首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siu-Wah Tse  Jian Yu 《Biofouling》2013,29(4):223-233

Pseudomonas GM3, a highly efficient strain in cleavage of azo bonds of synthetic dyes under anoxic conditions, was immobilized via adsorption on two types of carriers, porous glass beads and solid PVA particles. The cells were cultivated in a nutrient medium, adsorbed on sterile carriers, stabilized as biofilms in repeated batch cultures, and introduced into a chemostat activated sludge reactor for augmented decolourization. The microbial cells were quickly adsorbed and fixed on the PVA surface, compared to a slow and linear immobilization on the glass surface. The porous structure of glass beads provided shelter for the embedded cells, giving a high biomass loading or thick biofilm (13.3 mg VS ml?1 carrier) in comparison with PVA particles (4.8 mg VS ml?1 carrier), but the mass transfer of substrate in the biofilm became a significant limiting factor in the thicker biofilms (effectiveness factor η = 0.31). The microbial decolourization rate per volume of carriers was 0.15 and 0.17 mg dye ml?1 of glass beads and PVA particles, respectively. In augmented decomposition of a recalcitrant azo dye (60 mg l?1), the immobilized Pseudomonas cells in porous glass beads gave a stable decolourization efficiency (80 - 81%), but cells fixed on solid PVA particles showed an initial high colour removal of 90% which then declined to a stable removal efficiency of 81%. In both cases, the colour removal efficiency of the chemostat bioreactor was increased from < 10% by an activated sludge to ~80% by the augmented system.  相似文献   

2.
Stoodley P  Dodds I  De Beer D  Scott HL  Boyle JD 《Biofouling》2005,21(3-4):161-168
Fluid flow has been shown to be important in influencing biofilm morphology and causing biofilms to flow over surfaces in flow cell experiments. However, it is not known whether similar effects may occur in porous media. Generally, it is assumed that the primary transport mechanism for biomass in porous media is through convection, as suspended particulates (cells and flocs) carried by fluid flowing through the interstices. However, the flow of biofilms over the surfaces of soils and sediment particles, may represent an important flux of biomass, and subsequently affect both biological activity and permeability. Mixed species bacterial biofilms were grown in glass flow cells packed with 1 mm diameter glass beads, under laminar or turbulent flow (porous media Reynolds number = 20 and 200 respectively). The morphology and dynamic behavior reflected those of biofilms grown in the open flow cells. The laminar biofilm was relatively uniform and after 23 d had inundated the majority of the pore spaces. Under turbulent flow the biofilm accumulated primarily in protected regions at contact points between the beads and formed streamers that trailed from the leeward face. Both biofilms caused a 2 to 3-fold increase in friction factor and in both cases there were sudden reductions in friction factor followed by rapid recovery, suggesting periodic sloughing and regrowth events. Time-lapse microscopy revealed that under both laminar and turbulent conditions biofilms flowed over the surface of the porous media. In some instances ripple structures formed. The velocity of biofilm flow was on the order of 10 mum h(-1) in the turbulent flow cell and 1.0 mum h(-1) in the laminar flow cell.  相似文献   

3.
Abstract

Fluid flow has been shown to be important in influencing biofilm morphology and causing biofilms to flow over surfaces in flow cell experiments. However, it is not known whether similar effects may occur in porous media. Generally, it is assumed that the primary transport mechanism for biomass in porous media is through convection, as suspended particulates (cells and flocs) carried by fluid flowing through the interstices. However, the flow of biofilms over the surfaces of soils and sediment particles, may represent an important flux of biomass, and subsequently affect both biological activity and permeability. Mixed species bacterial biofilms were grown in glass flow cells packed with 1 mm diameter glass beads, under laminar or turbulent flow (porous media Reynolds number = 20 and 200 respectively). The morphology and dynamic behavior reflected those of biofilms grown in the open flow cells. The laminar biofilm was relatively uniform and after 23 d had inundated the majority of the pore spaces. Under turbulent flow the biofilm accumulated primarily in protected regions at contact points between the beads and formed streamers that trailed from the leeward face. Both biofilms caused a 2 to 3-fold increase in friction factor and in both cases there were sudden reductions in friction factor followed by rapid recovery, suggesting periodic sloughing and regrowth events. Time-lapse microscopy revealed that under both laminar and turbulent conditions biofilms flowed over the surface of the porous media. In some instances ripple structures formed. The velocity of biofilm flow was on the order of 10 μm h?1 in the turbulent flow cell and 1.0 μm h?1 in the laminar flow cell.  相似文献   

4.
The purpose of this work was to investigate the biodegradation of Sodium dodecylsulphate, a common surfactant used in commercial detergent formulations, by immobilized cells of the surfactant-degrading bacterium Pseudomonas C12B. Cells were immobilized by adsorption on porous glass beads with either unmodified or silanized surface. Data showed a direct relation between the SDS concentration in the medium and formation of the biofilm on glass beads. Bioreactors with Pseudomonas C12B cells immobilized on both types of porous glass beads were prepared. Both types showed equivalent efficiency to remove SDS. This biocatalyst was also effective to remove anionic surfactants from commercial dishwashing liquid (Jar) and shampoo (Clear) under continuous operation.  相似文献   

5.
Decolorization of azo dye using PVA-immobilized microorganisms   总被引:20,自引:0,他引:20  
A microbial consortium having a high capacity for rapid decolorization of azo dye (RED RBN) was immobilized by a phosphorylated polyvinyl alcohol (PVA) gel. The immobilized-cell beads exhibited a color removal capability of 75%, even at a high concentration of RED RBN (500 mg l(-1)) within 12 h using flask culture. The continuous operation was conducted at a hydraulic retention time (HRT) of 5-20 h in which the dye loading rate ranged from 240 to 60 mg dye h(-1). A removal efficiency exceeding 90% was obtained at the HRT higher than 10 h. No recognizable destruction of bead appearance was observed in the 6-month operation. Examination of the mechanism of the decolorization process by cell beads indicated that it proceeded primarily by biological decolorization associated with partial adsorption of the dye onto the entrapped cells and gel matrix. Microscopic observation revealed that the microbial consortium contained in the gel beads was at least made up of three kinds of bacterial species. From the economical viewpoint, alternative cheaper nitrogen sources such as fish meal, soybean meal, pharmamedia and vita yeast powder were examined.  相似文献   

6.
This study examined the hydrodynamic characteristics of a liquid-solid fluidized-bed bioreactor using elastic particles (PVA gel beads) of various diameters as carriers. The drag coefficient-Reynolds number, velocity-voidage, and expansion index-Reynolds number relationships observed during fluidization of PVA gel beads in a fluidized bed in our experiments were compared with the published results. Predictions made from previous correlations were examined with our new experimental findings, revealing the inadequacy of most of these correlations. Thus, new correlations describing the above-mentioned relationships are suggested. The drag coefficient of immobilized cell beads is larger than that of free cell ones at the same Reynolds number because the surface of the immobilized cell beads is rougher. For multiparticle systems, the correction factor, f(epsilon), is a function of the falling gel bead properties (Reynolds number) as well as the fluidized gel bead properties (Archimedes number), and depend strongly on the bed voidage (epsilon). A new simple relation was developed to predict easily the epsilon value from 0.5-0.9 at 4,986 < A(r) < 40,745 or 34 < Re(t) < 186. For all the immobilized cell beads used in this study, the prediction error of the bed voidage was less than 5% at epsilon > 0.5. The prediction equations in this study can be further applied to analyzing the hydrodynamic characteristics of a fluidized-bed reactor using similar entrapped elastic particles as carriers.  相似文献   

7.
Glutaraldehyde (GLUT) was evaluated for control of single and dual species biofilms of Bacillus cereus and Pseudomonas fluorescens on stainless steel surfaces using a chemostat system. The biofilms were characterized in terms of mass, cell density, total and matrix proteins and polysaccharides. The control action of GLUT was assessed in terms of inactivation and removal of biofilm. Post-biocide action was characterized 3, 7, 12, 24, 48 and 72 h after treatment. Tests with planktonic cells were also performed for comparison. The results demonstrated that in dual species biofilms the metabolic activity, cell density and the content of matrix proteins were higher than those of either single species. Planktonic B. cereus was more susceptible to GLUT than P. fluorescens. The biocide susceptibility of dual species planktonic cultures was an average of each single species. Planktonic cells were more susceptible to GLUT than their biofilm counterparts. Biofilm inactivation was similar for both of the single biofilms while dual biofilms were more resistant than single species biofilms. GLUT at 200 mg l(-1) caused low biofilm removal (<10%). Analysis of the post-biocide treatment data revealed the ability of biofilms to recover their activity over time. However, 12 h after biocide application, sloughing events were detected for both single and dual species biofilms, but were more marked for those formed by P. fluorescens (removal >40% of the total biofilm). The overall results suggest that GLUT exerts significant antimicrobial activity against planktonic bacteria and a partial and reversible activity against B. cereus and P. fluorescens single and dual species biofilms. The biocide had low antifouling effects when analysed immediately after treatment. However, GLUT had significant long-term effects on biofilm removal, inducing significant sloughing events (recovery in terms of mass 72 h after treatment for single biofilms and 42 h later for dual biofilms). In general, dual species biofilms demonstrated higher resistance and resilience to GLUT exposure than either of the single species biofilms. P. fluorescens biofilms were more susceptible to the biocide than B. cereus biofilms.  相似文献   

8.
We developed a pentachlorophenol (PCP)-degrading, methanogenic fixed-film reactor by using broken granular sludge from an upflow anaerobic sludge blanket reactor. This methanogenic consortium was acclimated with increasing concentrations of PCP. After 225 days of acclimation, the reactor was performing at a high level, with a PCP removal rate of 1,173 muM day(-1), a PCP removal efficiency of up to 99%, a degradation efficiency of approximately 60%, and 3-chlorophenol as the main chlorophenol residual intermediate. Analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that Bacteria and Archaea in the reactor stabilized in the biofilms after 56 days of operation. Important modifications in the profiles of Bacteria between the original granular sludge and the reactor occurred, as less than one-third of the sludge DGGE bands were still present in the reactor. Fluorescence in situ hybridization experiments with probes for Archaea or Bacteria revealed that the biofilms were composed mostly of Bacteria, which accounted for 70% of the cells. With PCR species-specific primers, the presence of the halorespiring bacterium Desulfitobacterium hafniense in the biofilm was detected very early during the reactor acclimation period. D. hafniense cells were scattered in the biofilm and accounted for 19% of the community. These results suggest that the presence of PCP-dehalogenating D. hafniense in the biofilm was crucial for the performance of the reactor.  相似文献   

9.
Degradation of benzene by a Rhodococcus sp. using immobilized cell systems   总被引:1,自引:0,他引:1  
The continuous degradation of benzene by a Rhodococcus sp. using free and immobilized cell systems was compared. Cell entrapment in calcium and strontium alginate beads and adhesion on support materials such as glass beads were found to be unsatisfactory. Degradation of benzene by cells immobilized in either ceramic or cellulose carriers proved to be more efficient than its non-immobilized counterpart. A retention time of 36 h was required to effect a 97% degradation of benzene using suspended free cells while cells immobilized on cellulose or ceramic carriers effected 97% degradation at 24 and 18 h, respectively. Recycling of the ceramic carriers was also possible and resulted in an even shorter retention time of 12h to effect a 97% degradation of benzene. Cell adhesion on the support materials was confirmed by scanning electron microscopy.  相似文献   

10.
Wang YJ  Liao Q  Wang YZ  Zhu X  Li J 《Bioresource technology》2011,102(13):6902-6908
Photosynthetic bacteria (PSB), Rhodopseudomonas palustris CQK 01, were immobilized on the surface of a thin glass slide in a lab-scale flat panel photobioreactor under different flow rates and substrate concentrations. The morphology, dry weight and thickness of the mature PSB biofilms were determined to reveal the relationship between biofilm formation and hydrogen production performance. The mature biofilm formed at a low flow rate and a high substrate concentration showed a looser structure, these structures of the mature biofilm then affected the H2 production performance of the bioreactor during mature stage. The biofilm formed at a flow rate of 228 ml/h and a substrate concentration of 60 mmol/l exhibited the highest dry weight and optimally porous structure, which is beneficial not only for hydrogen removal from the biofilm but also glucose diffusion into the biofilm, thus significantly boosting the photo-hydrogen production performance.  相似文献   

11.
For biofilm studies, artificial models can be very helpful in studying processes in hydrogels of defined composition and structure. Two different types of artificial biofilm models were developed. Homogeneous agarose beads (50–500 μm diameter) and porous beads (260 μm mean diameter) containing pores with diameters from 10 to 80 μm (28 μm on average) allowed the embedding of cells, particles and typical biofilm matrix components such as proteins and polysaccharides. The characterisation of the matrix structures and of the distribution of microorganisms was performed by confocal laser scanning microscopy. The physiological condition of the embedded bacteria was examined by redox activity (CTC-assay) and membrane integrity (Molecular Probes LIVE/DEAD-Kit). Approximately 35% of the immobilised cells (Pseudomonas aeruginosa SG81) were damaged due to the elevated temperature required for the embedding process. It was shown that the surviving cells were able to multiply when provided with nutrients. In the case of homogeneous agarose beads, cell growth only occurred near the bead surface, while substrate limitation prevented growth of more deeply embedded cells. In the porous hydrogel, cell division was observed across the entire matrix due to better mass transport. It could be shown that embedding in the artificial gel matrix provided protection of immobilized cells against toxic substances such as sodium hypochlorite (0.5 mg/l, 30 min) in comparison to suspended cells, as observed in other immobilized systems. Thus, the model is suited to simulate important biofilm matrix properties. Received: 21 December 1999 / Received revision: 7 March 2000 / Accepted: 10 March 2000  相似文献   

12.
Although the detachment of cells from biofilms is of fundamental importance to the dissemination of organisms in both public health and clinical settings, the disinfection efficacies of commonly used biocides on detached biofilm particles have not been investigated. Therefore, the question arises whether cells in detached aggregates can be killed with disinfectant concentrations sufficient to inactivate planktonic cells. Burkholderia cepacia and Pseudomonas aeruginosa were grown in standardized laboratory reactors as single species and in coculture. Cluster size distributions in chemostats and biofilm reactor effluent were measured. Chlorine susceptibility was assessed for planktonic cultures, attached biofilm, and particles and cells detached from the biofilm. Disinfection tolerance generally increased with a higher percentage of larger cell clusters in the chemostat and detached biofilm. Samples with a lower percentage of large clusters were more easily disinfected. Thus, disinfection tolerance depended on the cluster size distribution rather than sample type for chemostat and detached biofilm. Intact biofilms were more tolerant to chlorine independent of species. Homogenization of samples led to significantly increased susceptibility in all biofilm samples as well as detached clusters for single-species B. cepacia, B. cepacia in coculture, and P. aeruginosa in coculture. The disinfection efficacy was also dependent on species composition; coculture was advantageous to the survival of both species when grown as a biofilm or as clusters detached from biofilm but, surprisingly, resulted in a lower disinfection tolerance when they were grown as a mixed planktonic culture.  相似文献   

13.
Two kinds of biocarriers were adopted and a combined process of “AMC (Anaerobic microorganism carrier)-UASB and PBG (Porous bio-gel)-MBBR” was operated at the pilot scale for the treatment of real textile wastewater. The influence mechanism of the two carriers on the start-up, pollutant removal and sludge reduction were investigated within 118 days of operation. The dominant functional bacteria in anaerobic and aerobic systems were identified by high-throughput sequencing, and the possible ways and related mechanisms of nutrient removal and sludge reduction were analyzed based on the data. 37.0 ± 7.5 % and 53 ± 12.7 % of COD removal efficiencies were achieved in anaerobic system and aerobic system, respectively. Ammonia nitrogen concentration decreased from 20 to 45 to 3.49 ± 0.54 mg/L after treatment. An anaerobe was found to be closely related to color removal, which existed in both anaerobic and aerobic systems, achieving 84.0 % of color removal. With the operation of the system, the sludge yield decreased gradually. The sludge yields of anaerobic and aerobic systems were calculated individually and compared with similar studies. Aging biofilms were characterized to explore the factors associated with biofilm renewal.  相似文献   

14.
In this study, previously developed anaerobic microbial consortia capable of degrading aromatic compounds were used to develop biofilms on a natural material, coyonoxtle (Opuntia imbricata), which is abundantly available in North Mexico. The developed biofilms were evaluated for their efficiency in the biodegradation of different aromatic compounds, viz., phenol, catechol, 4‐aminobenzoic acid and p‐phenylenediamine in batch reactors. It was observed that in reactors with biofilms a more than 90 % COD removal and a concomitant production of methane could be obtained. But the rate of COD removal and methane production varied depending upon the type of biofilm used. Rumen‐derived biofilms demonstrated a lag phase of 7 to 14 days, whereas sludge‐derived biofilms exhibited a lag phase of more than three weeks. Between the biofilms from two sources, rumen‐derived biofilms showed a higher COD removal and methane production than sludge‐derived biofilms. When biofilm reactors were compared with reactors containing freely suspended consortia, it was evident that both rumen– and sludge‐derived biofilm reactors exhibited a two‐fold higher COD removal and methane production. Based on the results obtained, it can be concluded that coyonoxtle has the potential for use as a substratum.  相似文献   

15.
Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B. cepacia associated with both primary and secondary biofilms. The amount of biocide needed to inactivate 50% of planktonic B. cepacia in 10 min at 25 degrees C was 8.4, 0.5, and 0.2 mg l-1 for iodine, chlorine, and ozone, respectively. The data suggest that iodine maynot be the best chemical for treating of biofilms when removal of cellular material is required.  相似文献   

16.
A white rot fungus Thelephora sp. was used for decolourization of azo dyes such as orange G (50 microM), congo red (50 microM), and amido black 10B (25 microM). Decolourization using the fungus was 33.3%, 97.1% and 98.8% for orange G, congo red and amido black 10B, respectively. An enzymatic dye decolourization study showed that a maximum of 19% orange G was removed by laccase at 15 U/ml whereas lignin peroxidase (LiP) and manganese dependent peroxidase (MnP) at the same concentration decolourized 13.5% and 10.8%, orange G, respectively. A maximum decolourization of 12.0% and 15.0% for congo red and amido black 10B, respectively, was recorded by laccase. A dye industry effluent was treated by the fungus in batch and continuous modes. A maximum decolourization of 61% was achieved on the third day in the batch mode and a maximum decolourization of 50% was obtained by the seventh day in the continuous mode. These results suggest that the batch mode of treatment using Thelephora sp. may be more effective than the continuous mode for colour removal from dye industry effluents.  相似文献   

17.
Glutaraldehyde (GLUT) was evaluated for control of single and dual species biofilms of Bacillus cereus and Pseudomonas fluorescens on stainless steel surfaces using a chemostat system. The biofilms were characterized in terms of mass, cell density, total and matrix proteins and polysaccharides. The control action of GLUT was assessed in terms of inactivation and removal of biofilm. Post-biocide action was characterized 3, 7, 12, 24, 48 and 72 h after treatment. Tests with planktonic cells were also performed for comparison. The results demonstrated that in dual species biofilms the metabolic activity, cell density and the content of matrix proteins were higher than those of either single species. Planktonic B. cereus was more susceptible to GLUT than P. fluorescens. The biocide susceptibility of dual species planktonic cultures was an average of each single species. Planktonic cells were more susceptible to GLUT than their biofilm counterparts. Biofilm inactivation was similar for both of the single biofilms while dual biofilms were more resistant than single species biofilms. GLUT at 200 mg l?1 caused low biofilm removal (<10%). Analysis of the post-biocide treatment data revealed the ability of biofilms to recover their activity over time. However, 12 h after biocide application, sloughing events were detected for both single and dual species biofilms, but were more marked for those formed by P. fluorescens (removal >40% of the total biofilm). The overall results suggest that GLUT exerts significant antimicrobial activity against planktonic bacteria and a partial and reversible activity against B. cereus and P. fluorescens single and dual species biofilms. The biocide had low antifouling effects when analysed immediately after treatment. However, GLUT had significant long-term effects on biofilm removal, inducing significant sloughing events (recovery in terms of mass 72 h after treatment for single biofilms and 42 h later for dual biofilms). In general, dual species biofilms demonstrated higher resistance and resilience to GLUT exposure than either of the single species biofilms. P. fluorescens biofilms were more susceptible to the biocide than B. cereus biofilms.  相似文献   

18.
Behnke S  Camper AK 《Biofouling》2012,28(6):635-647
Disinfection efficacy testing is usually done with planktonic cells or more recently, biofilms. While disinfectants are much less effective against biofilms compared to planktonic cells, questions regarding the disinfection tolerance of detached biofilm clusters remain largely unanswered. Burkholderia cepacia and Pseudomonas aeruginosa were grown in chemostats and biofilm tubing reactors, with the tubing reactor serving as a source of detached biofilm clusters. Chlorine dioxide susceptibility was assessed for B. cepacia and P. aeruginosa in these three sample types as monocultures and binary cultures. Similar doses of chlorine dioxide inactivated samples of chemostat and tubing reactor effluent and no statistically significant difference between the log(10) reductions was found. This contrasts with chlorine, shown previously to be generally less effective against detached biofilm particles. Biofilms were more tolerant and required chlorine dioxide doses ten times higher than chemostat and tubing reactor effluent samples. A second species was advantageous in all sample types and resulted in lower log(10) reductions when compared to the single species cultures, suggesting a beneficial interaction of the species.  相似文献   

19.
Summary Some abundantly and cheaply available substrates were used to develop biofilms of textile-effluent decolourizing bacteria. These biofilm systems were compared for their decolourization efficiency in packed bed system. Biofilm systems using mineral material, sea-shells or nylon web as substratum decolourized effluent (100%) in 9 –12 h without major release of free cells into the medium.  相似文献   

20.
The role of two sigma factors, AlgT and RpoS, in mediating Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine was investigated. Two knock out mutant strains, SS24 (rpoS-) and PAO6852 (algT-), were compared with a wild type, PAO1, in their susceptibility to monochloramine and hydrogen peroxide. When grown as biofilms on alginate gel beads (mean untreated areal cell density 3.7 +/- 0.27 log cfu cm-2) or on glass slides (mean untreated areal cell density 7.6 +/- 0.9 log cfu cm-2), wild type bacteria exhibited reduced susceptibility to both antimicrobial agents in comparison with suspended cells. On alginate gel beads, all strains were equally resistant to monochloramine. rpoS- and algT- gel bead biofilms of 24-hour-old were more susceptible to hydrogen peroxide disinfection than were biofilms formed by PAO1. Biofilm disinfection rate coefficients for the two mutant strains were statistically indistinguishable from planktonic disinfection rate coefficients, indicating complete loss of biofilm resistance. While 48-hour-old algT- biofilm cells became resistant to hydrogen peroxide, 48-hour-old rpoS- biofilm cells remained highly susceptible. With the thicker biofilms formed on glass coupons, all strains were equally resistant to both hydrogen peroxide and monochloramine. It is concluded that while RpoS and AlgT may play a transient role in protecting thin biofilms from hydrogen peroxide, these sigma factors do not mediate resistance to monochloramine and do not contribute significantly to the hydrogen peroxide resistance of thick biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号