permeability were evaluated by measuring the efflux of the K+ analogue, 86Rb+, from prelabelled cells, and the influx of 22Na+. The permeabilizing activity of PA was limited to a proteolytically activated form (PAN) and was dependent on acidic pH for membrane insertion (optimal at pH 5.0), but not for sustained ion flux. The flux was reduced in the presence of several known channel blockers: tetrabutyl-, tetrapentyl-, and tetrahexylammonium bromides. PAN facilitated the membrane translocation of anthrax edema factor under the same conditions that induced changes in membrane permeability to ions. These results indicate that PAN permeabilizes cellular membranes under conditions that are believed to prevail in the endosomal compartment of toxin-sensitive cells; and they provide a basis for more detailed studies of the relationship between channel formation and translocation of toxin effector moieties in vivo.  相似文献   

17.
The apical plasma membrane of uterine epithelial cells in the rat has been treated with glycerol before fixation and then examined by freeze-fracture cytochemistry using digitonin and filipin. Many more lesions were produced by both cytochemicals following glycerol treatment than in untreated controls, and we suggest that this indicates an increased detectability of cholesterol. We consider the implications of the findings for the way in which glycerol acts on membranes and propose that glycerol promotes increased binding between cholesterol and the cytochemicals.  相似文献   

18.
Summary The apical plasma membrane of uterine epithelial cells in the rat has been treated with glycerol before fixation and then examined by freeze-fracture cytochemistry using digitonin and filipin. Many more lesions were produced by both cytochemicals following glycerol treatment than in untreated controls, and we suggest that this indicates an increased detectability of cholesterol. We consider the implications of the findings for the way in which glycerol acts on membranes and propose that glycerol promotes increased binding between cholesterol and the cytochemicals.  相似文献   

19.
To probe the dynamics and size of lipid rafts in the membrane of living cells, the local diffusion of single membrane proteins was measured. A laser trap was used to confine the motion of a bead bound to a raft protein to a small area (diam < or = 100 nm) and to measure its local diffusion by high resolution single particle tracking. Using protein constructs with identical ectodomains and different membrane regions and vice versa, we demonstrate that this method provides the viscous damping of the membrane domain in the lipid bilayer. When glycosylphosphatidylinositol (GPI) -anchored and transmembrane proteins are raft-associated, their diffusion becomes independent of the type of membrane anchor and is significantly reduced compared with that of nonraft transmembrane proteins. Cholesterol depletion accelerates the diffusion of raft-associated proteins for transmembrane raft proteins to the level of transmembrane nonraft proteins and for GPI-anchored proteins even further. Raft-associated GPI-anchored proteins were never observed to dissociate from the raft within the measurement intervals of up to 10 min. The measurements agree with lipid rafts being cholesterol-stabilized complexes of 26 +/- 13 nm in size diffusing as one entity for minutes.  相似文献   

20.
Septin family proteins oligomerize through guanosine 5'-triphosphate-binding domains into core heteromers, which in turn polymerize at the cleavage furrow of dividing fungal and animal cells. Septin assemblies during the interphase of animal cells remain poorly defined and are the topic of this report. In this study, we developed protocols for visualization of authentic higher-order assemblies using tagged septins to effectively replace the endogenous gene product within septin core heteromers in human cells. Our analysis revealed that septins assemble into microtubule-supported, disk-like structures at the plasma membrane. In the absence of cell substrate adhesion, this is the predominant higher-order arrangement in interphase cells and each of the seven to eight septin family members expressed by the two analyzed cell types appears equally represented. However, studies of myeloid and lymphoid cell model systems revealed cell type-specific alterations of higher-order septin arrangements in response to substrate adhesion. Live-cell observations suggested that all higher-order septin assemblies are mutually exclusive with plasma membrane regions undergoing remodeling. The combined data point to a mechanism by which densely arranged cortical microtubules, which are typical for nonadhered spherical cells, support plasma membrane-bound, disk-like septin assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号